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The renormalization group equations (RGEs) in Standard Model effective theory

are usually either solved analytically, neglecting the scale dependence of gauge and

Yukawa couplings, or numerically without such approximations. We present analytic

solutions of RGEs that take into account the dominant scale dependence of the

anomalous-dimension matrix due to the running of the QCD coupling αs and of

the top-Yukawa coupling. We consider first the case for which a given operator is

generated directly through mixing with the parent operator whose Wilson coefficient

is non-vanishing at the new physics scale. Subsequently we consider the case of

two-step running, in which two operators do not mix directly, but only via a third

mediator operator. We generalize these solutions to an arbitrary number of operators

and show how even in this case analytic solutions can be obtained.
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I. INTRODUCTION

The absence of any signal in direct searches for particles beyond the Standard Model

(SM) at the LHC renders a scenario likely in which the scale Λ of such potential particles

is much larger than the electroweak scale. The resulting hierarchy can be used together

with the assumption of linearly realized electroweak symmetry breaking to formulate the

so-called Standard Model Effective Theory (SMEFT), provided no undiscovered weakly-

coupled light particles exist, like axions or sterile neutrinos. This framework incorporates

the full SM gauge symmetry which is unbroken at the high scale Λ and allows to investigate

its implications on observables measured at scales significantly below Λ. Technically this is

realized via an operator product expansion, where all the SM degrees of freedom are kept

as dynamical degrees of freedom and only the NP is integrated out, yielding dimension-six

operators built out of SM fields that are invariant under the full SM gauge symmetry. This

type of effective theory is usually called SMEFT, because it reduces at low energies to the

SM. Yet, the presence of dimension-six operators whose Wilson coefficients can in principle

be arbitrary can introduce very significant modifications to the SM phenomenology.

The effective Lagrangian of SMEFT at dimension six is given as follows:

L(6) =
∑
k

C
(6)
k Q

(6)
k , (1)

with the contributing operators classified in full generality in [1, 2], the latter article for

the first time providing an irreducible basis which is now standard. The corresponding

renormalization group analysis at leading order of all these operators has been carried out

in [3–5].1 The renormalization group equations (RGEs) in SMEFT derived there often

involve many operators mixing with each other. The corresponding anomalous dimension

matrix (ADM) depends not only on the three gauge couplings of the SM, but also on fermion

Yukawa couplings, in particular the top-quark Yukawa coupling, and quartic Higgs couplings.

Given this complicated structure, solutions to RGEs in SMEFT are typically obtained

in one of two ways: either analytically, assuming the ADM to be constant and furthermore

commonly considering only the first leading logarithm, or numerically as in [6–8], taking

the scale-dependence of the ADM into account, but making further analytical insight dif-

ficult. Although the former procedure can be useful in showing the overall importance of

renormalization group effects, see for instance [9–16], we prefer to avoid the assumption of

a scale-independent ADM, since the anomalous dimensions involved in fact typically show

a pronounced scale dependence. However, analytical solutions are very useful, since they

are easy to use and facilitate applying constraints at different scales. Moreover, they give

some insight into the pattern of the dominant dynamical effects. The main goal of our paper

is therefore to provide analytic solutions for the relevant RGEs, including the phenomen-

logically relevant effects from the scale dependence of the ADM, specifically the running

of the strong and relevant Yukawa couplings. In order to achieve this and to resum the

leading logarithms to all orders in perturbation theory, we exploit a distinct hierarchy in the

different running effects:

1 See http://einstein.ucsd.edu/smeft/ for errata.
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1. The running of the strong and top-Yukawa couplings themselves is dominated by SM

physics; while effects from NP are possible, they can be safely assumed to be at most

of the order of the neglected NLO contributions.

2. For operators present at the scale Λ, the RG effects due to the latter two couplings

are dominant, since they are the only O(1) couplings.

3. The scale-dependence of g1 and g2 is much weaker than that of g3 (or equivalently αs)

and yt; we hence consider g1,2 fixed to their values at the electroweak scale.

We therefore solve the RGEs in a step-wise fashion: we first discuss the scale dependence

of the strong and top Yukawa couplings. We use these results to solve the self-mixing of

the parent operators generated at the NP scale Λ. Finally, taking the latter solution into

account, we consider the running of the child operators generated via weak mixing, including

their self-mixing.

Solving the RGEs including the running of both αs and yt is not trivial, even with this

hierarchy of different effects; while we discuss the exact inclusion of both couplings, we

achieve a much simpler form due to the crucial observation that

y2
t (µ)

αs(µ)
≈ const. (2)

The weak µ-dependence of the right-hand side at leading order in αs is discussed below and

shown to have a negligible effect, such that both effects can be included using a simple,

very accurate approximation. Higher order corrections are unimportant at scales µ ≥ µEW

considered by us. They would become more important at µ� µEW, but yt(µ) does not run

at these scales as the top quark is integrated out at µ ≈ µEW. Nevertheless, the relation

still holds approximately for the remaining Yukawa couplings.

Our paper is organized as follows: In Section II we recall the relevant formulae for RGEs

and specify our assumptions. In Section III we recall for pedagogical reasons the solutions

of RGEs when the ADM is assumed to be scale independent. Here we consider also the

interesting case mentioned in the abstract when the coefficient of the first leading logarithm

vanishes so that the solution involves the square of ln(Λ/µ). In Section IV, the main section

of our paper, we derive the analytic solutions of RGEs under the assumptions listed above.

We demonstrate our method first for the case of a single non-vanishing Wilson coefficient at

µ = Λ and generalise it systematically to an arbitrary number of operators. The examples

given there demonstrate the precision of our analytical formulae. Our brief numerical anal-

ysis in Section V demonstrates the application of the developed framework very explicitly,

in order to facilitate its application. In Section VI we summarize our results by presenting

Table I, which guides the reader to the main results of our paper and should simplify their

usage.
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II. BASIC SETUP

The one-loop RGE can generically be written as

Ċ ≡ 16π2 dC

d lnµ
= γ̂(µ) C , (3)

where C = (C1, C2, C3, ...)
T contains the Wilson coefficients of contributing operators and

γ̂ is a general, scale-dependent anomalous dimension matrix that depends on gauge and

Yukawa couplings. Note that we do not use the traditional notation with the transpose of

the anomalous dimension matrix in order to agree with [3–5], where anomalous dimensions

are defined for Wilson coefficients and not operators. In our examples we will mostly use

the conventions of these papers specifying exceptions.

We first consider a typical scenario in which NP generates a subset of parent operators

Oi of the SMEFT at some high scale Λ � µEW . The RG-running of this subset down to

µEW , described by the RGEs in Eq. (3), has the following implications:

• Creation of non-vanishing coefficients of the child operators Ok. In order to distinguish

these operators from parent operators Oi, we use the indices (k, l) for the former, while

(i, j) are used for the latter.

• Mixing between the parent operators Oi (including their self-mixing), modifying their

coefficients.

• Mixing between the child operators Ok (including their self-mixing), modifying their

coefficients.

• Mixing of the child operators back into the parent operators.

Considering electroweak, strong and Yukawa interactions, the RG effects show additional

hierarchies:

• Strong mixing due to the QCD and (top) Yukawa couplings can generate large effects,

and exhibits a strong scale dependence. Note that these two contributions are qualita-

tively different: while Yukawa interactions can provide chiral flips, this is not possible

for QCD. We define parent operators to include all operators with Ci(Λ) 6= 0, together

with those generated from the Oi via strong mixing.

• The child operators Ok are hence by definition generated via weak mixing. The corre-

sponding anomalous dimensions include electroweak gauge couplings and/or Yukawa

couplings from lighter fermions. As such, they fulfill generically γweak/γstrong � 1.

Analogously to parent operators, the class of child operators includes also those not

directly generated via weak mixing, but via strong mixing from operators generated

via weak mixing. As already stated in the introduction, the scale dependence of g1,2

will be neglected.
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• Since by definition Ck(Λ) ≡ 0, the mixing of child into parent operators is of higher

order, even without additional hierarchies. Given the definitions above, it is actually

at least suppressed as γ2
weak/γstrong relative to strong-mixing contributions, and hence

negligible.

Schematically, we obtain the following block form for the ADM, writing P and C for parent

and child operators, respectively:

γ̂ =

(
γ̂Pstrong 0

γ̂P→Cweak γ̂C
strong

)
, with C(µ) =

(
CP(µ)

CC(µ)

)
and C(Λ) =

(
CP(Λ)

0

)
. (4)

Our goal is to include all phenomenologically relevant effects in this setup.

Formally, the solution of Eq. (3) can be written as

C(µ) = exp

[∫ lnµ

ln Λ

γ̂(µ̃)

16π2
d ln µ̃

]
C(Λ) , (5)

and the result for C(µ) can in principle be obtained by numerically performing the integral

in the exponential. In this manner all the effects discussed above can be taken into account.

Moreover, as the result is written in terms of an exponential, all leading logarithms are

summed up to all orders of perturbation theory. It should be remarked that in the presence

of two-loop ADMs (5) should be generalized to include Tg ordering that takes into account

that one-loop and two-loop ADMs generally do not commute with each other. However, in

this paper we will confine our discussion to one-loop ADMs.

III. SCALE-INDEPENDENT ADM

We begin with the simplest scenario in which γ̂ is scale independent to find

C(µ) = exp

[
− γ̂

16π2
ln

(
Λ

µ

)]
C(Λ) . (6)

The leading logarithms are summed to all orders, but assuming γ̂ to be scale independent

is an approximation that will be remedied in the next section.

A. One step running

If the argument of the exponential in Eq. (6) is sufficiently below unity, we can expand

it to obtain

C(µ) =

[
1̂− γ̂

16π2
ln

(
Λ

µ

)]
C(Λ) , (7)

with 1̂ denoting the unit matrix. This result is often encountered in the literature. The effects

included in this rough solution can be made explicit by simply performing the multiplication

of γ̂ and C(Λ), keeping our conventions for the indices (i, j, k) in mind: one finds (µ < Λ)

Ck(µ) = − γ̂ki
16π2

ln

(
Λ

µ

)
Ci(Λ) , Cj(µ) =

[
δji −

γ̂ji
16π2

ln

(
Λ

µ

)]
Ci(Λ) . (8)

We observe the following:
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• The first result above describes the generation of child operators from parent operators

due to weak mixing.

• The second one describes the evolution of parent operators due to strong mixing,

including self mixing due to γ̂ii.

• While the self mixing affects the values of the parent coefficients Ci(µ), it does not

have impact on child coefficients Ck(µ) at this order.

• Similarly, the strong mixing among the child coefficients has no impact on other child

coefficients at this order, even if γ̂kl 6= 0.

The latter two points can be improved by expanding Eq. (6) to higher orders (or using

the full solution), although effects not taken into account in Eq. (8) and listed above will

generally be subleading. Generally higher powers of γ̂weak will be neglected in this expansion;

however, such contributions can be relevant when the contributions at first order are absent

or heavily suppressed, e.g. by several Yukawa couplings of light fermions. We will discuss

this case now, still without the inclusion of the scale-dependence in γ̂.

B. Two-step running

The first formula in Eq. (8) tells us that for a given element γ̂ki = 0 no mixing occurs

between the operators Ok and Oi at one-loop level, and consquently Ck(µ) = 0 in ordinary

perturbation theory. On the one hand, such mixing could take place at two-loop level, in

which case the contribution would be of the order γ2
weak ln(Λ/µ). However, it turns out that

the renormalization group improved solution (6) can generate non-vanishing Ck(µ) through

the so-called two-step running, even if γ̂ki = 0 at one-loop. Such contributions receive an

additional enhancement by ln(Λ/µ) compared to the two-loop matching contribution, which

can render them dominant for high scales Λ. We consider only these enhanced contributions

in the following. This mechanism was primarily discussed in the context of electric dipole

moments [9, 11, 12], where a situation occurs when a given operator of interest does not

mix directly with a second operator that enters an experimental observable, but does so via

a third mediator operator. In spite of the presentations in [9, 11, 12] we describe this case

again in an attempt to exhibit the resulting structure more clearly.

To be specific, we consider the following situation: the coefficient of an operator Oi is

the only one with a non-zero value at some high scale Λ. At some much lower scale µ an

observable is determined by the value of a coefficient of an operator Ok, which does not

mix directly with Oi, but Oi mixes into a third operator Om and Om mixes into Ok. The

one-loop RGE and its solution in the approximation of scale-independent γ̂ are again given

by Eqs. (3) and (6), respectively, where additionally C = (Ci, Cm, Ck)
T and

C(Λ) = (Ci(Λ), 0, 0)T , γ̂ki = 0 , γ̂mi 6= 0 and γ̂km 6= 0 . (9)

Expanding the exponential, we find that a non-vanishing result for Ck(µ) is obtained first

at second order which introduces a factor 1/2 and a logarithm squared. One can also check
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that as long as Eqs. (9) are satisfied, the result for Ck(µ) is independent of other entries

in γ̂. The latter enter first at third order and can be neglected. We thus find the leading

contribution

Ck(µ) =
1

2
γ̂km γ̂mi

[
1

16π2
ln

(
Λ

µ

)]2

Ci(Λ) . (10)

This result is trivially extended to block-diagonal forms of γ̂. Needless to say that Eq. (6)

allows for the generalization of this result to an arbitrary number of operators and to con-

tributions via arbitrary levels of mediator operators, which, however, will typically give

negligible contributions.

IV. ANALYTICAL SOLUTION OF RGES

A. The case of a single Wilson coefficient

We will next take into account the scale dependence of γ̂ resulting from αs(µ) and yq(µ).

For pedagogical reasons we start with the derivations for a single coefficient Ci with the

corresponding anomalous dimension γi(µ) to be explicitly given below. The relevant RG

equation remains Eq. (3) and its formal solution Eq. (5), both written for a single coefficient.

To perform the integration in Eq. (5), we first reiterate that the only two numerically

important contributions in self mixing are the ones from the strong and the top-Yukawa

couplings that can both appear in γi(µ). Regarding the scale dependence of the strong

coupling, we use the standard leading-logarithmic solution

αs(µ) =
αs(µ0)

1 + αs(µ0) β0

2π
ln µ

µ0

, (11)

with some reference scale µ0. As far as the top-Yukawa coupling is concerned, we note that

its QCD evolution satisfies for µ > µEW to an excellent approximation

y2
t (µ)

αs(µ)
≈ constant. (12)

For the top Yukawa, we also take a non-linear term ∼ y3
t [17, 18] approximately into account.

Assuming Eq. (12) to hold for the full solution, we obtain2

yq(µ) = yq(µ0) [η(µ, µ0)]εyq , (13)

where we introduced

η(µ, µ0) ≡ αs(µ)

αs(µ0)
, εyq ≡

1

8πβ0

[
4πγ(0)

m −
9

2

y2
q (µ0)

αs(µ0)

]
, (14)

with γ
(0)
m = 4CF = 8. The expression for εyq holds for the Yukawa coupling of any quark,

but the non-linear part is only relevant for the top quark. This approximation is excellent

over the whole range of considered scales, see Fig. 1.

2 Note that the scale µ0 does not have to be equal to the one in αs(µ).
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FIG. 1. The running of the top Yukawa coupling in different approximations: grey-dashed: only

αs running; grey-dotted: only y3
t running; black: exact solution [19]; red: our approximation, see

Eqs. (13),(14).

Given Eq. (13), both contributions we consider for the self mixing are proportional to αs
to some power. We make these dependencies explicit by writing

γi = hiαsαs + hiytα
2εyt
s , (15)

such that the quantities hiαs and hiyt are scale-independent, and the lower index differentiates

between the two possible terms in this equation. The integration in Eq. (5) can be simplified

by using

d ln µ̃ = −16π2 dgs
β0g3

s

= −2π
dαs
β0α2

s

; (16)

inserting this into Eq. (3) and again making the αs-dependence explicit, we obtain

dCi
dαs

=
(
piαsαs + piytα

2εyt
s

)
α−2
s Ci , (17)

where we introduced

piαs = −
hiαs

8πβ0

, piyt = −
hiyt

8πβ0

. (18)

In this form the integration of Eq. (17) can be performed easily, yielding

Ci(µ) = ηp
i
αs exp [Xi(µ)−Xi(Λ)] Ci(Λ) , (19)

where

Xi(µ) =
piyt

2εyt − 1
[αs(µ)]2εyt−1 , η = η(µ,Λ) , (20)

with εyt defined in Eq. (14). This expression holds for arbitrary values of εyt 6= 1/2. In the

limit |2εyt − 1| � 1, we can write

γi =
(
hiαs + hiytα

2εyt−1
s

)
αs ≡ hieff αs (21)
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FIG. 2. Running of CtB in different scenarios: neglecting the term ∼ y2
t in the ADM (grey dashed),

assuming a scale-independent ADM (blue dashed), exact (black) and with our approximation (red,

overlapping with the black line).

and again neglect the scale dependence in the bracket so that hieff is µ-independent. In that

case Eq. (19) simplifies to

Ci(µ) = ηp
i
eff Ci(Λ) , pieff = − hieff

8πβ0

. (22)

As an example, we consider top dipole operator OtB = (OuB)33: using the results from

Refs. [4, 5] and Eq. (13), we obtain

hiαs =
32π

3
and hiyt =

15

2
yt(Λ)2αs(Λ)−2εyt . (23)

The resulting running is shown in Fig. 2, where we compare the exact solution Eq. (19)

with our approximation in Eq. (22), the solution for a constant ADM and the solution for

the case where the term ∼ y2
t in the ADM is neglected: while the running due to the top-

Yukawa coupling is important to include, we see that in this case the change due to the scale

dependence of the ADM is in this case actually negligible. This is due to the fact that the

scale dependence of the ADM is in this case a second-order correction: since the coefficient

is present at the high scale, already the running due to the scale-independent ADM is a

correction; the relative correction to the effect we are considering is, however, not small, it

amounts to ∼ 15% in this case over the considered range of scales.

B. General case of one step running

With the solutions in Eqs. (19) and (22) at hand, we return to the RGEs for the operators

induced by the ones at the scale Λ via weak mixing, with the goal to generalize the expressions

in Section III by including the scale dependence in the anomalous dimensions.

We first consider the case of a single parent operator Oi and a single child operator Ok,
neglecting the impact of mixing with other operators; the latter effect will be included below.
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The one-loop RGE is given as follows:

Ċk = hki αakis Ci +
(
hkαsαs + hkytα

2εyt
s

)
Ck , with k 6= i and Ck(Λ) = 0 , (24)

where again the αs-dependence of the anomalous dimensions is made explicit via the arbi-

trary exponent aki and constant parameters hki and hkαs,yt . The first term on the right-hand

side of this equation describes parent-child mixing, whereas the second term describes the

self-mixing of the child operator.

Inserting the result for Ci(µ) from Eq. (19) we take the self-mixing of the parent operator

into account. The resulting equation can be integrated exactly. We find

Ck(µ) = pki [αs(Λ)]p
k
αs
−piαs exp[Xk(µ)−Xi(Λ)] ηp

k
αs [Y (µ)− Y (Λ)] Ci(Λ) , (25)

with

pki = − hki

8πβ0

and (26)

Y (µ) =
1

1− 2εyt

(
piyt − p

k
yt

1− 2εyt

) piαs
−pkαs+aki−1

1−2εyt

Γ

(
1− piαs + pkαs − aki

1− 2εyt
,
[αs(µ)]2εyt−1 (piyt − p

k
yt)

1− 2εyt

)
,

(27)

where Γ(s, x) denotes the incomplete Gamma function, with the integral representation given

as ∫ v

u

dt ts−1e−t = Γ(s, v)− Γ(s, u) . (28)

All other symbols have been defined previously.

Inserting instead the approximation Eq. (22), we obtain the much simpler expression

Ck(µ) =
pki

aki + pieff − pkeff − 1
[αs(Λ)]aki−1

(
ηaki+p

i
eff−1 − ηpkeff

)
Ci(Λ) , (29)

which again is an excellent approximation. We demonstrate the different approximations in

Fig. 3, where we consider the one-loop mixing of OtG into OdG as an example. As already

discussed in the context of self mixing, the influence of the scale dependence is much larger

here, since there is no trivial leading-order contribution that is equal in both cases; while

the approximation of a scale-independent ADM differs from the exact solution by ∼ 30%

over the considered range, our approximate formula shows less than 4% deviation.

C. General case of two step running

We begin with two RG expressions

Ċk(µ) = hkm αakms Cm(µ) +
(
hkαsαs + hkytα

2εyt
s

)
Ck(µ) , (30)

Ċm(µ) = hmi αamis Ci(µ) +
(
hmαsαs + hmytα

2εyt
s

)
Cm(µ) , (31)
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FIG. 3. Comparison of the approximations discussed in the text, taking the scale-dependence of

the ADM into account (red) or not (blue dashed). Shown is the mixing of CtG into CdG relative

to the exact solution.

together with the solution for Ci obtained previously and with boundary conditions

Ck(Λ) = Cm(Λ) = 0, hki = 0 . (32)

Evidently Ok, Om, Oi are child, mediator and parent operators, respectively. We solved

Eq. (31) in the last subsection (for m → k), so we can use for Cm(µ) either the exact

expression in Eq. (25) or the approximate one in Eq. (29). While the resulting equation

still has an exact analytic solution within our setup in the former case, we restrict ourselves

for simplicity to the solution using the approximation in Eq. (29). We hence consider the

equation
dCk(αs)
dαs

= pkm αakm−2
s Cm(αs) + pkeff α

−1
s Ck(αs) , (33)

with Cm(αs) given in Eq. (29). The solution reads

Ck(µ) =
pkm pmi [αs(Λ)]akm+ami−2

[
Ami η

pkeff + Akm η
akm+ami+p

i
eff−2 − Akmi ηakm+pmeff−1

]
Ci(Λ)

AkmAmiAkmi
,

(34)

where we defined for convenience

Akm = akm−pkeff+pmeff−1 , Ami = ami+p
i
eff−pmeff−1 , Akmi = akm+ami+p

i
eff−pkeff−2 . (35)

To compare to the common assumption that Ci and the anomalous dimensions γkm,mi are

scale-independent, we observe that these assumptions correspond to the limit

pi,m,keff → 0, akm,mi → 0 (36)

and yield

Ck(µ) =
pkmpmi

2
[αs(Λ)]−2

[
1− η−1

]2 Ci(Λ) , (37)
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with

pkm = − γkm
8πβ0

, pmi = − γmi
8πβ0

. (38)

Inserting Eq. (11) one finds

Ck(µ) =
γkmγmi

2

[
1

16π2
ln

(
Λ

µ

)]2

Ci(Λ) , (39)

which can also be obtained by integrating the RGEs directly in lnµ. This serves as a

non-trivial crosscheck of Eq. (34).

D. Generalization to an arbitrary number of operators

Finally we consider the case with several operators at each level, which is rather common

in practical applications. Having shown the effectiveness of our approximation (2), we use

it in the following for simplicity. As above, we start with the self-mixing of the parent

operators Oi, denoting CP = (Ci) and analogously for child and mediator operators:

ĊP = γ̂P CP = αs ĥ
P
eff CP . (40)

Given the scale-independence of ĥeff in our approximation, we can easily solve this equation

by diagonalization via

ĥPeff = V̂P ĥ
P,D
eff V̂ −1

P , (41)

where ĥP,Deff is a diagonal matrix. Defining furthermore

KP = V̂ −1
P CP , (42)

we obtain the equation
dKP

dαs
= α−1

s p̂P,Deff KP , (43)

which decouples the differential equations and has the solution

KP (µ) = ÛP
K (µ,Λ)KP (Λ) with ÛP

K (µ,Λ) = ηp
P,D
eff ≡ diag

(
ηp

P,D
eff,j

)
, or (44)

CP (µ) = ÛP (µ,Λ)CP (Λ) with ÛP (µ,Λ) = V̂P Û
P
K (µ,Λ) V̂ −1

P , (45)

i.e. the solution is analogous to Eq. (22), only in the rotated basis. To obtain the solution

in practice, one needs to use standard linear algebra methods to obtain V̂P and ĥM,D
eff .

To generalize the one-step running, we recall Eq. (4) and hence consider

ĊC = αs ĥ
C
eff CC + γ̂P→CCP , where

(
γP→Cki

)
=
(
αakis hP→Cki

)
. (46)

Diagonalizing the strong mixing matrix for the child operators analogous to Eqs. (41) and

(42), and inserting the above solution for CP , we have

K̇C = αs ĥ
C,D
eff KC + V̂ −1

C γ̂P→C V̂P U
P
K (µ,Λ)KP (Λ) . (47)
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This equation is already diagonal in the coefficients Kk, but involves now a lengthy sum of

terms with explicit αs dependence, which is, however, trivial to treat in the solution of the

differential equation: making the αs-dependence explicit as before, we have

dKkC
dαs

= α−1
s pC,Deff,kK

k
C +

∑
i,j,l

Bklji [αs(Λ)]−p
P,D
eff,i α

alj+p
P,D
eff,i−2

s KiP (Λ), with (48)

Bklji =
(
V̂ −1
C

)
kl
pP→Clj

(
V̂P

)
ji
. (49)

This equation can again be solved explicitly:

KkC(µ) =
∑
i,j,l

Bklji [αs(Λ)]alj−1

alj + pP,Deff,i − p
C,D
eff,k − 1

[
ηalj+p

P,D
eff,i−1 − ηp

C,D
eff,k

]
KiP (Λ) , (50)

which is again clearly the generalization of Eq. (29) in the (doubly) rotated basis. The

solution for the coefficients of child operators in the original basis reads then

CC(µ) = V̂C KC(µ) . (51)

In the limit that the strong operator mixing becomes diagonal for parent and child oper-

ators, this equation simplifies to

CkC(µ) =
∑
i

pP→Cki [αs(Λ)]aki−1

aki + pPeff,i − pCeff,k − 1

[
ηaki+p

P
eff,i−1 − ηpCeff,k

]
CiP (Λ) . (52)

All other effects remain included, and the advantage is that the relevant coefficients can

directly be read off the RGEs, without determining the diagonalization matrices. If ad-

ditionally even the diagonal running of parent or child operators can be neglected, the

corresponding p
(P/C),D
eff elements vanish.

Finally, we consider two-step mixing with an arbitrary number of operators at each level.

This problem is still exactly solvable, but the equations become quite cumbersome, so we de-

fer them to Appendix A. However, its solution Eq. (A5) provides an analytic master formula

that with the help of coefficient tables obtainable from Refs. [3–5] allows for the calculation

of the two-step evolution down to the electroweak scale, including the relvant running of

all anomalous dimensions involved. Furthermore, in all these equations large logarithms are

resummed; while this might not be necessary for the weak mixing contributions, it can con-

stitute a large effect for the running due to the top-Yukawa and strong couplings when going

to large scales Λ. For the case of negligible self-mixing the formulae are much simpler: we

still consider an arbitrary number of parent operators Oi that generate an arbitrary number

of child operators Ok in a two-step running process via an arbitrary number of mediator

operators Om, under the assumption that there is no mixing among the operators in each

group. Then, simply using Eq. (34), we find

Ck(µ) =
∑
i,m

pkmpmi

ami − 1
[αs(Λ)]akm+ami−2

[
ηakm+ami−2 − 1

akm + ami − 2
− ηakm−1 − 1

akm − 1

]
Ci(Λ) . (53)
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While this equation still looks a bit cumbersome, it has again the advantage that all relevant

coefficients can be read off easily, without the need of diagonalization. This is also true for the

case of diagonal self-mixing, discussed in Appendix A. Yet, one should be aware of the fact

that these simpler analytic results do not describe the general case considered in Appendix A

in which all parent, mediator and child operators mix with each other. Moreover, generally

the generated operators will mix back into their respective parent operators. While the

latter effect is suppressed, as discussed above, it is interesting to note that it could in fact

be included analytically as well.

E. Special cases of weak mixing

So far we assumed an arbitrary coefficient for the αs-dependence of the weak ADM,

parametrized by the axy. Here we discuss a few specific cases in which our formalism yields

even simpler expressions.

The trivial case aki → 0 is relevant for pure electroweak mixing ∼ g2
1,2 and occurs also

when considering the limit of constant ADMs. For the latter limit, we have pXeff,x → 0

and aki → 0 implying pM→Cki → −γM→Cki /(8πβ0), and we obtain from Eq. (50) the trivial

generalization of Eq. (8).

A less trivial limit is the weak mixing via Yukawa interactions. In this case, the mixing is

typically proportional to yqyq′ , and its scale-dependence can be approximated by considering

axy = 1. Then the general solution for one-step mixing in Eq. (50) reduces to

KkC =
∑
i,j,l

Bklji

pP,Deff,i − p
C,D
eff,k

[
ηp

P,D
eff,i − ηp

C,D
eff,k

]
KiP (Λ) , (54)

with Bklji given in Eq. (49). Similarly, the general expression for two-step mixing, given in

Eq. (A5), is reduced to

KkC =
∑

i,j,l,m,n,o

EklomBmnji

[
∆pim η

pC,Deff,k + ∆pkm η
pP,Deff,i −∆pik η

pM,Deff,m

]
KPi (Λ)

∆pim∆pmk∆pik
. (55)

where Eklom is defined in Eq. (A7) and where we defined

∆pab = pXa,Deff,a − p
Xb,D
eff,b , with Xa = {P,M,C} for a ∈ {(i, j), (m,n, o), (k, l)} . (56)

V. NUMERICAL ANALYSIS

In order to facilitate the application of the formalism developed over the last sections, we

perform in this section one calculation explicitly. We choose an example where RGE running

can be very important, due to the enhancement of certain (left-right) matrix elements for

meson mixing [15]. To be even more specific, we consider the case of left-right contributions

to Bd-mixing, and use a basis in which the down-Yukawa matrix is diagonal, implying

Yu = V †Y diag
u where V denotes the CKM matrix. In this specific case, only one operator
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OHd is created at the NP scale Λ. Looking up its RGE [4, 5], its self-mixing is approximated

via

[ĊHd]13 = 6y2
t [CHd]13 , (57)

from which we can read off, using Eqs. (40),(41) and (13), V̂P = 1 and hence

ĥP,Deff = ĥPeff = 6yt(µ0)2 [αs(Λ)]2εyt−1

[αs(µ0)]2εyt
, and p̂P,Deff = p̂Peff = − 3

4πβ0

yt(µ0)2 [αs(Λ)]2εyt−1

[αs(µ0)]2εyt
. (58)

The child operators consist of O(1,8)
qd ; the relevant parts of their RGEs read

[
Ċ(1)
qd

]
1313

=
(
YuY

†
u

)
13

[CHd]13 +
1

2

(
YuY

†
u

)
33

[
C(1)
qd

]
1313
− 32π

3
αs

[
C(8)
qd

]
1313

, (59)[
Ċ(8)
qd

]
1313

=

(
1

2

(
YuY

†
u

)
33
− 56παs

)[
C(8)
qd

]
1313
− 48παs

[
C(1)
qd

]
1313

. (60)

From these equations we identify aqd(1)Hd = 2εyt together with

p̂Ceff = − 1

48πβ0

(
3|Vtb|2y2

t /αs −64π

−288π 3|Vtb|2y2
t /αs − 336π

)
≡
(
x11 x12

x21 x22

)
and (61)

p̂P→C = − 1

8πβ0

(
V ∗tdVtb[yt(µ0)]2[αs(µ0)]−2εyt

0

)
. (62)

The remaining diagonalization will rarely be done by hand, but for the purpose of this

example we give the diagonalization matrix and eigenvalues explicitly: defining

X =
√

(x11 − x22)2 + 4x12x21 , (63)

we obtain for the eigenvalues

pC,Deff,1 =
1

2
(x11 + x22 −X) and pC,Deff,2 =

1

2
(x11 + x22 +X) , (64)

and for the diagonalization matrix

V̂C =
1

2x21

(
x11 − x22 −X x11 − x22 +X

2x21 2x21

)
, V̂ −1

C =
1

2X

(
−2x21 x11 − x22 +X

2x21 −x11 + x22 +X

)
.

(65)

With this, all the ingredients for evaluating Eq. (50) are given. In Fig. 4 we show the

relative influence of the full running (within our approximations) of parent and children

operators, including the mixing among the latter, compared to the trivial running with

γ̂P→C ≡ const., γ̂P = γ̂C = 0. We observe a smaller effect on C
(1)
qd than in the previous

example (see Fig. 3), but still the influence on C
(1)
qd is ∼ 10% and C

(8)
qd is generated at ∼ 25%

of C
(1)
qd at the electroweak scale when starting from Λ = 20 TeV.
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FIG. 4. Example of full mixing from OHd into O(1,8)
qd beween 20 TeV and µEW in our framework,

including mixing among parent and child operators, relative to the values generated for γ̂P→C ≡
const., γ̂P = γ̂C = 0 (denoted by Cqd,0 and shown blue dashed) considered in [15].

P → P γ
ex

ac
t

γ
ap

p
ro

x
.

γ
co

n
st

.

single op. (19) (22) (6),(8)

multi op. — (45) (6),(8)

P → C γ
ex

ac
t

γ
ap

p
ro

x
.

γ
co

n
st

.
single op. (25) (29) (6),(8)

multi op. — (50) (6),(8)

P → M → C γ
ap

p
ro

x
.

γ
co

n
st

.

single op. (34) (6),(10)

multi op. (A5) (6)

TABLE I. Summary of equations relevant for parent-parent mixing (P → P ), one-loop parent-

child mixing (P → C) and two-loop parent-mediator-child mixing (P → M → C) with different

levels of approximation.

VI. SUMMARY

We analyzed the analytic inclusion of significant contributions to the renormalization-

group evolution from the strong and top-Yukawa couplings to operators generated via weak

mixing. This can be achieved due to a distinct hierarchy between several effects, allowing to

solve the relevant RGEs in a step-wise fashion. While the running due to both the strong

and the top-Yukawa coupling (squared) can be included independently, the approximation

y2
t (µ)/αs(µ) ≈ const. has been shown to be excellent and facilitates the analysis greatly.

The included effects are sizable mostly for the coefficients of the generated child opera-

tors. The analytic inclusion of these contributions facilitates for instance the application of

phenomenlogical constraints at different scales.

Our paper contains a large number of expressions that correspond to various patterns

of ADMs and to different approximations. In order to make our paper transparent we

summarize the equations corresponding to these different situations in Table I. In addition

to the main formulae listed there, we discuss specific additional approximations in Eqs. (52)-

(55) and (A8) that yield further simplifications.

We hope that the analytic results presented here will give readers better insight into the

importance of the various renormalization-group effects than it is possible by using numerical
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codes, only. Furthermore, the explicit expressions should allow for quick tests of new ideas

without getting involved with the intricacies of the codes present in the literature.
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Appendix A: General two-step running with an arbitrary number of operators

We consider a system of RGEs for two-step running, including strong self-mixing and an

arbitrary number of operators at every stage:

ĊP = αs ĥ
P
eff CP , ĊM = αs ĥ

M
eff CM + γ̂P→MCP , ĊC = αs ĥ

C
eff CC + γ̂M→CCM , (A1)

where the three matrices ĥXeff (X = P,M,C) are again approximately scale-independent and

defined via

ĥXeff = α−1
s γ̂X = V̂X ĥ

X,D
eff V̂ −1

X . (A2)

The solutions for the self-running of CP and the full expression for the mediator operators

can be obtained from Eqs. (45) and (50). We rewrite the third equation in Eq. (A1) as

K̇C = αs h
C,D
eff KC + V̂ −1

C γ̂M→C V̂MKM . (A3)

Inserting the solution for KM , we can further rewrite this equation as

dKkC
dαs

= α−1
s pC,Deff,kK

k
C +

∑
i,j,l,m,n,o

Eklom
Bmnji

Amnji

{
[αs(Λ)]−p

P,D
eff,i α

alo+anj+p
P,D
eff,i−3

s − (A4)

[αs(Λ)]−p
M,D
eff,m+anj−1 α

alo+p
M,D
eff,m−2

s

}
KPi (Λ) ,

which is solved by

KkC =
∑

i,j,l,m,n,o

EklomBmnji[αs(Λ)]alo+anj−2
[
Amnji η

pC,Deff,k + Aklom η
alo+anj+p

P,D
eff,i−2 − Aklonji ηalo+p

M,D
eff,m−1

]
KPi (Λ)

AmnjiAklomAklonji
.

(A5)

Here we introduced the abbreviations

Amnji = anj + pP,Deff,i − p
M,D
eff,m − 1 , Aklom = alo − pC,Deff,k + pM,D

eff,m − 1 , (A6)

Aklonji = alo + anj + pP,Deff,i − p
C,D
eff,k − 2 , Eklom = (V̂ −1

C )kl p
M→C
lo (V̂M)om , (A7)

and used the definition in Eq. (49). In the limit where the strong mixing matrices are

diagonal, this equation simplifies to

CkC =
∑
i,m

pkmpmi[αs(Λ)]akm+ami−2
[
Ammii η

pCeff,k + Akkmm η
akm+ami+p

P
eff,i−2 − Akkmmii ηakm+pMeff,m−1

]
CPi (Λ)

AmmiiAkkmmAkkmmii
.

(A8)
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where the coefficients can be read off directly from the RGEs in [3–5].
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