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Signature of Pareto optimization in 
the Escherichia coli proteome
Loren Koçillari1, Piero Fariselli2, Antonio Trovato1, Flavio Seno1 & Amos Maritan1

Proteins have coevolved with cellular environments to improve or preserve their functions, maintaining 
at the same time the degree of hydrophobicity necessary to fold correctly and enough solubility 
to perform their biological roles. Here, we study the Escherichia coli proteome using a Pareto front 
analysis in the solubility-hydrophobicity space. The results indicate the existence of a Pareto optimal 
front, a triangle whose vertices correspond to archetypal proteins specialized in distinct tasks, such as 
regulatory processes, membrane transport, outer-membrane pore formation, catalysis, and binding. 
The vertices are further enriched with proteins that occupy different subcellular compartments, namely, 
cytoplasmic, inner membrane, outer membrane, and outer membrane bounded periplasmic space. 
The combination of various enriching features offers an interpretation of how bacteria use the physico-
chemical properties of proteins, both to drive them into their final destination in the cell and to have 
their tasks accomplished.

All biological systems must efficiently carry out multiple tasks to strive for survival. In some instances, the per-
formance levels cannot be concurrently optimized for all tasks, so that the competition between them affects 
phenotype selection. Consequently, organisms evolve and adapt themselves to the environment through a precise 
trade-off. To fully disclose the properties of this complex multi-objective optimization problem, scientists have 
employed the Pareto front analysis1–5. This approach assumes that the process of natural selection promotes phe-
notypes that trade off their performances among the competing tasks in an optimal way. Each phenotype can be 
mapped into the space of its physical traits, also referred to as morphospace.

Several observations on living systems show that many phenotypes cluster in small, convex regions of this 
space6. This finding can be interpreted as a signature of a Pareto optimization process, where selected solutions 
must fall inside convex regions, defined as Pareto fronts. Phenotypes outside the fronts are suboptimal for per-
forming different competing tasks and are thus wiped out by the evolutionary pressure. Phenotypes located at 
the vertices are called archetypes7–9 and are associated with the competing tasks. The performance of each task is 
optimal at the corresponding vertex and decreases with the distance from it.

Pareto optimization has previously been applied to several biological problems, including human breast can-
cer8, animal behavior and shapes7, microbial metabolism10, longevity-mass relationship11, gene expression12, 
ammonite shapes13, and complex networks14. Moreover, optimization principles have already been invoked to 
explain the origin of protein folds15,16.

In this paper, we extend the Pareto front analysis to the molecular level. We find evidence that Escherichia 
coli (E.coli for short) proteins were selected by trading off the performances of different competing tasks, and we 
infer the latter ones. According to the Pareto interpretation, we suggest that E.coli seems to exploit solubility and 
hydrophobicity signals to drive the proteins in the cell compartments where they perform the required biological 
functions at their best. Finally, in the specific case of membrane proteins, which inherently have very low solu-
bilities, our analysis can split apart outer and inner membrane proteins, using their different hydrophobicities.

Results
Dataset.  We chose E.coli as a simple prototype organism since it has been widely studied and, furthermore, its 
genome is extensively annotated. With the aim of finding coarse-grained attributes of proteins to be used as traits 
in a Pareto front analysis, we extracted from the Taguchi’s database17 the following three continuous characteris-
tics: experimental solubility, experimental yield, and predicted isoelectric point (pI). All quantities were available 
only for a subset of 3,172 proteins. We added, as a further fundamental continuous trait, an overall measure of 

1INFN and Dipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova, Via Marzolo 8, Padova, 35131, IT, 
Italy. 2Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell’ Università 16, 
Legnaro, 35020, IT, Italy. Correspondence and requests for materials should be addressed to A.M. (email: amos.
maritan@unipd.it)

Received: 1 November 2017

Accepted: 15 May 2018

Published: xx xx xxxx

OPEN

mailto:amos.maritan@unipd.it
mailto:amos.maritan@unipd.it


www.nature.com/scientificreports/

2ScIentIfIc REPOrTS |  (2018) 8:9141  | DOI:10.1038/s41598-018-27287-3

protein hydrophobicity, which was obtained by summing up the hydrophobicity values of all its residues accord-
ing to the Kyte-Doolittle scale18.

Three of the above traits inherently convey competing chemical characteristics of polypeptide chains concern-
ing both a water-like solvent and different cellular environments, such as the crowded cytoplasm and the interior 
of biological membranes. The yield, which is how many proteins are expressed by the ‘in vitro’ reconstituted 
translation system17, adds a further characterization.

Task and environments.  We started by extending the state-of-the-art Pareto analysis7, in order to connect 
specific sub-cellular environments with the competing tasks performed by the proteins located in these regions. 
We made the following assumptions:

	 (i)	 The bacterium environments are characterized by specific concentrations, ρ ρ ρ ρ… ≡( , , , )n1 2 , of n 
chemicals (water, lipids, etc.). As one moves from one place to another, ρ varies with continuity at the 
mesoscopic scale. This is a formal representation of the fact that, even though bacterial cells lack mem-
brane-bounded organelles, they are intricately organized, with different chemical concentrations in 
different locations19–21.

	(ii)	 Each protein can perform k possible tasks/activities, and to each of them (the j-th task) we may associate a 
specific performance Pj, as measured by the amount of biological activity of j-th type, = …j k1, , . The j-th 
task is performed at its best in the environment characterized by ρ j( ), i.e. Pj is maximal at a specific value of 
ρ (e.g. transport is better carried out where there is a high concentration of chemicals that need to be 
transported from one membrane side to the other). The environment with ρ ρ= j( ) will be called the j-th 
environment. As a consequence, the performances are in trade-off, since the k environments where each of 
them can be maxized are mutually exclusive (one could also assume that the environments are ′ <k k, 
since more than one performance can be maximal in the same environment).

	(iii)	 The relevant traits are represented by a vector v that targets the protein to the environment characterized by 
ρ(v), in such a way that its biological function is maximally exploited. Thus the j-th performance is assumed 
to be a function of p(v), ρ νP ( ( ))j .

	(iv)	 The biological function of a protein is quantified by its fitness function, as follows:

ρ ν ρ ν… .F P P( ( ( )), , ( ( ))) (1)k1

F is assumed to be an increasing function of all its arguments. According to (iii), we must maximize F with 
respect to v in order to find where the protein characterized by F will be directed. The derivative of F with respect 
to the traits v leads to the optimal solutions:
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From (ii) Pj(ρ) is maximum at ρ ρ= j( ). We make the simplifying hypothesis that ρ ρ ν≡ ( )j j( ) ( )  and, at the 
leading order in ρ ρ− j( ),
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which means that the optimal v lies in the convex hull in v-space whose vertex are v(j), = …j k1, , . We then 
expect that a convex hull in the trait subspace is a signature of a Pareto optimization in the E.coli proteome.

Morphospace analysis.  With each protein represented by the set of continuous traits defined above, and 
with the above derivation in mind, we apply a Principal Component Analysis (PCA) to reduce trait vector dimen-
sionality and search for Pareto polytopes. The PCA variance is mainly explained (about 95%) by two principal 
components that are substantially parallel to the hydrophobicity (PC1) and solubility (PC2) trait, respectively 
(Table 1, Fig. S2). This can be rationalized by considering that hydrophobicity is the dominant force implicated in 
the folding process of globular proteins22–25, whereas solubility is a property that emerges as a necessary feature 
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to prevent protein aggregation26–28, and, consequently, the onset of relevant maladies in humans29. Solubility also 
appears to be related to mRNA expression levels, at least for specific proteins30. The maintenance of protein solu-
bility is also a fundamental aspect of protein homeostasis28, being an essential requirement for protein function-
ality. Furthermore, proteins are evolutionarily selected to perform necessary and useful functions, so they must 
be stable (at least marginally) but also flexible enough to accomplish their tasks through relevant conformational 
changes.

In the solubility-hydrophobicity space, the E.coli proteins lie inside a triangle, a clear hallmark of Pareto opti-
mality (Fig. 1). The statistical significance of the Pareto front is assessed using the t-ratio test7, which evaluates the 
ratio between the area of the convex hull and the area of the minimum triangle in which the convex hull can be 
embedded. The t-ratio of the experimental data points is then compared to the t-ratios of 104 null-models (gener-
ated by the original data distributions). The p-value, which is a function of the t-ratios, is lower than 5*10−3 (see 
Methods). If we z-score solubility-hydrophobicity-yield-pI traits before PCA, we find that the variance changes 
with the pI trait, which this time becomes relevant. However, by projecting the data points in the first two princi-
pal components, as obtained from the z-scored traits, the resulting convex hull is not a triangle anymore, with a 
p-value >0.05, as evaluated from the t-ratio test.

Enrichment analysis: subcellular localization.  The enrichment of specialized tasks of the vertices defin-
ing the convex hull that encloses all the data points is the second signature of a Pareto optimal front. When a 
vertex enrichment analysis is carried out, considering the subcellular localization labels, as obtained from the 
Taguchi’s dataset17, a strong signal emerges. The vertices with the lowest solubility values are mainly populated by 
membrane proteins (V1 and V2 in Table 2). Nonetheless, there is a clear-cut distinction between the two vertices. 
Vertex V1 has a very high hydrophobicity component, in the trait vector, and is enriched in inner membrane 
proteins (represented by blue points in Fig. 1). Whereas vertex V2, which presents higher water-like propensity 
(i.e., low hydrophobicity), is enriched in outer-membrane and outer membrane bounded periplasmic proteins 
(red points in Fig. 1). This sharp separation between membrane proteins (both with low solubilities) is striking, 
and it shows that the different values in their hydrophobicity component appear to be an essential ingredient in 

Table Of Loadings PC1 PC2 PC3

Hydrophobicity 0.9996 0.0002 0.0275

Solubility −0.0040 0.9999 0.1409

Yield −0.027193 −0.1410 0.9896

Calculated pI 0.0037 −0.0069 −0.0095

Table 1.  Principal components and their relative weights.

Figure 1.  Solubility-hydrophobicity triangle. We show a scatter plot of the 3,172 proteins of the Escherichia 
coli proteome. Each protein is represented as a point whose coordinates are the values of its hydrophobicity and 
solubility. The Pareto front is the triangular-hull that exhibits a low p-value of the order of 5 · 10−3, confirming 
the statistical significance of the plotted distribution (see the Supplementary Information for more details). 
Proteins whose points lie inside the triangle are the best compromise in the multi-objective optimization of the 
three tasks, which are better performed by the corresponding archetypes located at the three vertices. Points 
outside the triangle would have a better counterpart inside the triangle in at least one of the tasks. The RGB 
colors identify the distribution of the integral inner membrane (blue), outer membrane, and outer membrane 
bounded periplasmic (red) and cytoplasmic (green) proteins, which also characterize the vertices.
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driving membrane proteins to their final destination. Vertex V3, which has a very high solubility, is enriched with 
proteins that occupy the cytoplasmic region (green points in Fig. 1).

Enrichment analysis: GO annotations.  The distribution of Gene Ontology annotations31, considered as a 
function of the distance from the polytope vertices (the archetypes), unveils the competing tasks related to them. 
The Gene Ontology annotations of each protein hereafter referred to as GO-terms, are extended to include the 
parent GO-terms, to improve the robustness of protein annotations (see SI for further details). We bin the space 
into equally populated regions8,11, and for any given annotation, we check whether the first bin is more enriched 
than the other bins. The statistical significance of the enriched terms is evaluated with a Benjamini-Hochberg 
procedure to take into account the problem of multiple hypothesis testing. Finally, the False Discovery Rate 
(FDR) with a threshold set to 0.05 is computed (see SI).

Based on this analysis, we find GO-annotations that are significantly enriched at each vertex. The vertex V1 
(blue) is enriched in transmembrane transporters; in the vertex V2 (red) we observe enriched GO-terms for 
Porin activity, polysaccharide metabolic process, and hydrolase activity; the third vertex V3 (green) is enriched in 
molecular functions related to different kinds of regulation tasks. The enrichment densities of these features are 
shown in Fig. 2 and listed in Table 2.

According to our mathematical derivation, the tasks found to enrich the triangle vertices are expected to be 
better performed in the distinct subcellular localizations that label the corresponding vertices. This finding is 
confirmed by the types of GO-terms, related to the molecular functions and biological processes, that enrich 
those vertices.

Evidence for a tetrahedron.  When the Pareto analysis is extended to include protein yield, a tetrahedron 
emerges as the convex hull representing the new front in 3D (Fig. 3). The yield feature, as derived from the 
Taguchi’s dataset, corresponds to the third principal component (see Table 1). The tetrahedron encloses most 
of the data points, with a p-value smaller than 0.01%. Based on the Pareto theory, all the vertices of the tetra-
hedron must be enriched with at least one feature per vertex, in order to infer the competing tasks for all the 
vertices. The triangular convex hull discussed above can be obtained from the tetrahedron by projecting it on the 
solubility-hydrophobicity plane, so that the enriched features found for triangle vertices can be associated to three 
of the tetrahedron vertices as well.

The new vertex, V4, is characterized by proteins with a high yield component, low hydrophobicity, and low 
solubility. This vertex, similar to vertex V3, is enriched with cytoplasmic proteins; however, the tasks that char-
acterize vertex V4 are different. According to our GO-terms analysis (see Fig. S19), they are related to RNA pro-
cesses such as tRNA metabolic process (GO:0006399), tRNA modification (GO:0006400 and GO:0009451) and 
ncRNA metabolic process (GO:0034660). This finding indicates that proteins involved in tRNA/RNA metabolic 
processes are also the ones that have higher expression levels in a cell-free translation system. However, in con-
trast to the two-dimensional triangular Pareto front, the found tetrahedron is not robust. When few data points 
with the highest yields are removed (see SI), the p-value increases from 10−4 to 10−1, making the results of this 
analysis less reliable.

Discussion
From a general perspective, our results broaden the scope of the Pareto analysis with respect to the state-of-the-art 
approaches7. Pareto polytopes have been shown to enclose the variation of phenotypic traits for organisms of the 
same species that adapt to different environmental niches, or the variation of gene expression patterns for cells 
of the same organism that adapt to different tissues (or pathological conditions in the case of tumor cells). In this 
paper, we extend the Pareto front analysis to a further downward step toward shorter scales, by showing that the 
variation in protein physico-chemical features can be explained as the result of a multi-objective adaptation to 
different sub-cellular compartments, to optimize the related biological tasks. Concurrently, we find evidence that 
E.coli proteins were selected by trading off the performances of various competing tasks.

According to the standard view, the basic physical properties considered here, hydrophobicity and solubility, 
were evolved in the first place to allow the foldability of proteins and to prevent them from aggregation. On 

Archetype 
(Vertex) Inferred tasks Subcellular localization Enriched GO-annotations

Cation transmembrane transporter;

Blue (V1) Transporting Integral Membrane Active transmembrane transporter;

Anion transmembrane transport.

Red (V2) Polysaccharyde, 
Binding, Catalysis

Outer Membrane and Outer 
Membrane Bounded Periplasmic Porin activity;

Polysaccharide metabolic process;

Hydrolase activity;

Molecular function regulator.

Green (V3) Regulation Cytoplasm Regulation of the metabolic process;

Regulation of biological process.

Table 2.  Inferred tasks for each archetype in the Escherichia coli proteome, along with subcellular localization 
labels.
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top of that, our findings suggest the novel idea that the solubility-hydrophobicity signal encoded in the protein 
sequence can flag the final localization of the latter in the cell, and at the same time can hint at its biological func-
tion. According to the Pareto interpretation, the two traits have evolved to optimize three different performances 
simultaneously, each related to a separate cellular compartment.

Thus, the major result of our study is the crucial role played by subcellular compartments in the fitness of the 
Escherichia coli proteome, obtained by a direct mapping between the Pareto front vertices and the subcellular 
compartments (Figs 2 and 4). It turns out that natural selection pushed the bacterium to optimality by tuning the 
solubility-hydrophobicity traits of all proteins, in such a way that each of them can reach the distinct environment 

Figure 2.  Enrichments. Enrichment plots as a function of the distance from the corresponding archetype. 
Pareto optimality is defined such that the points closest to the vertices of the triangle must be maximally 
enriched in some features (they behave as specialists or “pure” types). All the tasks (GO-terms) that enrich each 
vertex are added together. Next to the enrichment plot, the proteins are mapped in the solubility-hydrophobicity 
plane. The colors highlight the enriched proteins belonging to the first bin. The vertices in the figures (V1, V2 
and V3) label the protein subcellular localizations (as presented in Fig. 1), namely, cytoplasmic proteins (green), 
integral inner membrane proteins (blue), outer membrane, and uter membrane bounded periplasmic proteins 
(red).
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where it can perform the required task at its best. On the other hand, protein biological tasks are eventually 
related to their interactions with metal ions, ligands, substrates, other proteins, or nucleic acids. Therefore, one 
could speculate that the specific solubility-hydrophobicity traits of each protein are needed to optimize the inter-
actions associated with the related biological tasks.

The Pareto analysis shows that the protein performances are in a trade-off with each other and identifies arche-
typal tasks located closer to polytope vertices. From that, we can infer that the archetypal proteins found at vertex 
V1 of Fig. 1 (inner membrane) are specialized in the transport of organic and inorganic molecules. Archetypal 
proteins at vertex V2 (outer membrane and periplasmic space) are specialized in wide-pore forming from the 
intake of molecules, catalysis, binding activity and polysaccharide metabolic processes, while those at vertex V3 
(cytoplasmic space) are specialized in the regulation of different processes (Table 2). As noted before, the dif-
ference in solubility can be due to different structural classes17. Nonetheless, we found that membrane proteins, 
which have very low solubility (also confirmed by experimental data17), can be split into outer and inner mem-
branes through their hydrophobicity. Notably, the two membrane protein classes have very different structures, 
even though their measured solubility is similar.

If protein yield is added as a third trait to the Pareto front analysis, a statistically significant tetrahedron 
emerges as the convex hull enclosing all data. The tetrahedron base, in the hydrophobicity-solubility plane at 
the low yield, reproduces the already discussed triangle with vertices V1, V2 and V3 corresponding to different 

Figure 3.  Tetrahedron in the hydrophobicity-solubility-yield space. The three vertices in the hydrophobicity-
solubility plane correspond to the archetypes identified in the previous subsection.

Figure 4.  Cell compartments and Pareto triangle. There is a direct mapping between the four different 
compartments of Escherichia coli (outer membrane and outer membrane bounded periplasmic proteins, inner 
membrane, and cytoplasm) and the proteins that populate the vertices of the Pareto front.
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cellular compartments. The fourth tetrahedron vertex, V4, at high yield, is inferred to be related to archetypal 
proteins that are cytoplasmatic (as for vertex V3) but involved explicitly in tRNA/RNA metabolic processes. The 
finding that proteins highly expressed by a cell-free translation system17, based on translation factors, tRNAs and 
ribosomes, with no chaperons involved, can be associated to Pareto optimality through their functional role in 
tRNA/RNA metabolic processes is intriguing. In keeping with the general framework established in this work, 
whereby different tasks are associated with different environments, the presence of RNA molecules may be inter-
preted as defining a specific type of environment for the archetypal V4 protein.

The problem of spatial protein distribution in bacteria is of paramount importance since the subcellular 
localization of proteins is crucial to provide the physiological context for their function, to achieve functional 
diversity and to economize protein design and synthesis32. Although bacterial cells (such as E. coli) lack internal 
membrane-bounded structures, they are not “bags of mostly randomly localized macromolecules”19. Instead, 
they are organized with different macromolecules that display complex subcellular localization patterns20,21,32. 
Different mechanisms drive proteins toward their final cell destination20,21,32 through the cytoplasm and the sub-
cellular localization of proteins in E. coli across the different membrane barriers, and one of the major achieve-
ments that our analysis offers is a significant breakthrough for the comprehension of this transport mechanism. 
With the Pareto front analysis, we find indications that Gram-negative bacteria exploit the solubility and the 
hydrophobicity of proteins to take them in the major compartments where they can perform the function needed 
for the organism at their best. This finding does not exhaust the complexity of the protein sorting, but it adds 
new clues. Among all known mechanisms and signals, the solubility-hydrophobicity balance of a protein could 
be exploited by the cell as a subcellular localization signal. According to our results, it appears that solubility and 
hydrophobicity values provide a signature to the protein’s final destiny, and possibly an indication of the task that 
proteins perform at their best in that environment. This result, which was obtained from our Pareto analysis, 
should be experimentally validated in future research.

Methods
Principal Convex Hull Analysis (PCHA).  We performed the archetypal analysis, introduced by Cutler 
and Breiman4, whose goal is to find the best-fitting convex hull of the data in the trait space, that is the solution 
of the minimization problem (see eq.7). This can be done computationally by the PCHA algorithm, developed 
by Morup et al.5 and implemented in the Pareto Task Inference (ParTI) developed by Hart et al.8. This algorithm 
allowed us to find the explained variance of the convex hull that encloses the data points, as a function of the 
number of vertices (see Fig. S3). The positions of the vertices of the convex hull in the trait space were determined 
by employing the Sisal algorithm33 which is analogous to PCHA but considers in a more flexible way the presence 
of outliers and the possibility that archetypes lie outside the convex hull8. See Table S2 for the archetype positions 
found using Sisal, after 100 iterations, and Fig. S5 for the archetype positions using different types of algorithms. 
We also computed the errors in the positions of the archetypes by employing the so called bootstrapping method8. 
This relies on the generation of n-bootstrapped datasets with the same number of proteins (3,172) as the origi-
nal dataset, and on computing from each new dataset the corresponding archetype positions. We generated 104 
bootstrapped datasets, and we computed their center of mass and the standard deviations of archetype positions. 
Errors are depicted as ellipsoids in Fig. S4.

Statistical significance and robustness of the Pareto fronts.  We computed the p-value to measure 
the statistical significance of the detected Pareto front polytope. The p-value computation is based on the t-ratio, 
which is defined as the ratio between the volume of the polytope, which is the triangular convex hull with three 
vertices found in Fig. 1, and the volume of the convex hull with a higher number of vertices that encloses the 
majority of the data points. The t-ratio is usually larger than 1, and the closer it is to 1, the better the polytope 
captures the shape of the data. After computing the t-ratio on the original dataset, we compared it with the t-ratio 
derived from n null models, obtained by randomizing pairs of solubility and hydrophobicity values from the 
original data, i.e., by taking the same cumulative distribution function (CDF), along single axes, as in the original 
dataset. The p-value is then defined as the fraction of null-models with a t-ratio lower than the original one. The 
high statistical significance is generally associated to p-values lower than 5%. Pareto analysis can be hampered 
when the results are heavily influenced by the presence of some outliers (see Fig. S6). Statistically speaking, the 
results must be, as much as possible, outlier-independent. More practically, the deletion of a small number of 
data points in the above analysis must not affect archetype identification and the p-value of the detected poly-
tope. We generated 104 null-models for all of the six possible combinations of the four continuous traits, find-
ing that the most robust triangles with the lowest p-values are projected in the hydrophobicity-solubility and 
hydrophobicity-yield planes (p-value of the order of 0.5%). In the remaining four cases the lowest p-value is 
higher than 5%. We further found that the triangle in the yield-hydrophobicity plane is strongly dependent on 
outliers, while the triangle in the solubility-hydrophobicity plane is very robust. In the former case, the p-value 
fluctuates in the range 0.5–10% when (up to 4) proteins with the highest yield are removed, while in the latter case 
the p-value is almost unaffected (see Fig. S6).
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