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Abstract  23 

 24 

High density SNP platforms are currently used in Genomic Selection (GS) programs to 25 

enhance  the selection response. However,  the genotyping of a large number of animals 26 

with high throughput platforms is rather expensive and may represent a constraint for a 27 

large-scale implementation of GS. The use of low density marker platforms could 28 

overcome this problem, but different SNP chips may be required for each trait and/or 29 

breed. In this paper a strategy of imputation independent from trait and breed, is proposed. 30 

A simulated population of 5,865 individuals with a genome of 6,000 SNP equally 31 

distributed on six chromosomes was considered. First, reference and prediction 32 

populations were generated by mimicking high and low density SNP platforms, 33 

respectively. Then, the partial least squares regression (PLSR) technique was applied to 34 

reconstruct the missing SNP in the low density chip. The proportion of SNP correctly 35 

reconstructed by the PLSR method ranged from 0.78 to 0.97 when 90% and 50% of 36 

genotypes were predicted, respectively. Moreover, data sets consisting of a mixture of 37 

actual and PLSR-predicted SNP or only actual SNP were used to predict genomic 38 

breeding values (GEBV). Correlations between GEBV and true breeding values varied  39 

from 0.74 to 0.76 respectively. Results of the study indicate that the PLSR technique can 40 

be considered a reliable computational strategy for predicting SNP genotypes in a low 41 

density marker platform with reasonable accuracies. 42 
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Implications 49 

 50 

In genomic selection programs, animals are genotyped with high-density SNP marker 51 

platforms with around 50-60K markers. However, being the number of phenotypes 52 

available markedly lower than the number of markers, several statistical shortcomings 53 

arise when data are analyzed. In this paper we propose the use of both high and low-54 

density SNP marker platforms in combination with partial least squares regression (PLSR) 55 

technique to reconstruct the missing SNP in the low density chips. Savings obtained by 56 

using low density platforms could be used to enlarge the number of animals involved in the 57 

selection program.  58 

 59 
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Introduction 75 

 76 

Traditional genetic evaluations for livestock combine phenotypic data with pedigree 77 

relationships to estimate the probability that genes are transferred to the next generations. 78 

Genomic selection (GS), on the contrary, exploits dense marker information represented 79 

by single nucleotide polymorphism (SNP) to evaluate genomic breeding values (GEBV) by 80 

estimating the effect of chromosome segments on phenotypes (Hayes and Goddard, 81 

2008). Advances in high throughput technologies have led to the construction of dense 82 

SNP platforms that could trace the inheritance of individual genes. High density marker 83 

(HDM) platforms with 50 – 60 K SNP are currently used in GS programmes. However, the 84 

number of genotyped animals is considerably smaller than the number of markers. In dairy 85 

cattle, the ratio number of animals vs. number of markers is, on average, between 0.08-86 

0.15, apart from USA and Canada where it is around 0.45 (VanRaden et al., 2009). Such a 87 

data asymmetry results in several statistical shortcomings, as collinearity among predictors 88 

and issues in multiple testing procedures. Furthermore, the well known curse of  multi-89 

dimensionality should become now more relevant, due to the recent commercial 90 

availability of the 777 K SNP Illumina Bead-chip.  91 

The use of low density marker platforms (LDM) may represent a interesting technical 92 

option to reduce the genotyping costs and enlarge the number of animals involved in GS 93 

programmes. However, the reduction of SNP density is expected to decrease GEBV 94 

accuracy. Weigel et al. (2009) reported a loss of about one-third in the gain of reliability of 95 

GEBV for lifetime profit in cattle when a low-density assays with 750-1,000 SNP was used. 96 

In this study, SNP were chosen either on the basis of their chromosomal location (evenly 97 

spaced) or for their relevance on the considered trait. Habier et al. (2007) combined the 98 

use of evenly spaced SNP and co-segregation information from LDM to track HDM 99 



inheritance within families. On simulated data, they found a reduction in GEBV accuracy 100 

ranging from 1 to about 25%, depending on the considered scenario.  101 

The use of the above mentioned methodologies can be useful to reduce the number of 102 

SNP but, separate chips for each trait and/or breed may be required. In this paper an 103 

alternative strategy, independent from trait or breed, is proposed. The method starts by 104 

creating a reference (REF) and a prediction (PRED) population of animals genotyped with 105 

HDM (containing N SNP) and LDM (n SNP) platforms, respectively (N > n). Missing k-106 

markers (k = N-n) in PRED population are reconstructed by using a suitable mathematical 107 

tool and, as a final result, a PRED population with N SNP as in HDM is obtained.  These 108 

markers are a mixture of actual and predicted SNP.  109 

The most straightforward computational method for predicting unknown SNP markers in 110 

the LDM platform is the multivariate multiple regression. However, considering that   111 

adjacent SNP are highly correlated, the predictive capability of the model could be 112 

compromised by the multicollinearity among predictors (Draper and Smith, 1981). Partial 113 

least squares regression (PLSR), originally developed in the computational chemistry 114 

context (Hoeskuldsson, 1988), has become an established tool for modeling linear 115 

relations between multivariate measurements. It is characterized by an higher prediction 116 

efficiency compared to ordinary multivariate regression or principal component regression 117 

(Macciotta et al., 2006). PLSR has been already used in GS studies by Solberg et al. 118 

(2009) for reducing the dimensionality of predictors in the calculation of GEBV. In the 119 

present study, the PLSR technique is applied to predict missing SNP when animals are 120 

genotyped with a LDM platform. Actually, this statistical technique is particularly useful 121 

when a set of correlated dependent variables (Y) have to be predicted from a set of 122 

correlated independent variables (X). PLSR maximizes the correlation structures between 123 

Y and X and overcomes the multicollinearity problems by combining features of principal 124 

components analysis and multiple regression (Abdi, 2003).  125 



The aim of this work is to test the ability of PLSR for predicting missing SNP genotypes 126 

when a PRED population is created by using a LDM platform of SNP markers. 127 

 128 

Materials and methods 129 

 130 

The data 131 

Data were extracted from an archive generated for the XII QTLs – MAS workshop, freely 132 

available at:  http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html.  The 133 

base population consisted of 100 individuals (50 males and 50 females). A genome of six 134 

chromosomes (total length 6 M) with 6,000 biallelic SNP, equally spaced in the genome at 135 

a distance of 0.1 cM, was generated. A total of 48 biallelic QTLs were included, with 136 

positions sampled from the genetic map of the mouse genome and effects derived from a 137 

gamma distribution (Hayes and Goddard, 2001). Initial allelic frequencies of both SNP and 138 

QTL were set to 0.5. Then 50 generations of random mating followed. Generations from 139 

51 to 57 were used to create the definitive archive of 5,865 individuals. For each  140 

generation 15 males and 150 females were randomly selected to be parents of the next 141 

generation. Each male had 100 sons and was mated to 10 females (10 sons for female). 142 

Animals belonging to the generations from 51 to 54 had pedigree, phenotype, and marker 143 

information available. For the last 3 generations only pedigree and marker information 144 

were available. These animals constituted the PRED population and were obtained by 145 

randomly selecting 400 animals for each generation (a total of 1200 individuals). True 146 

breeding values (TBV) were created as the sum of all QTL effects across the entire 147 

genome. Phenotypes were generated by adding to the TBV an environmental noise drawn 148 

from a normal distribution with mean zero and variance equal to the residual variance 149 

defined to obtain a heritability of 0.30. For further details on the data generation see Lund 150 

et al. (2009). 151 

http://www.computationalgenetics.se/QTLMAS08/QTLMAS/DATA.html


 152 

The PLSR technique 153 

PLSR is a multivariate extension of the multiple regression analysis. It is particularly useful 154 

when (i) the number of predictor variables is similar to or higher than the number of 155 

observations and/or (ii) predictors are highly correlated (i.e. there is strong collinearity). 156 

The basic model is: 157 

Y=XB+E 158 

where Y is a mn  response matrix, X is a pn  design matrix, B is a mn  regression 159 

coefficient matrix, and E is a mn  error term. In PLSR, matrices X and Y are 160 

simultaneously decomposed into a set of new variables (called latent factors). Factors are 161 

extracted in order to explain as much as possible of the covariance between X and Y and 162 

to minimize the covariance between variables inside each matrix. Extracted latent factors 163 

account for successively lower proportions of original variance and are defined as linear 164 

combinations of predictor and response variables (Hubert and Branden, 2003). Key 165 

elements in the different calculation steps of the PLSR are: the scores, i.e. values of the 166 

extracted latent factors both for the dependent (U) and independent variables (T), and 167 

factor loadings (Q) expressing correlations between extracted factors and original 168 

dependent variables. Considering a REF and a PRED population, latent factor scores (Tref) 169 

extracted from Xref, are used to predict scores of latent factors extracted from Yref (Uref) 170 

Uref = BTref       (1) 171 

Then, the estimated regression coefficients B are used to predict values of Ypred in the 172 

PRED population as: 173 

predŶ = BTpredQ’ref     (2) 174 



where Q’ref is the transposed matrix of factor loadings extracted from Yref . 175 

The standard algorithms for computing latent factors are nonlinear and iterative (NIPALS 176 

and SIMPLS algorithms, for example) and require the use of dedicated software (for more 177 

details see Wold et al., 2001; de Jong, 1993). In this work, the PLS procedure of SAS-178 

STAT software (SAS Institute INC, Cary, NC) was used. 179 

 180 

The PLSR method for SNP genotypes prediction  181 

To simulate a PRED population genotyped with a LDM platform, the first k-SNP were 182 

assumed to be not known. SNP from k+1 to 1,000 represented the predictors (i.e. Xref and 183 

Xpred) and were known both for REF and PRED population. SNP from 1 to k were known in 184 

REF (Yref) and were used to calculate the matrix of regression coefficients B (equation 1). 185 

Then, using the equation (2), the predŶ matrix was predicted. Being that the genotype at 186 

each SNP is coded as the number of allele 1 copies, i.e. 0, 1 or 2, results (columns 187 

in predŶ each containing the predicted SNP genotype) were rounded to the nearest integer. 188 

The goodness of SNP prediction was evaluated by calculating correlations between real 189 

( predY ) and PLSR predicted ( predŶ ) SNP genotypes. Considering that for k predicted SNP 190 

k correlations were calculated, the average value of these correlations, for each prediction 191 

scenario, was considered. Moreover, percentage of correct predictions across SNP and 192 

mean percentage of corrected SNP predictions for each animal were calculated. 193 

A crucial point in PLSR modeling is how many latent factors should be retained to  194 

correctly define the complexity of one experiment. When several and correlated predictors 195 

are used, the risk of obtaining a model able to fit data well but with a very poor predictive 196 

power is rather high. This problem is known as model “over-fitting”. It is usually handled by 197 



testing the predictive significance of the successive extracted factors. Cross-validation in 198 

combination with PRESS statistics is commonly used to this purpose (Wold et al., 2001). 199 

However, in the present study several scenarios involving a great number of predictors are 200 

compared and, therefore, the use of the above cited tests become problematic in terms of 201 

computation time and resources. For these reasons, the best number of extracted latent 202 

factors in each scenario was fixed empirically by comparing the obtained results with real 203 

data (the procedure will be explained in the next section).  204 

 205 

Setup of the PLSR method  206 

Location of missing SNP along the chromosome, number of latent factors to be extracted 207 

for each scenario, number of SNP to be predicted and the minimum number of genotyped 208 

animals to use as REF population are relevant aspects for the method be efficiently 209 

performed in practice. They were tested in successive steps during the development of the 210 

PLSR method. All the computations were done separately per chromosome .  211 

Step 1: four scenarios of chromosome location of SNP to be predicted  (k =100) in PRED 212 

population were tested: at the beginning  (SNP1 – SNP100), in the middle (SNP451-213 

SNP550), at the end (SNP901 – SNP1,000), or evenly spaced in the chromosome.  214 

Step 2: once the best SNP location was assessed, the optimum number of latent factors to 215 

be extracted was evaluated. In PLSR procedure, the number of factors can not exceed the 216 

number of the independent variables. Therefore, for each chromosome, several 217 

simulations were performed where 100 SNP were predicted with a number of factors 218 

ranging from 10 to 900.    219 

Step 3: prediction accuracy for different number of SNP to be predicted was investigated 220 

using the following proportions for missing SNP in PRED population: 10%, 25%, 50%, 221 



75% and 90%. At the end of the PLSR procedure, a series of new data sets for PRED 222 

population, each containing  10%, 25%, 50%, 75% and 90% of PLSR predicted SNP, were 223 

produced.  224 

Step 4: the effect of the SNP reduction in the estimation of genomic breeding values was 225 

tested by evaluating GEBV’s either in original and in five data sets, generated in step 3, 226 

which contain the mixture of actual and PLSR predicted SNP. Effects of SNP markers on 227 

phenotypes in the REF population were estimated with a mixed linear model that included 228 

the fixed effects of mean, sex (1,2) and generation (1,2,3,4), and the random effects of 229 

SNP genotypes (Meuwissen et al. 2001). Overall mean and effects of SNP genotypes 230 

were then used to predict GEBV in PRED population (Macciotta et al., 2010). Accuracies 231 

were evaluated by calculating Pearson correlations between GEBV and true breeding 232 

values. 233 

Step 5: finally, considering a possible application of the method on real data, accuracy of 234 

the PLSR predictions were tested for different sizes of the REF population, from 5,000 to 235 

600 individuals. In all the simulations, the size of PRED population was kept constant 236 

(600).  237 

 238 

Results and discussion 239 

 240 

Step 1: the effects of SNP location on prediction accuracy can be observed in Table 1 241 

where average correlations between actual and PLSR-predicted SNP genotypes for 242 

different scenarios are reported. Lowest correlations were obtained when markers to be 243 

predicted are located at the beginning or at the end of the chromosome. A slight increase 244 

of accuracy can be observed when SNP are located in the middle of the chromosome. The 245 

highest value was found for evenly spaced missing SNP. These results were expected, 246 



considering the decaying pattern of correlation between loci for increasing distances, and 247 

are in agreement with figures reported by Habier et al. (2009) who  had already used 248 

evenly spaced SNP to simulate low density marker panels. In any case, the value of the 249 

mean correlation for the best scenario is notably high and may represent a useful 250 

indication for constructing a LDM platform without trait or breed constraints.  251 

Step 2 : Figure 1 displays pattern of mean correlations between 100 actual and PLSR 252 

predicted SNP for increasing number of extracted latent factors for the first chromosome. 253 

There is a rapid increase of prediction accuracy from 10 up to 100 factors (from 47% to 254 

93%). A plateau of 98% is then reached when about 150 - 200 factors are extracted. 255 

These results indicate that the number of latent factors to be extracted should be higher or, 256 

at least, equal to the number of predicted SNP.  257 

Step 3: the variation of prediction accuracy for different number of SNP to be predicted is 258 

reported in Table 2. Moving from 10% to 75% missing SNP, there is small decrease (about 259 

6%) in the average correlation between actual and predicted genotypes. In any case, 260 

prediction accuracy is higher than 90% even when two-third of the SNP are predicted. It 261 

slightly falls below 0.80 when 90% of SNP have to be predicted. However, even in this 262 

case, the accuracy can be considered satisfactory. If confirmed on real data, results of the 263 

present study may indicate that a chip with 5.4 K SNP evenly spaced across the genome 264 

could represent a suitable base for reconstructing, with a reasonable accuracy, the profile 265 

of an high density platform of 54 K SNP (i.e. the one currently used for cattle). In a recent 266 

study carried out with the bovine 54 K SNP, Weigel et al. (2010) using the algorithm 267 

implemented in fastPHASE 1.2 software (University of Washington TechTransfer Digital 268 

Ventures Program, Seattle, WA), reported a proportion of correctly reconstructed missing 269 

SNP of about 0.88 when 90% SNP were predicted. Druet and Georges (2010) combined 270 

fastPHASE and Beagle (Browning and Browning, 2007) algorithms to take into account 271 

both population (linkage disequilibrium) and familial (Mendelian segregation and linkage) 272 



information to predict missing genotypes. They found, with 50% missing genotypes,  an 273 

imputation error of 3% and 1%  for sparse and dense marker map, respectively. In the 274 

present work, the proportion of correctly reconstructed SNP for 90% and 50% missing 275 

genotypes was 0.86 and 0.98, respectively (Table 2).  276 

The SNP genotype profile of each animal was also well reconstructed by the PLSR 277 

method. When 90% SNP were predicted, more than 84% of animals presented a 278 

percentage of corrected SNP reconstruction ranging from 80 to 100%. Moreover, when 279 

predicted SNP were lower then 75%, all animals had a proportion of corrected 280 

reconstructed SNP ranging from 95 to 100%. 281 

Step 4: accuracies displayed in Table 3 indicate that the use of PLSR-predicted SNP does 282 

not affect the estimation of genomic breeding values. Correlations between true breeding 283 

values and GEBV remain basically the same moving from the scenario where all used 284 

SNP are actual to the one where 90% of marker genotypes are PLSR-predicted (Table 3). 285 

These results are similar to those obtained by Habier et al. (2009) who reported a 286 

reduction in GEBV accuracy of about 4% moving from a SNP panel density of 0.05 cM to 287 

10cM.  288 

Step 5: finally, Figure 2 displays accuracies of SNP prediction obtained with different sizes 289 

of REF population. As the number of fully genotyped animals becomes smaller, 290 

correlations between actual and predicted SNP slowly decrease reaching a value of 93% 291 

when the number of REF animals is twice (2,000) the total number of SNP per 292 

chromosome. Correlations dramatically drop (<70%) for a number of fully genotyped 293 

animals equal to 600. Considering that on real data each bovine chromosome has on 294 

average 1000-1200 SNP after data editing, a minimum number of 2,000-2,500 fully 295 

genotyped animals could be enough to obtain reliable predictions from the PLSR method. 296 

 297 

Conclusions 298 



 299 

The use of LDM platforms in combination with a suitable computational algorithm able to 300 

predict the missing genotypes with respect to HDM chips is an option for reducing 301 

genotyping costs in GS programs. Savings could be used to enlarge the genotyped 302 

population thus enhancing the efficiency of the breeding scheme. In this paper, the ability 303 

of PLSR technique for predicting missing SNP genotypes in LDM platforms was tested. 304 

The method correctly assigned from 86 to 98% of missing genotypes, when 90 and 50% 305 

SNP were predicted, respectively. Moreover, only a slight difference (2%) in GEBV 306 

accuracies was observed using actual SNP or a mixture of actual and predicted SNP. 307 

Finally, a size of around 2,000-2,500 fully genotyped animals with a 54 K SNP chip was 308 

found to be a reliable REF population to reconstruct the SNP profile of a PRED population 309 

of animals genotyped with a LDM chip containing 5,4 K evenly spaced SNP.  310 

 311 

312 



Acknowledgments  313 

Research was funded by the Italian Ministry of Agriculture (Rome, Italy), grant SELMOL. 314 

315 



References 316 

Abdi H 2003. Partial least squares (PLS) regression. In Encyclopaedia of social sciences research 317 

methods (eds  M Lewis–Beck, A Bryman and T Futing) pp. 1-7. Sage Publication, Thousand Oaks, 318 

CA. 319 

Browning SR and Browning BL 2007. Rapid and accurate haplotype phasing and missing-data 320 

inference for whole-genome association studies by use of localized haplotype clustering. American 321 

Journal of Human Genetics 81, 1084-1097. 322 

De Jong S 1993. SIMPLS: an alternative approach to partial least squares regression. 323 

Chemometrics and Intelligent Laboratory Systems 18, 251–263. 324 

Draper NR and Smith H 1981. Applied regression analysis. John Wiley and Sons, New York. 325 

Druet T and Georges M 2010. Hidden Markov model combining linkage and linkage disequilibrium 326 

information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics 184, 327 

789-798. 328 

Habier D, Fernando RL and Dekkers JCM 2007. The impact of genetic relationship information on 329 

genome-assisted breeding values. Genetics 177, 2389-2397. 330 

Habier D, Fernando RL and Dekkers JCM 2009. Genomic selection using low-density marker 331 

panels. Genetics 182, 343-353. 332 

Hayes BJ and Goddard M E 2001. The distribution of the effects of genes affecting quantitative 333 

traits in livestock. Genetics Selection Evolution 33, 209-229. 334 

Hayes BJ and Goddard ME 2008. Technical note: prediction of breeding values using marker-335 

derived relationship matrices. Journal of Animal Science 86, 2089-2092. 336 

Hoeskuldsson A 1988. Partial least squares PLS methods. Journal of  Chemometrics 88, 211-228. 337 

Hubert M and Branden KV 2003. Robust methods for partial least squares regression. Journal of  338 

Chemometrics 17, 537-549. 339 



Lund M S, Sahana D, De Koning DJ, Su G and Carlborg Ö 2009. Comparison of analyses of 340 

QTLMAS XII common dataset. I: genomic selection. BMC proceedings 3 (suppl. 1), S1. 341 

Macciotta NPP, Dimauro C, Bacciu N, Fresi P and Cappio-Borlino A 2006. Use of a partial least-342 

squares regression model to predict test day of milk, fat and protein yields in dairy goats. Animal 343 

Science 82,  463-468. 344 

Macciotta NPP, Gaspa G, Steri R, Nicolazzi E, Dimauro C, Pieramati C and Cappio-Borlino A 345 

2010. Use of principal component analysis to reduce the number of predictor variables in the 346 

estimation of Genomic Breeding Values. Journal of  Dairy Science 93, 2765-2774. 347 

Meuwissen THE, Hayes BJ and Goddard ME 2001. Prediction of total genetic values using 348 

genome-wide dense marker maps. Genetics 157, 1819-1829. 349 

Solberg TR, Sonesson AK, Woolliams J and Meuwissen THE 2009. Reducing dimensionality for 350 

prediction of genome-wide breeding values. Genetics Selection Evolution 41, 29. 351 

VanRaden PM, Van Tassell CP, Wiggans GR, Sonstengard TS, Schnabel RD et al 2009. 352 

Reliability of genomic predictions for north American Holstein bulls. Journal of  Dairy Science 92, 353 

4414-4423.   354 

Weigel KA, De Los Campos G, González-Recio O, Naya H, Wu L, Long N, Rosa GJ and Gianola, 355 

D 2009. Predictive ability of direct genomic values for lifetime net merit of Holstein sires using 356 

selected subsets of single nucleotide polymorphism markers. Journal of Dairy Science 92, 5248-357 

5257. 358 

Weigel KA, Van Tassell CP, O’Connell JR, VanRaden PM and  Wiggans GR 2010. Prediction of 359 

unobserved single nucleotide polymorphism genotypes of Jersey cattle using reference panels and 360 

population-based imputation algorithms. Journal of Dairy Science 93, 2229-2238. 361 

Wold S, Michael Sjöström M, Eriksson L 2001. PLS-regression: a basic tool of chemometrics. 362 

Chemometrics and Intelligent Laboratory Systems 58,109–130. 363 

 364 



365 



Table 1 Mean correlations (and related standard deviations) between 100 actual and predicted 366 

SNP in each chromosome 367 

Missing  

SNP position 

Correlations  

Mean St. Dev. 

First 100 0.57 0.17 
Middle 100 0.75 0.11 
Last 100 0.68 0.14 
One every 10 0.93 0.09 

 368 

369 



Table 2 Mean correlations (and related standard deviations) between actual and predicted SNP for 370 

increasing percentage of predicted SNP. Proportions of correct SNP prediction are also reported 371 

Percentage of 
predicted 
SNP 

Correlations  Proportion of 
correct SNP 
prediction 

Mean St. Dev. 

10% 0.98  0.07  0.99 
25% 0.98  0.07  0.99 
50% 0.97 0.08  0.98 
75% 0.92  0.08  0.95 
90% 0.78 0.13  0.86 

 372 

373 



 374 

Table 3 GEBV accuracies for different ratio of available/predicted SNP. 375 

Real SNP Predicted SNP GEBV accuracy 

100% 0% 0.76 
75% 25% 0.76 
50% 50% 0.76 
25% 75% 0.75 
10% 90% 0.74 

   376 

 377 

 378 

 379 
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Figure captions: 381 

 382 

Figure 1 Pattern of the mean correlations between actual and predicted SNP for increasing  383 

number of extracted factors during the PLSR procedure 384 

 385 

Figure 2 Mean correlations between actual and predicted SNP for different numbers of fully 386 

genotyped animals 387 
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