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SUMMARY

Understanding the classic problem of how single
E. coli cells coordinate cell division with genome
replication would open the way to addressing cell-
cycle progression at the single-cell level. Recent
studies produced new data, but the contrast in their
conclusions and proposed mechanisms makes the
emerging picture fragmented and unclear. Here, we
re-evaluate available data and models, including
generalizations based on the same assumptions.
We show that although they provide useful insights,
none of the proposedmodels captures all correlation
patterns observed in data. We conclude that the
assumption that replication is the bottleneck process
for cell division is too restrictive. Instead, we propose
that two concurrent cycles responsible for division
and initiation of DNA replication set the time of cell di-
vision. This framework allows us to select a nearly
constant added size per origin between subsequent
initiations as the most likely mechanism setting initi-
ation of replication.

INTRODUCTION

Each cell needs two copies of the genome to divide. The notion

that this simple principle must be central for the cell cycle was

already clear in early studies (Meselson and Stahl, 1958; Nurse

et al., 1998). For the model organism E. coli, a wealth of infor-

mation was gathered starting from the late 1950s (Cooper and

Helmstetter, 1968; Donachie, 1968; Schaechter et al., 1958,

1962), leading to important insights about cell-cycle progres-

sion. Today, a relevant set of the key molecules playing a

role in the cell cycle of these bacteria is known (Adams and Er-
Ce
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rington, 2009; Cho et al., 2011; Donachie, 1993; Donachie and

Blakely, 2003; Egan and Vollmer, 2013; Hill et al., 2013; Lutken-

haus et al., 2012). However, determining how cell division is co-

ordinated with genome replication in E. coli is still an open

problem. The reason is that our knowledge is still based mostly

on population averages, which mask the behavior of single

cells (Osella et al., 2017). Instead, understanding homeostatic

processes in cell-cycle progression needs the knowledge of

correlations between subsequent cell-cycle events at the sin-

gle-cell level. For example, we do not know for sure whether

replication initiation is triggered at a critical size in single cells

(Ho and Amir, 2015; Osella et al., 2017; Wallden et al., 2016),

whether there are licensing constraints inhibiting initiations

(Bates and Kleckner, 2005; Osella et al., 2017), and whether

the rate-limiting checkpoint for the decision to divide is typically

independent from replication initiation (Harris and Theriot,

2016).

A wave of experimental and theoretical studies promises to

untie this knot, because high-throughput, single-cell data are

becoming routinely available (Campos et al., 2014; Hashimoto

et al., 2016; Iyer-Biswas et al., 2014; Jun and Taheri-Araghi,

2015; Kennard et al., 2016; Kiviet et al., 2014). These measure-

ments can in principle access the full correlation pattern of

several cell-cycle events, fromwhichwe can extract mechanistic

interpretations (Osella et al., 2017). For instance, there is agree-

ment that in most cases, the added volume between consecu-

tive cell divisions is nearly uncorrelated with cell size at birth, a

principle sometimes called adder (Adiciptaningrum et al., 2015;

Amir, 2014; Campos et al., 2014; Harris and Theriot, 2016; Osella

et al., 2017; Soifer et al., 2016; Taheri-Araghi et al., 2015;Wallden

et al., 2016). However, fundamentally different models that ac-

count for this adder behavior have been proposed (Adiciptaning-

rum et al., 2015; Harris and Theriot, 2016; Ho and Amir, 2015;

Osella et al., 2017; Wallden et al., 2016), leaving us with a com-

plex landscape of models that appear to be incompatible and to

contrast one another. Additionally, we lack a general theoretical
ll Reports 25, 761–771, October 16, 2018 ª 2018 The Authors. 761
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Figure 1. Comparison of the Existing Models Linking Cell-Cycle Progression to Cell Division in Single E. coli Cells

(A) Top: all models need to comply to the robust near-adder pattern found in data (added size over the cell cycle uncorrelated with initial size). Middle:

near-adder pattern in the size-growth plot of net growth G= logðVf=V0Þ=at versus logarithmic initial size logðV0Þ with a negative slope of 1/2. The slope

parameter lG between 0 (no control) and 1 (absolute threshold) quantifies size control. Bottom: definition of main variables (see Table S1).

(B) Opposite hypotheses for cell division. Top: completion of replication and segregation is always rate limiting (Ho and Amir, 2015; Wallden et al., 2016). Bottom:

it is never limiting, and division may be triggered by, e.g., a threshold amount of surface material necessary to form the septum (Harris and Theriot, 2016).

(C) Models in which replication and segregation is the bottleneck. The cartoon plots summarize the expectation, in each model, for correlation patterns between

the volume at birth V0 and the size at initiation per origin VB=nO (left plot) and between atC+D and logarithmic initiation size logVB, where tC+D is the period

between replication initiation and division (right plot). Top: Wallden et al. (2016) assume that the periods associated with replication and segregation are

consecutive and juxtaposed in series. This model postulates a critical size per origin at initiation and a duration of tC+D that is coupled to single-cell growth rate,

but not to cell size. Bottom: in the Ho-Amir model (Ho and Amir, 2015), the timing between initiation and division tC+D and that between subsequent initiations

tI run in parallel from a single initiation event. Only tI is coupled to size in a way that a constant size per origin is added between successive initiations.
framework to interpret the correlation patterns in the data and to

compare and falsify different models.

Here, we aim to provide a solid framework for solving the

apparent contradictions among recent claims by a jointmodeling

and data analysis approach (considering the available high-qual-

ity, single-cell datasets). Focusing on the coordination of genome

replication with cell division, we start by reanalyzing available

data and models. In a parallel study, we introduced the concur-

rent-cycles idea: a division-related process (e.g., completion of

the septum) and a replication-segregation process (e.g., release

of occlusion from thenucleoid) compete to set cell division (Micali

et al., 2018). In this study, we develop this idea in two directions.

First, we systematically study general models based on the two

alternative hypotheses that replication is always or never the

limiting process for division. Despite the flexibility and the addi-

tional free parameters of these general models compared with

the ones proposed in the literature, we show that they irremedi-

ably lead to predictions that are inconsistent with available data

if the whole pattern of correlations is considered. Second,

assuming the concurrent-cycles framework, we ask whether it

is possible to capture all measured correlation patterns and to

use them to isolate the specific mechanisms setting initiation

and division, focusing on scenarios in which the concurrent pro-

cesses work on already proposed mechanisms for the interdivi-

sion and interinitiation processes, such as adders or sizers.
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RESULTS

Review of Current Models of the E. coli Cell Cycle
We start by reviewing available models and the key differences

in their predictions (Figure 1) that need to be reconciled. As a

premise, all models must reproduce the ubiquitous near-adder

correlation pattern, robustly found for cell division in several da-

tasets (Jun and Taheri-Araghi, 2015), i.e., that added size be-

tween consecutive initiations is uncorrelated with initial size

(Figure 1A).

Harris and Theriot (2016) assume (Figure 1B) that the process

of replication and segregation is never the bottleneck process for

cell division, because it is typically completed well in advance,

before other rate-limiting processes trigger division. They also

propose that of the multiple checkpoints needed for cells to

complete division, the one that is rate limiting could be the accu-

mulation of a target surface material (enough to build the

septum). Under this assumption, and further assuming that sur-

face synthesis rate is proportional to cell volume, one finds near-

adder correlations (Supplemental Experimental Procedures).

A main assumption of this model is that genome replication

and segregation is typically faster than the critical accumulation

of the factor triggering division and thus that cell division can be

unaware of the chromosomes. Studies measuring how different

perturbations affect mean cell size conclude that this is not



Figure 2. Current Models Fail to Capture the Experimental Correla-

tion Patterns of the Cell-Cycle Intervals Related to Replication and

Segregation (C+D Period)

Scatterplot and slope of the size-growth plot for theC+D period, i.e., atC+D as

a function of initiation size logðVBÞ. Data from Wallden et al. (2016) show slow

(yellow squares) and intermediate (light blue triangles) growth conditions, and

data fromAdiciptaningrum et al. (2015) are shown as green circles. All datasets

presented were obtained by labeling SeqA molecules. The negative values of

the slopes (dashed lines from linear fits of binned data), quantifying the pa-

rameters lC+D, robustly show size-coupled growth during the C+D period.
generally the case (Si et al., 2017; Zheng et al., 2016), but work by

Harris and Theriot (2016) does not address the evidence pointing

to a link between replication and cell division (Donachie, 1968;

Donachie and Blakely, 2003). Thus, in the best-case sce-

nario, it needs to be complemented with a description of DNA

replication.

The prevalent view, assumed by all other available models, is

that instead, the bottleneck process for division is the completion

of replication and segregation. We focus specifically on the link

between replication and cell division (Figures 1B and 1C). In

this case, the cell cycle is naturally divided into theB;C;Dperiods

defined by replication initiation, duration of replication, and cell

division (Figure 1B) and analogous to the G1, S, and G2/M pe-

riods of eukaryotic cell cycles.

In particular, two main models are used to explain cell division

based on the idea that the replication and segregation process is

rate limiting. Both models are based on the assumption that cell

division takes place at a size-independent time after initiation

of replication, but they differ in how replication initiation is

controlled. A model by Ho and Amir (2015) assumes that cells

add a constant size (i.e., independent from the cell size at initia-

tion) per origin between initiations (adder between initiations),

while division is set by a constant time C+D (timer) after initia-

tion. A competing model by Wallden et al. (2016) proposes that

initiation is triggered by a constant cell size per origin, while

cell division can phenomenologically resemble a sizer or a

near-adder, depending on the growth conditions (more details

later). This sizer per origin extends to single cells the classic pic-

ture (Donachie, 1968, 1993) that assumes a sizer at initiation,

motivated by population-averaged data (Osella et al., 2017).

Both models are compatible with this constant average size
per origin at initiation and thus with empirical observations at

the population level. However, from a single-cell perspective,

the assumption of a critical size per origin is radically different

from the assumption of a constant added mass since the last

initiation event. There are open questions of whether and how

the available data suffice to distinguish between these two alter-

native scenarios.

Invalidation of Current Models Based on the C+D

Correlation Patterns
We have shown in a parallel study (Micali et al., 2018) that the

existing models cannot capture correlation patterns in the

C+D period. This section recapitulates these inconsistencies

between data and model predictions in more detail. For each

model describing the replication-division cycle, Figure 1C

shows two key predicted correlation patterns for the B and

C+D period. First, the volume per origin at initiation VB versus

initial volume V0 tests the existence of a size threshold for initi-

ation in single cells. This plot has zero slope if a size threshold

exists (a sizer, i.e., control parameter lB = 1). Second, the cor-

relation pattern between the growth in the C+D period atC+D

and the initial size tests a possible coupling between replica-

tion-segregation cell-cycle interval and cell size. The slope

of this plot is zero if the C+D period is uncoupled from size

(a timer, i.e., control parameter lC+D = 0).

The contrasting Ho-Amir and Wallden et al. models agree in

the claim that there is no control between initiation and division,

lC+D = 0 (Figure 1C), but the duration of this period fluctuates

around a cell size-independent value (a timer). A third study by

Adiciptaningrum et al. (2015) found experimentally that the dura-

tion of the D period, the time between termination of replication

and cell division, was anticorrelated with the size at the termina-

tion of replication. This coupling between D period duration and

cell size is at odds with the assumptions of both models. This

pattern is confirmed by data fromWallden et al. (2016), as shown

in Figure 2, and the existing models where on replication and

segregation are the rate-limiting process for division do not

reproduce it. In addition, the assumption that DNA replication

is never a bottleneck, as in the Harris-Theriot model (Harris

and Theriot, 2016), leads to quantitatively wrong predictions in

the single-cell correlation patterns of the replication-related

cell-cycle intervals. We discuss this question in more detail later,

because this model represents a specific limiting case of the

concurrent-cycles framework.

To further explore the limitations of the classic hypothesis that

division is limited by replication and segregation, we introduce

two classes of models that generalize the two descriptions by

Ho-Amir and by Wallden and coworkers. These generalizations

show that the assumption of replication and segregation as the

single rate-limiting process for division leads to predictions that

cannot be reconciled with empirical data, even when the correla-

tion pattern in Figure 2 is captured with ad hoc ingredients.

Definition of Generalized Models Based on Replication
and Segregation as the Rate-Limiting Process for
Division
We define a general modeling framework that assumes that

replication-segregation ‘‘bottlenecks’’ cell division, with the
Cell Reports 25, 761–771, October 16, 2018 763



Figure 3. Scheme of the Generalized Models BCD and ICD

General schemes of models in series (BCD, see also Adiciptaningrum et al.,

2015) and in parallel (ICD). In the sketches, each model is characterized by the

control parameters lX coupling growth during a cell-cycle interval and cell size.

Noise parameters in each model describe the variability of each cell-cycle

interval at a fixed initial size.

Figure 4. Inconclusive Empirical Evidence for a Sizer at Initiation

Volume at initiation versus birth volume. SeqA data from Wallden et al. (2016)

show slow (yellow squares) and intermediate (light blue triangles) growth con-

ditions, and SeqA data from Adiciptaningrum et al. (2015) are shown as green

circles. Color scales correspond to the probability density (see Supplemental

Information). The solid line has a slope of 1 (VB = V0). The bottom-left and

bottom-right panels show the same plot using SeqA and DnaQ labeling data,

respectively, in the same slow-growth conditions (data from Wallden et al.,

2016). Data from DnaQ show the possibility of a second initiation per cell cycle

(see Supplemental Experimental Procedures section S1). Conversely, SeqA

foci are detected only after division (Osella et al., 2017). The weak dependency

of the size of the second initiation and initial size (dashed line is the slope from

the binned average) is only loosely consistent with a sizer (secondary initiations

are extracted from foci subcellular localization, tracking, and cell size) (Fig-

ure S1). The annotated values of lB are extracted from the equivalent size-

growth plots (Figure S2) by Bayesian fits, taking into account the constraints.
scope of highlighting the limitations of this assumption. The two

models by Ho-Amir and by Wallden and coworkers fundamen-

tally differ in the assumption of how the cell-cycle intervals cor-

responding to the B;C;D periods are temporally juxtaposed

(see the sketches in Figure 1C). In the model by Wallden and co-

workers, the cell-cycle intervals are placed in series, and no in-

terval can begin if the previous one is not completed. Conversely,

in the Ho-Amir model, there is an overarching interval connecting

subsequent initiations, and the interval corresponding to the

C+D period runs in parallel. Thus, the B period in this model is

a result of the two parallel cell-cycle intervals (their difference

is in the absence of overlapping replication rounds).

Therefore, we consider two general wiring diagrams of cou-

plings between size and growth (Figure 3), which we call ICD (in

parallel) and BCD (in series). In these general schemes, each

cell-cycle interval is drawn as an arrow, and the size is coupled

to the duration of the interval by generic parameters. These pa-

rameters can represent controls acting in case of a size fluctua-

tion, e.g., by reducing the duration of the period in case the cell

is larger than average at entry. Each cell-cycle interval is charac-

terized by the coupling parameter lX between its duration and its

cell size (e.g., volume). Such parameters are evaluated directly

from the size-growth plots of relative growth during each interval

versus initial size (illustrated in Figure 1A) and may range from

0 (timer, no control) to 1 (sizer, absolute size threshold).

Specifically, we aim to show that in models assuming that

replication is always bottleneck, even parametric generaliza-

tions, which are in principle more flexible (Adiciptaningrum

et al., 2015), lead to predictions that deviate from data.

Indecisive Evidence for a Critical Size Threshold at
Replication Initiation from Direct Measurements
Before addressing the models, we need to review the experi-

mental support in single cells for the assumption of a sizer at initi-

ation. Clear evidence for a size threshold at initiation would limit

the parameter space of our generalized models. Therefore, we

reanalyzed the available data to test the correlation patterns in

the B period and to compare them to model predictions or as-

sumptions. Figure 4 summarizes the results of this analysis.
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As noted previously (Osella et al., 2017; Wallden et al., 2016),

data on replication initiation obtained by labeling SeqA mole-

cules show a constraint whereby foci appearance is recorded

only when VB >V0. This constraint is visible in Figure 4 as a cut

in the correlation clouds between initial volume V0 and volume

at initiation VB. The cut cloud is because of unrecorded initiation

events in the previous cell cycle (which is typically not available

or tracked in the dataset). To estimate the slopes in the presence

of the constraint, we performed a Bayesian fit of a bivariate

Gaussian using the data in Figure 4 under the assumption that

the data below the constraint were censored (see Supplemental

Experimental Procedures for a description and testing of this al-

gorithm). The results are not far from a sizer, but they also deviate

sensibly from this pattern.

DnaQ foci aremore visible before division, although these data

are affected by false-positive detection because of blinking and

by poor segmentation tracking of cells (Wallden et al., 2016).

Despite of these problems, the DnaQ data show evidence of

double initiations in the same cell cycle and allow a different anal-

ysis, because the data of secondary initiations are free from the

cut in the correlation cloud. Secondary initiations can occur in

cells with delayed divisions (which might meet the size criteria

for initiation twice in the same cell cycle). We have performed a

refined analysis of the B period in the DnaQ data, defining sec-

ondary initiations from information on foci subcellular localization

and time tracks of both foci and cell size (see Supplemental

Experimental Procedures and Figure S1).



Figure 4 shows the cell volume at initiation VB against the cell

volume at birth V0 (not shown in the Wallden et al., 2016, study).

We conclude the following. First, at the same range of volumes at

birth, a secondary cloud of initiations at large volumes appears

for DnaQ. The reasons why such double initiations are not visible

with SeqA are unclear, but we believe they are likely biological,

because SeqA foci do not blink and are more stable and visible

than DnaQ foci (Adiciptaningrum et al., 2015; Osella et al., 2017;

Wallden et al., 2016). This may relate to previous observations

leading to the licensing hypothesis for initiation (Bates and

Kleckner, 2005; Kleckner et al., 2018). Second, correlation in

the secondary cloud of Figure 4 confirms the idea that initiation

size is weakly correlated with birth size, generally close to but

slightly divergent from the pattern expected from a sizer. How-

ever, because of blinking, we consider DnaQ data to be less reli-

able than SeqA for the primary cloud of initiations. This is

because mother-daughter progression is not tracked, and as a

consequence, it is not possible to reliably assign initiation to

the first cloud, because the appearance of foci early in the cell

cycle could be because of a real initiation or a blinking event in

the mother cell.

In conclusion, the available direct measurements of initiation

size do not conclusively point to the presence of a size threshold

at initiation and generally show a weak but noticeable positive

correlation of initiation size with birth size.

Inconsistencies between Measured Correlation
Patterns for the B and C+D Periods and Generalized
Models
Having reviewed the main experimental correlations, we go

back to the generalized models of Figure 3 to analyze whether

they may reproduce them. Specifically, we asked whether the

observed correlation patterns in the C+D period (Figure 2) and

in the B period (Figure 4) could be reproduced jointly and consis-

tently by these models (see Supplemental Experimental Proced-

ures sections S4 and S5 and Figure S4).

A non-zero control variable lC+D coupling initiation size to di-

vision (such as the one that is built in the Adiciptaningrum et al.,

2015, model) can be added in a straightforward way to any

model. This would trivially make the models able to reproduce

the correlation trends in C+D (Figure 2), although this extra

parameter does not have a natural interpretation.

We then considered theBperiod. An issue raised by Figure 4 is

the question of how adder correlations between divisions can be

compatible with a scenario in which initial volume and initiation

volume are at most weakly correlated. In particular, if we assume

an adder between initiations, we need to explain the weak corre-

lation between initiation size and birth size. However, we found

that in the presence of noise, the ICD model (and thus the

Ho-Amir model as a particular case) can predict low correlations

between initial size and initiation size (and hence high lB) (see

Supplemental Experimental Procedures and Figure S4). There-

fore, the correlation pattern in the B period (Figure 4) is not suffi-

cient to distinguish between themodels, and one has to consider

other observables (see Supplemental Experimental Procedures

section S6 and Figure S5).

The failure of the entire framework emerges when the patterns

for the B and C+D periods are considered jointly. To further test
whether the ICD and BCDmodels could be consistent with data,

we solved them analytically, obtaining consistency relationships

among the different control parameters. The main relationships

are shown in Box 1. These mathematical expressions are valid

in the approximation in which the number of overlapping rounds

does not fluctuate, but they agree well with simulations (Fig-

ure S6). Although in both ICD and BCD models, one is allowed

to tune the control parameter lC+D between replication initiation

and corresponding division event, both models have to follow a

general relationship between the interdivision control parameter

lG (Figure1A) and theproductof theBperiodandC+Dperiodpa-

rameters, ð1� lGÞn = ð1� lBÞ,ð1� lC+DÞ, where n is the number

of overlapping replication rounds (Box 1; Supplemental Experi-

mental Procedures section S6 and Figure S6). In addition, this

relationship does not depend on the noise levels, unlike the one

relating the interdivision and the interinitiation patterns (Box 1).

Thus, it is expected to be robust in the data. This relationship is

verified in simulations (Figure S6), but Figure 5 indicates that the

data are in disagreement. This analysis leads us to suggest that

the strict assumption that replication is the sole bottleneck for

cell division leads to inconsistencies with data.

Sizer Theorem: If Any Subperiod Is in Serieswith a Sizer,
Interdivision Time Is a Sizer
To fully show that existing models based on the hypothesis that

replication-segregation is the limiting step for cell division fail, we

need to deal separately with themodel proposed byWallden and

coworkers (Wallden et al., 2016), which is based on some spe-

cific assumptions that transcend the ICD and BCD framework.

One of themain reasons for the failure of the ICD andBCD frame-

works shown in Figure 5 is that the size control of the B period

affects the control between divisions. A consequence of this

could be termed the sizer theorem: a near-sizer at initiation (wit-

nessed by weak correlation between initial size and initiation

size), as well as in any cell-cycle interval in the chain of events

leading to cell division, leads to near-sizer correlations between

subsequent divisions. This fact, shown by simulations in Fig-

ure 6A, is simple to derive theoretically, because once cell-cycle

progression hits a sizer (and hence a trigger that is uncorrelated

with the initial size of the previous subperiod), memory of all pre-

vious sizes is lost; hence, the division size will be uncorrelated

with the initial size (Soifer et al., 2016).

Therefore, any model assuming a sizer at initiation has to

bypass the sizer theorem to be compatible with near-adder cor-

relations between subsequent divisions. We proceed to show

how the model proposed by Wallden and coworkers solves

this problem, but we also show that this solution leads to predic-

tions that are falsified by the available data.

The Wallden et al. Model Escapes the Sizer Theorem
because of Correlations across Generations and
Stochasticity of Single-Cell Growth Rates
Wallden et al. (2016) simulate a model in which initiation is trig-

gered by a sizer, compatible with our reanalysis of their experi-

mental data and Figure 4. However, the interdivision correlations

in this model are not compatible with a sizer, violating the sizer

theorem (Figure 6A). To explain how this is possible, the authors

argue with simulations that the result is because of a direct
Cell Reports 25, 761–771, October 16, 2018 765



Figure 5. Discrepancy of Data with General Models Assuming that

Replication-Segregation Is the Bottleneck Process for Cell Division

The plot tests the relationship between the predicted size control of consec-

utive divisions and the observed correlation patterns for the B and C+D pe-

riods. For both the BCD and the ICD models (Box 1), this is predicted to be an

identity in absence of overlapping rounds. This prediction is matched by

simulations (Figure S6) but is violated in data for the two available conditions in

the absence of overlapping rounds, casting doubts on both models even in

their parameter-flexible formulations.

Box 1. Relations between the Control Parameters of Different
Cell-Cycle Intervals in Different Models

Top: equivalent definitions of control parameters (see also Fig-

ure S2). The control parameters lX (extracted from the slope of

size-growth plot as in the sketch) and ~lX (the slope of the scat-

terplot of the logarithmic size at the end versus the beginning

of the cell-cycle interval) can be used equivalently. Different

models predict different relationships among the control pa-

rameters measured on all cell-cycle intervals. Middle: main

relations between control parameters for the BCD and those

for the ICD models. These general models in which the chro-

mosome cycle is rate limiting lead to the same common

prediction (in green) linking the product of the control param-

eters of the B and C+D periods (~lB and ~lC+D, respectively) to

the overall interdivision control parameter ~lG. Bottom: main

relations for the concurrent-cycles model. In these formulas,

pH is the probability that the interdivision cycle is bottleneck

(pHx0:6 if the size scales encoded by the two concurrent pro-

cesses are matched). The red and blue brackets show the key

particular cases of adder between divisions concurring with

adder between initiations and sizer at initiation, respectively.
growth-rate dependency of C+D period duration to growth rate

(Figure 6B), which they fit empirically from data with a power law.

The direct link between this feature and themodel behavior is not
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clarified in their work, nor is the reason for the near-inverse rela-

tionship between the single-cell growth rate and the duration of

the C+D period, which is taken as an empirical fact. Because of

this coupling, the authors argue that the sizer at initiation can

translate to different mechanisms at division because of the

coupling of C+D duration to single-cell growth. In particular,

they show that this can lead to the near-sizer correlation pat-

terns between divisions measured in their data for slow-growth

conditions, which become closer to a near-adder for fast-growth

conditions.

To shed light on this result, we introduce an equivalent param-

eter-poor model, in which a simpler set of ingredients leads to

the same behavior without the need for arbitrary phenomenolog-

ical fitting procedures. Specifically, we assume (Figure 6B) that

(1) initiation is driven by a sizer as in the standard version of

the model, (2) the C period is a timer, and (3) the D period is a

grower, i.e., the net growth quantified by aD= logðVf=VDÞ is un-

correlated with size at replication termination logðVDÞ. This last

ingredient is different from a simple timing mechanism. It implies

that, e.g., in cells where a is larger, theD period duration will tend

to be shorter; hence, the two variables in the product GD =atD
become naturally anticorrelated. Conversely, if it were a timer,

the net growth would be still uncoupled from the initial size,

but the fluctuations of the subperiod duration would not be

coupled to single-cell growth rate.

The assumed grower correlations for the D period lead to

define amodel that behaves equivalently to themodel ofWallden

and coworkers, with the advantage that the coupling of C+D

period duration with growth rate is not adjusted by hand but

rather is a natural consequence of the grower assumption. We

were able to solve this model analytically for the interdivision cor-

relation patterns, revealing the explanation of the effect found by

Wallden et al. (2016), and we compared it with simulations and

empirical data.

Our prediction is that growth-rate correlations (quantified by

Pearson correlation r) across generations give rise to a correla-

tion loss in the interdivision size-growth plot with respect to the
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Figure 6. Mother-Daughter Correlations Bypass the Sizer Theorem,

but the Resulting Model Is Still in Contrast to Available Data

(A) Sizer theorem: if any cell-cycle interval is a sizer and intervals are placed in

series, then the interdivision correlation pattern is a sizer. The division cycle

control lG is plotted as a function of the growth control parameter lB for the

Bperiod in theBCDmodel. Thedivisioncontrol increaseswith increasingcontrol

over theBperiodandDperiod (lD = 0black, lD = 0:25purple, lD = 0:44blue, and

lD = 0:9 light blue circles). In particular, a sizer at replication initiation implies a

sizer on the division cycle, regardless the level of control on the D period.

(B) Model in which the B period is a sizer, C is a timer, and D is a grower (see

main text), similar to themodel inWallden et al. (2016). Thismodel incorporates

the observed trend between individual-cell growth rate and C+D period

duration as a consequence of the timer+grower pattern.

(C) Resulting model is at odds with the Wallden et al. data. The correlation

between the logarithmic size at birth and the growth during the C+D period

(left panel) is predicted to be positive (circles correspond to simulations) but is

close to zero in the data (filled symbols) fromWallden et al. (2016). Conversely

(right panel), the size control parameter during theC+D periods is predicted to

be zero (circles), while experimental data clearly deviate from this value (filled

symbols).

Parameters: (A) Simulations are performed by varying lB while keeping fixed

the noise ratio sC+D=sB+C+D = 0:7. The other parameters are inferred from

data from Adiciptaningrum et al. (2015): a= 0:0053 min�1, htBi=30 min,

htCi= 78 min, hq0i = 0:03, and hni = 1. (B–C) Average growth rates range from

0.002 to 0.012 min�1, with a constant coefficient of variation (CV) equal to 0.2.

Mother-daughter correlation of growth rate is set at r = 0:5. In this modified

Wallden et al. model, the averageC period is set to 42min, with CV 0.1, and for

the grower period, atD is set to be 0.6 on average, with CV 0.1. The experi-

mental values for the Wallden et al. slow-growth condition (yellow squares)

are z� 0:06 and 0.41 for (C) in the left and right panel, respectively. The

experimental values for the Wallden et al. intermediate-growth condition (light

blue triangles) are z0:06 and 0.69 for (C) in the left and right panel, respec-

tively. The average size per origin at initiation is set to n = 0:9½mm3�, with a

constant CV of 0.1 for all panels.
sizer. We also predict that an analogous effect is expected in the

presence of overlapping replication rounds because of the cor-

relations induced by a C period lasting multiple generations (Fig-

ure S3). The mechanism is as follows. A cell that grows at faster

rate than average will typically divide at a larger size. The growth

rate of the subsequent generation will thus retain a memory of

the initial size (through its correlation with the growth rate of

the previous generation). Because the C+D period is relying
partly on a timer and partly on a grower, its anticorrelation with

the growth rate will create an effective correlation of its duration

with the initial, not the initiation, size and hence weaken the sizer

correlation between divisions (see Supplemental Information for

a full explanation and calculation).

This prediction is in line with the arguments provided by Wall-

den et al. (2016), and it is in excellent agreement with simulations.

Unfortunately, the agreement is unsatisfactory when compared

with empirical data from several published studies of interdivi-

sion correlation patterns (Figure S3).

Crucially, these ingredients do not produce the correct corre-

lation patterns for theC+D period (Figure 6C). TheWallden et al.

model, as well as our variant (which is equivalent), predict that

there should be (negative) correlation between initial cell size

and growth during the C+D period but no correlation between

initiation size and growth during the C+D period. The former is

a consequence of the memory effect carried by the persistence

of the individual cell growth rate and the timer+grower pattern of

the C+D period, while the latter is a consequence of loss of

memory of the initial size at initiation given by the sizer mecha-

nism (sizer theorem). Figure 6C shows that empirical data from

the Wallden et al. (2016) study follow the opposite pattern,

showing stronger correlations between C+D period duration

and initiation size and weaker correlations between C+D period

duration and birth size.

Thus, although we have provided a simple rationale for the

model proposed by Wallden and coworkers, and we support

the observations that lead to its definition, we can conclude

that the basic ingredients of this model cannot be fully correct.

A Concurrent-Cycles Model Based on Competition
between Adders Explains the Correlation Patterns from
Simple Ingredients
All preceding considerations give a fairly complete account of

the problems encountered by trying to explain available data

with models that assume that replication and segregation is al-

ways a bottleneck for cell division. In particular, these models

fail to capture crucial features of the C+D period (Figure 2) or

the composite pattern of correlations among B, C + D, and the

overall cell cycle (Figure 5).

We use this knowledge to pinpoint the size-regulatory pro-

cesses in the concurrent-cycles framework (Micali et al., 2018).

In this model, competition between two concurrent processes,

one setting division and one controlling initiation of DNA replica-

tion, naturally reproduces the pattern in Figures 2 and 6Bwithout

ad hoc assumptions or additional parameters (Micali et al.,

2018). The basic idea is to relax the hypothesis that replica-

tion-segregation is always the bottleneck process and assume

that concurrent cycles regulate division and the replication-

segregation cycle. In other words, the model assumes that

neither the limit where the bottleneck process is always chromo-

some segregation (Adiciptaningrum et al., 2015; Ho and Amir,

2015; Wallden et al., 2016) nor the limit where segregation typi-

cally finishes before division (Harris and Theriot, 2016) are

realized.

Although a concurrent-processes scenario is supported by

analyses that are independent on the specific control mecha-

nisms (Micali et al., 2018), once we assume this framework, it
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Figure 7. Correlation Patterns of the Concurrent-Cycles Model Fully

Agree with Available Data and Support the Hypothesis of a Near-

Adder per Origin between Initiations

(A) Schematic of the concurrent-cycles model: an interdivision process and a

process setting replication initiation compete for the decision of the cell to

divide. We considered the cases in which an adder between divisions concurs

with an adder between initiations (red lines) or a sizer at initiation (blue lines).

(B) The division control parameter lG as a function of the average interdivision

time gives a near-adder for both concurrent models, in agreement with data.

The predictions assume that there is not a clear separation of the size scales of

the two processes (pH � 0:5) and thus that competition between processes is

present.

(C) Comparison of empirical data (without overlapping replication rounds) with

the predictions of the adder-adder versus sizer-adder models allows selection

of the mechanism setting initiation. The green lines correspond to models

based on replication-segregation as the single rate-limiting process for cell

division (BCD and ICDmodels). The limit case (light blue, corresponding to the

Harris-Theriot hypothesis or pHx1) of a chromosome-agnostic division also

fails to reproduce the data. Only the concurrent-cycles model with an adder

between consecutive initiations and an interdivision adder (red line corre-

sponding to a noise ratio of s2B=s
2
0 fixed from data) can match the data by

varying the only free parameter, pH (the probability that replication is not the

bottleneck in a cell cycle), in a relatively narrow range around 0.5 (pH = ½0:25;
0:75�), compatible with our assumption of competition between two pro-

cesses. Numerical simulations and data with overlapping replication rounds

are shown in Figure S7.
remains important to identify the most likely mechanisms. As we

have shown, empirical data leave open the question of the con-

trol of replication initiation (Figure 4). Hence, we used the concur-

rent-cycles framework, in combination with the available data, to

pinpoint the most likely mechanism setting replication initiation.

Following Harris and Theriot (2016) (and as suggested by several

empirical observations; see Figure 1A), we started by assuming

that the interdivision process is a near-adder. We then compared

two variants in which initiation is set by a sizer per origin (sizer-

adder scenario) or by an adder per origin (adder-adder scenario)

between subsequent initiation events, andwe askedwhether the

correlation patterns in the available data are sufficient to distin-

guish these scenarios.

After each initiation, a minimum (size uncoupled) C+D0 period
is necessary before division. D0 may not be the observed dura-

tion of the D period when the completion of the replication-

segregation period is not the bottleneck event for cell division.
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The slowest of the two concurrent processes decides division

(Figure 7A).

An important quantity in this model is the probability pH that

the interdivision process is the limiting one. This parameter is

an output of the model and depends on both concurrent pro-

cesses. It is related to the typical added size between divisions

and its variability for the interdivision process, as well as to the

typical size at initiation and duration of the C+D0 period in the

replication-related cycle.

The concurrent-cycles framework only relies on parameters

that are fixed from data or from natural assumptions and are

not forcedly adjusted. The control parameters of the two concur-

rent processes lI and lH are fixed a priori by the specific

assumed mechanisms for the concurrent cycles, as in previous

models (we considered the cases of adder-adder and sizer-ad-

der) (Box 1). An additional timescale (or equivalently, a size scale)

needs to be defined in this framework. Specifically, this time-

scale is captured by the parameterD0, and depending on its rela-

tion to the natural timescale of the system set by the doubling

time, it will define which of the two processes is more likely to

be the slowest (i.e., the value of pH). Equivalently, the two size

scales associated with the processes correspond to the mean

size per origin at initiation, which several studies indicate is con-

stant in different conditions (Si et al., 2017; Zheng et al., 2016),

and to the average added size. However, to have the two concur-

rent processes in competition, their associated time or size

scales have to be comparable, and this condition fixes a narrow

range for the parameter D0 and consequently for pH.

Under the assumption that the two time (or size) scales are

comparable, both model variants have a comparable number

of parameters as (or fewer parameters than) the Ho-Amir and

Wallden et al. models, and they robustly give a near-adder

correlation pattern across divisions (Figure 7B), with a slight

deviation from the pure-adder prediction (lG = 0:5), which is

compatible with the data. In addition, we have shown (Micali

et al., 2018) that both model variants naturally capture the corre-

lation patterns relative to the C+D period (Figures 2 and 6B)

without the need to add these trends as a priori ingredients.

The model gives different predictions (Box 1), depending on

the model assumptions, for the relationships among the control

parameters lB, lC+D, and lG. These plots allow testing of the

process regulating replication initiation by the correlation pat-

terns of the concurrent-cycles model (Box 1). We find that the

datasets coherently support the assumption of an adder per

origin between subsequent initiations (Ho and Amir, 2015).

Because the control parameters of the model are all fixed by

the hypothesis that the interdivision and interinitiation processes

are both near-adders, and the noise parameters can be fixed

directly from data, the only parameter that is allowed to vary in

these models is pH. We verified that empirical data can be

captured by varying this parameter in a relatively narrow range

of values around 0.5. This supports the idea that the timescales

of the two processes are approximately matched and thus

competition is typically in place. In addition, a comparison of

these predictions with the empirical data (Figure 7C; Figure S7)

confirms the limitations of existing models and their generaliza-

tions. In particular, the extreme case of replication and segrega-

tion as a bottleneck (BCD and ICD limit, corresponding to pH = 0)



fails regardless of the flexibility of the parameters, and the same

is true for the opposite limit (Harris-Theriot limit, pH = 1).

DISCUSSION

What Is the Bottleneck Process for Cell Division?
As clearly explained by previous studies (Harris and Theriot,

2016; Ho and Amir, 2015; Osella et al., 2017), a central point in

solving the question of the determinants of cell division in

E. coli is whether the process of replication followed by segrega-

tion is a bottleneck for cell division. The more conventional view

(Ho and Amir, 2015; Wallden et al., 2016) is that the chromosome

cycle is always a bottleneck and that the decision to divide is

slaved to the decision to initiate replication through the pro-

cesses of completing replication and segregation. The strongest

pieces of evidence in this direction are classic and recent obser-

vations on mean cell size, which we discuss later. The less con-

ventional hypothesis of Harris and Theriot (2016), motivated by

their measurements of the mean surface and volume dynamics

of E. coli cells, is that replication is never a bottleneck for cell

division. Under this assumption, E. coli decides to divide inde-

pendently of the chromosome replication cycle.

Our main result is twofold. First, a wide class of models based

on a single rate-limiting process setting cell division is unable to

explain at the same time the correlation patterns for the cell-cy-

cle subperiods. This failure of the replication-based models (Ho

and Amir, 2015; Wallden et al., 2016) points to a model in which

replication is not always bottleneck but two (or more) processes,

of which (at least) one is replication related, act on similar time-

scales and compete for setting cell division (Micali et al., 2018).

Second, assuming this framework of concurrent cycles, our

analysis clearly indicates that replication initiation is set by a

near-adder per origin between initiations, as suggested by Ho

and Amir (2015) (described later).

One outstanding question is whether the concurrent-cycles

scenario could be relevant to other species. This is a testable hy-

pothesis using the tools developed here and in Micali et al.

(2018). To our knowledge, the only published dataset in which

this is possible is the one by Logsdon et al. (2017) in mycobac-

teria. The authors of this work assume that the chromosome cy-

cle is rate limiting for cell division and conclude that an ICD-like

model in which the C+D period control is a near-adder is the

most likely scenario.

The Peculiar Nature of the D Period
The principal reward of the concurrent-cycles framework is to

robustly explain two puzzling trends found in the C+D period

and not accounted for by the current literature: (1) C+D period

duration is anticorrelated with single-cell growth rate with a

near-inverse pattern, and (2) the amount of growth during this

period is anticorrelated with cell size (Micali et al., 2018).

It is important to spell out how these ingredients lead to prob-

lems in existingmodels. Wallden et al. (2016) need to fit the dura-

tion of the C+D period to a power law with a variable offset and

exponent without justification. In addition, they have to assume

large mother-daughter correlations in the growth rate, and our

analysis (Figure 6; Figure S3) shows that the measured growth-

rate correlations do not justify the observed patterns. In addition,
although all models can incorporate a size-coupled C+D period

(nonzero lC+D) as an extra ingredient, this ingredient does not

have a natural explanation, and we have shown how this choice

still leads to problems with the data when the B and C+D pe-

riods are considered jointly (Figure 5).

We also stress that the basic ingredient of our model, i.e.,

concurrence between two synchronous cycles, is different from

the hypothesis of parallel subperiods of previous models (Ho

andAmir, 2015; Logsdonet al., 2017) that basically canbe assim-

ilated to the ICD framework presented here. In all these models,

only one replication-related process (the C+D period) sets divi-

sion and runs in parallel with another process (the Iperiod) setting

the interinitiation time. By contrast, in the concurrent-cycles

formalism, cell division can be controlled by the slower of two

processes, only one of which is related to replication.

A consequence of concurrent cycles is that the D period has a

peculiar status, because its duration is subject to the joint control

of both concurrent processes. Consequently, this period is the

result of multiple processes, including (1) a minimum time from

termination to division necessary to complete segregation (at a

given growth condition) in case the replication-related process

triggers division and (2) the additional residual time necessary

to wait for the completion of the interdivision process in case

this process is the slowest one and determines division. This

suggests an adaptable duration for the D period depending on

the size reached at termination (Osella et al., 2017).

Size Control at Replication Initiation
Our analysis supports the conclusion that the correlation of initi-

ation size and initial size is not negligible, at least in some data-

sets. To draw this conclusion, we reanalyzed the SeqA data

available in the literature, as well as the DnaQ data fromWallden

et al. (2016). In agreement with these authors, we find that sec-

ondary initiations are possible. By performing this analysis, we

show that in this data, initiation size may carry some weak but

noticeable positive correlation with initial size. In addition, the

occurrence of double initiations, on theoretical grounds, is

necessary to restore steady conditions from a perturbation.

For example, suppose that a cell misses a replication initiation

event. It will then need a double initiation to align its size and

chromosome content to the average of its population. Therefore,

it seems more plausible that the SeqA behavior is more because

of some specific property of this molecule than a symptom of a

constraint on replication initiation.

Setting this question aside, and assuming that the correlation

pattern of the observed points is meaningful, we developed an

algorithm to score correlations for clouds of points cut by known

constraints, allowing information to be extracted on the real cor-

relation between volume at initiation and initial volume from the

SeqA datasets fromWallden et al. (2016), removing the spurious

correlations arising from points being available only for the initi-

ation volumes larger than the volume at birth. In addition, in this

case, we detected weak but significant positive correlations.

Both the ICD model and the concurrent-cycles model show

that the weak correlation observed between initial size and initi-

ation size does not necessarily point to sizer control. The same

correlation pattern can be found in the scenario of an adder

(or a different control) between subsequent initiations. In a
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framework of concurrent cycles, the reason for this is that the

correlation between the two variables, initial size and initiation

size, is decreased by the possibility that the two different pro-

cesses decide division.

Overall, comparing the concurrent-cycles model with data,

and considering all observed correlation patterns jointly, a sce-

nario of adder control between subsequent initiations appears

to be the most plausible (Figure 7; Figure S7). It is remarkable

that the model can make this prediction even though data anal-

ysis cannot directly settle this point. In the future, direct mea-

surements of added volume between subsequent initiations

will likely settle this point directly.

Tuning of the Size Scale of the Competing Circuits
Two auxiliary pieces of evidence are important. First, two studies

measured changes in cell size under several genetic and molec-

ular perturbations affecting key variables such as metabolism,

replication, synthesis of essential cell components, and cell-cy-

cle proteins (Si et al., 2017; Zheng et al., 2016). Assuming that

initiation triggers cell division after an average constant time,

the C+D period, both studies conclude that on average, cells

initiate replication at a critical size per origin (Si et al., 2017;

Zheng et al., 2016), as hypothesized classically by Donachie

(1968) (Cooper, 1993; Cooper and Helmstetter, 1968;

Schaechter et al., 1962). This is only one of two possible causal

links, and an independently set cell size could govern the timing

of initiation. However, in this scenario, it would be harder to

explain the near-exponential dependency of mean cell size

from mean growth rate found across conditions and valid under

several perturbations (Donachie, 1968; Micali et al., 2018;

Schaechter et al., 1958; Si et al., 2017; Vadia et al., 2017; Zheng

et al., 2016). Second, cell sizes show scaling, and a single size

scale defines the probability distribution of initial (at birth) sizes

and interdivision times (Kennard et al., 2016; Taheri-Araghi

et al., 2015). In other words, the histograms of these variables

collapse (across conditions) when rescaled by their means.

These two facts indicate that the cell cycle encodes a unique

size scale for the cells and that this scale corresponds to the

average size per origin at initiation. Because size is set by the de-

cision to divide, this means either that a single rate-limiting pro-

cess typically decides cell division (Harris and Theriot, 2016) or

that if multiple processes act on similar timescales, they need

to be tuned in a way that their characteristic size and timescales

coincide. In addition, these processes have to be informed about

(or inform) the origin number or genome amount.

The concurrent-cycles assumption is meaningful if typically

there is competition between the two concurrent processes.

This means that in a given condition, cells have a non-negligible

(and non-small) probability of dividing with either of the concur-

rent processes. For this to be the case, the intrinsic size scales

of the two processes (mean added size between divisions

and mean size at initiation) have to be comparable (and pro-

portional). Any limit for which only one process dominates

simply reduces to the previously available models (Amir, 2017;

Harris and Theriot, 2016; Wallden et al., 2016) and makes our

formalism redundant. The matching or near-matching between

the two size scales is also a necessary consequence of the ex-

istence of a single size scale determining the probability distribu-
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tion of cell size in E. coli (Kennard et al., 2016; Taheri-Araghi

et al., 2015).

Targeted perturbations of the cell cycle may also support the

hypothesis that these scales are matched. For example, deletion

of SlmA, the nucleoid occlusion protein preventing E. coli cells

from dividing in the presence of unsegregated chromosomes,

leaves mean cell size unaffected (Bernhardt and de Boer,

2005; Cho et al., 2011). We interpret this as a clue in favor of

self-tuning of the intrinsic size scale of the interdivision process

and the size scale set by replication initiation. Because the two

concurrent processes may not compete (or compete less) in

these mutants, our prediction is that looking at the behavior of

single cells, the size distribution and the size-timing correlation

patterns of these mutants should differ from the wild-type.

Finally, competition between concurrent cycles could explain

why E. coli cells growing at extremely slow rates deviate from

adder correlations. This could come from variations in the fre-

quency at which each process is a bottleneck (pH in our model).

We also observe that even in the presence of adder control, both

between subsequent initiations and between subsequent divi-

sions, the concurrent-cycles model at matched size scales gives

a stronger control between division than does an adder (in line

with data) (Grilli et al., 2018).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Datasets for cell cycle information (e.g., single cell growth

rate, volume at birth, initiation and division) about the

DnaQ- and SeqA-labeled strains in the slow, intermediate

and fast conditions.

Wallden et al., 2016 http://elflab.icm.uu.se/references/Wallden_

et_al_2016.zip

Datasets with cell cycle information (e.g., single cell growth

rate, length at birth, initiation and division) about the SeqA-

labeled strains.

Adiciptaningrum et al., 2015 N/A

Datasets with cell length at birth and division, single cell

growth rate for couple of mother-daughter cells and for

five different experimental conditions.

Kennard et al., 2016 N/A

Datasets with cell length at birth and division, single cell

growth rate for couple of mother-daughter cells and for

five different experimental conditions.

Taheri-Araghi et al., 2015 https://jun.ucsd.edu/mother_machine.php

Software and Algorithms

Software to reproduce the data available. The file includes

code for BCD and ICD models, for the generalized Wallden

model and for the concurrent cycle models adder – adder

and adder – sizer cases.

This paper https://data.mendeley.com/datasets/

zwpyxk3fwk/draft?a=4cbab8a5-1226-

4a5e-9ebe-2497773806fb
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents should be directed to the Lead Contact, Marco Cosentino Lagomarsino (marco.

cosentino-lagomarsino@ifom.eu).

METHOD DETAILS

Datasets
We used published datasets from refs. (Adiciptaningrum et al., 2015; Kennard et al., 2016; Taheri-Araghi et al., 2015; Wallden et al.,

2016).

The data from refs.(Adiciptaningrum et al., 2015; Wallden et al., 2016) contain information on replication initiation and cell division

on tracked single cells, and constitute the core of our analysis. The dataset from ref. (Adiciptaningrum et al., 2015) was obtained

directly from the authors. The dataset from ref. Wallden et al. (2016) was downloaded online at http://elflab.icm.uu.se/references/

Wallden_et_al_2016.zip. The analysis presented here focuses on the slow growth condition only. The file ‘‘ DnaQ_pooled_per_mo-

lecule_slow_data.txt’’ contains information about single cell growth (time since birth, volume, length and width) and (whenever it is

detected) the number and the position of fluorescently labeled epsilon subunit of DNA polymerase (Pol) III, named DnaQ, which is a

proxy for replication forks Wallden et al. (2016). In order to measure the correlations between the volume at birth and initiation, we

used the tracking data provided by the authors. These data are noisy, and some assumptions are needed to identify the initiations.

First, we filtered the dataset checking that the cells were tracked with time intervals below 3.5 minutes, that the volume at initiation

was not lower than the volume at birth and not higher than the volume at division (thus correcting for tracking errors). We further

filtered out volume changes higher than 0.2 mm3 during a time step, to correct for non-biological negative or extremely fast growth,

mostly due to tracking errors. In order to identify likely initiation events, we considered the 3111 single cells that show at least one

fluorescent focus, and used joint information on foci appearance and subcellular localization, and cell size (the results of this analysis

are described in detail in Supplemental Experimental Procedures, section S1).

The other data (from refs. (Adiciptaningrum et al., 2015; Kennard et al., 2016; Taheri-Araghi et al., 2015; Wallden et al., 2016)) only

contain growth-division data of tracked single cells and were used for further comparisons of models’ predictions with data (these

datasets were collected and analyzed in ref. Grilli et al. (2018)).
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Models
Models were analyzed by both direct simulations and analytical calculations.

We considered and analyzed different stochastic models for the cell cycle at the single-cell level. These analyses can be divided

into three stages: (i) a re-analysis of the published models in refs. (Ho and Amir, 2015; Wallden et al., 2016) (ii) the generalizations and

formulations of the models of refs. (Ho and Amir, 2015; Wallden et al., 2016), called ‘‘ICD’’ and ‘‘BCD’’ frameworks, and (iii) the

concurrent-cycle model proposed in (Micali et al., 2018). We focus mainly on the special case where the inter-division process is

an adder, which has as a limit case when replication is never a bottleneck the pure adder model advocated by ref. (Harris and Theriot,

2016), and we consider the two alternatives of a sizer at initiation (‘‘sizer-adder’’ model) or an adder per origin (‘‘adder-adder’’ model)

for the inter-initiation process. Our analytical results are presented in Supplemental Experimental Procedures (sections S4 and S5).

BCD models

The BCD framework is defined by the assumption that the replication-related cell-cycle subperiods are in series, and one interval can

only start when the previous one is complete. In absence of overlapping rounds, the volume at division Vf is given by

Vf =V0 expðatB +atC +atDÞ; (1)

where the growth rate a is assumed here to be constant (but we also considered the case where it is a random variable), and tX is the

time spent during the sub-cycle X.

The times tX are random variable with some dependence on the cell-size, we assume a linear dependency and describe the

controls of different sub-cycles using a single parameter. Under these assumptions the three different sub-period times can then

be written:

tB = htBi � lB

a
ðq0 � hq0iÞ+ nB (2)
tC = htCi � lC

a
ðqB � hqBiÞ+ nC (3)
tD = htDi � lD

a
ðqC � hqCiÞ+ nD (4)

where htXi is the mean duration of the sub-period, nX represents the noise, q0 is the natural logarithm of the size at birth, and qX is the

natural logarithm of the size at the end of sub-period X. Finally, the parameters lX define the strength of size control. The higher is lX ,

the more the corresponding subperiod duration is anti-correlated with the size at the beginning of the period. A value lX = 0 corre-

sponds to a timer, while lX = 1 is a sizer Amir (2014); Grilli et al. (2017). Note that, contrarily to what happens for the whole cell-cycle,

lX = 1=2 does not correspond to a near-adder for the sub-period X. Figure 2 in the main text outlines the presented model and its

ingredients, illustrating the meaning of the parameters.

Themodel ofWallden and coworkers assumptions is a BCDmodel where the single-cell growth rate is a random variable and there

are correlated growth-rate fluctuations. Specifically, the main assumptions are that (i) sizer at initiation, i.e., VB = V0 expðatBÞ =
~VexpðxBÞ, where ~V is a constant size and xB is a random noise with mean zero independent of V0, (ii) the C period is a timer, i.e.,

tC = tC + zC, where tC is a constant and zC is a random noise with mean zero independent of V0 and VB and (iii) the D period is a

grower, i.e., atD = d� + xD, where d� is a constant independent of the other variables, and xD is a random noise with mean zero,

independent of V0, VB and VC. Note that xB and xD are dimensionless while zC has dimensions of time.

ICD models

ICD models consider the cell cycle as composed by three intervals: ‘‘I’’ (between consecutive initiations), ‘‘C’’ (DNA replication), and

‘‘D’’ (from termination of DNA replication to cell division), which are not in series, since the I and C+D period run in parallel starting

from replication initiation.

The defining equations, for constant growth rate and in absence of overlapping rounds in the same notation as above, are

tI = htIi � lI

a
ðqB � hqBiÞ+ nI (5)
tC = htCi � lC

a
ðqB � hqBiÞ+ nC (6)
tD = htDi � lD

a
ðqC � hqCiÞ+ nD: (7)
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The model by Ho and Amir Ho and Amir (2015) can be seen as a specific ICD model assuming that the added size (per origin)

between consecutive initiations is constant and does not depend on size fluctuations. This model corresponds to an ICD model

with lD = 0 (and lI = 1=2).

Concurrent-cycles models

In concurrent cycles models, cell division is determined by the slowest of a cell-related inter-division process and a chromosome-

related inter-initiation process. In absence of overlapping rounds, the interdivision process is similar to the model proposed Harris

and Theriot. This process is concluded at a log-size qH, which is simply

qH =q�
H + ð1� lHÞ

�
q0 �

�
q�
H � log 2

��
+ahH; (8)

where lH is an inter-division control parameter setting size control.

The chromosome process sets cell division completed at a log-scale qR

qR =q�
R + dqB +ahR; (9)

where

q�
R = hqRi= hqBi+atC+D0 ; (10)

and tC+D0 is the time needed to complete replication and segregation.

The actual division event, hence the cell size at division, is determined by the slowest process, i.e.

qf =maxðqH;qRÞ: (11)
QUANTIFICATION AND STATISTICAL ANALYSIS

Coupling parameters between growth in a cell-cycle interval and size (the parameters lX in our models) were evaluated from

scatterplots as linear fits of binned averages (‘lm’ function in R based on least-squares), or alternatively (the parameters ~lX ) from

the equivalent method based on the covariance of two variables (Box 1; Supplemental Experimental Procedures, section S4). The

two methods are equivalent, but binned averages have the advantage of estimating efficiently the conditional averages defining

the control parameters in presence of high noise (Grilli et al., 2017). Error bars in all our plots are smaller than symbol sizes.

The analysis reconstructing the size correlation secondary initiations in the DnaQ datasets fromWallden et al. (Wallden et al., 2016)

is based on selecting secondary initiations by subcellular position and cell size if initiation events. Figure S1 shows that initiations are

localized in clusters in a time-space diagram. Cross-analysis of the clusters with the time series of foci appearance allows to filter

cells where two initiations appear early and late in the cell cycle (see Supplemental Experimental Procedures, sec. S1, and Figure S1

for the results).

In presence of constraints, i.e., for initiations that were scored in the data only after division, we performed a Bayesian fit of a bivar-

iate Gaussian keeping the constraint into account, and extracted the control parameters lX from the covariance (see Figure S2). Let

ðx; yÞ be a pair of random variables, we suppose that we can only observe a pair ðx; yÞ if y > x. Hence, the actual distribution pcðx; yÞ
one sampling from is

pcðx; yÞ= 1

Z
Qðy � xÞpðx; yÞ; (12)

where the original distribution is assumed to be Gaussian,

pðx; yÞ= 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdetS

p exp

�
� 1

2

�
x � mx; y � my

�
S�1

�
x � mx; y � my

�t�
; (13)

and

S=

�
s2
x rsxsy

rsxsy s2
y

�
(14)

is the covariance matrix. Qð,Þ is the Heaviside theta function, Z is a normalization factor. Assuming that the observations

fðx1; y1Þ; ðx2; y2Þ;.; ðxN; yNÞg meet the constraint yi > xi for all the i, the log-likelihood reads

log L= � N log Z � N

2
log
�
2p
�
1� r2

�
sxsy

�
+

� 1

2ð1� r2Þ
X
i

 
ðxi � mxÞ2

s2
x

+
ðyi � mxÞ2

s2
y

+
ðxi � mxÞ

�
yi � my

�
sxsy

!
:

(15)
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Note that the normalization factor Z can also be interpreted as the probability that a random pair ðx; yÞ drawn from the distribution

pðx; yÞmeet the constraint y > x. Z does therefore depend, in a non-trivial way, on the parameters. Since this dependence cannot be

expressed analytically, we maximized the likelihood numerically, by calculating numerically the value of Z for each proposed new

combination of parameters. The algorithm was tested on computational data (Supplemental Experimental Procedures, section S2).

DATA AND SOFTWARE AVAILABILITY

The custom-written code (made of several programs and scripts in C,C++, python and R) generated for statistical analysis andmodel

simulation is available at the following link: https://data.mendeley.com/datasets/zwpyxk3fwk/draft?a=4cbab8a5-1226-4a5e-9ebe-

2497773806fb.
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