
J
H
E
P
0
7
(
2
0
1
8
)
0
1
2

Published for SISSA by Springer

Received: February 13, 2018

Revised: May 23, 2018

Accepted: June 14, 2018

Published: July 2, 2018

Model-independent determinations of the electron

EDM and the role of diamagnetic atoms

Timo Fleiga and Martin Jungb

aLaboratoire de Chimie et Physique Quantiques, IRSAMC,
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Abstract: We perform model-independent analyses extracting limits for the electric

dipole moment of the electron and the P,T-odd scalar-pseudoscalar (S-PS) nucleon-electron

coupling from the most recent measurements with atoms and molecules. The analysis us-

ing paramagnetic systems, only, is improved substantially by the inclusion of the recent

measurement on HfF+ ions, but complicated by the fact that the corresponding constraints

are largely aligned, owing to a general relation between the coefficients for the two con-

tributions. Since this same relation does not hold in diamagnetic systems, it is possible

to find atoms that provide essentially orthogonal constraints to those from paramagnetic

ones. However, the coefficients are suppressed in closed-shell systems and enhancements of

P,T-odd effects are only prevalent in the presence of hyperfine interactions. We formulate

the hyperfine-induced time-reversal-symmetry breaking S-PS nucleon-electron interaction

in general atoms in a mixed perturbative and variational approach, based on electronic

Dirac-wavefunctions including the effects of electron correlations. The method is applied

to the Hg atom, yielding the first direct calculation of the coefficient of the S-PS nucleon-

electron coupling in a diamagnetic system. This results in additionally improved model-

independent limits for both the electron EDM and the nucleon-electron coupling from the

global fit. Finally we employ this fit to provide indirect limits for several paramagnetic

systems under investigation.
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1 Introduction

Electric dipole moments (EDMs) provide a competitive means to search for new physics

(NP), complementary to strategies like direct searches at hadron colliders, but also to

other indirect searches, for instance using flavour-changing processes. Searches for new

sources of CP violation are strongly motivated by the fact that the Standard Model (SM)

is not capable of explaining the baryon asymmetry of the universe quantitatively [1–3].

The exceptional sensitivity of EDM searches is due to the combination of experimental

precision with a very specific Standard Model (SM) background: it is tiny for paramag-

netic systems and due to potential strong CP violation in other systems. The latter is

generically large, i.e. naively orders of magnitude above present limits, but has not been

observed so far. Experimental tests for EDMs involve typically rather complex systems

like atoms or molecules. The discovery of a finite EDM in any of these systems would be

a major discovery, independent of its source being NP or strong CP violation. However,

reliably interpreting these measurements in terms of fundamental parameters of a given

NP model requires precise knowledge of their relations. These are established proceeding

via a series of effective field theories, rendering a large part of the analysis model- and

system-independent, see e.g. refs. [4–12] for recent reviews. The corresponding complex

matrix elements on the atomic, nuclear and QCD levels often involve large uncertainties,

which sometimes prohibit to fully exploit the experimental information, see refs. [9, 13] for

recent detailed discussions.

This article presents a new method for the rigorous calculation of the coefficient of the

scalar-pseudoscalar nucleon-electron (S-PS-ne) interaction in diamagnetic systems. For this

contribution so far only rough estimates exist, due to the fact that it vanishes to leading

order in the electromagnetic interaction, even in the presence of an external electric field.

In this paper we consider Mercury (Hg) which provides the strongest experimental limit on

an EDM so far [14]. The determination of this coefficient provides a competitive limit on

the (NP-induced) strength of the corresponding interaction. It is also of special interest for

– 1 –



J
H
E
P
0
7
(
2
0
1
8
)
0
1
2

the model-independent extraction of the electron EDM: in principle, paramagnetic systems

can be used to obtain both coefficients, taking into account potential cancellations [15, 16];

however, a problem arises from the fact that all paramagnetic systems constrain a similar

combination of these two contributions [15]. Diamagnetic systems generally give indepen-

dent constraints, thereby improving the model-independent extraction of both coefficients

significantly [16]. Our results can therefore be used to constrain different classes of NP

models, requiring less restrictive assumptions.

This article proceeds as follows: in the following section we present a method for the

direct calculation of S-PS-ne enhancements in closed-shell atoms and molecules. Section 3

describes its application to the Hg atom, and in section 4 we investigate the phenomeno-

logical consequences of the present study. In the final section we conclude and discuss the

implications of our findings for future work.

2 Theoretical framework

The calculation of the dominant contribution induced by the S-PS-ne interaction in diamag-

netic systems requires the inclusion of the hyperfine interaction on top of the corresponding

calculation in paramagnetic systems, since its expectation value vanishes to leading order

in a closed-shell atom, due to a vanishing spin density near its nucleus [17, 18]. The nu-

clear current at the origin, corresponding to the magnetic moment of the nucleus, polarizes

the closed atomic shells and leads to non-zero values. In a traditional setup this would

require a three-fold expansion in the S-PS-ne interaction, the external electric field and the

hyperfine interaction. Instead, we here start from a 0th-order electronic-structure problem

Ĥ(0)
∣∣∣ψ(0)
K

〉
= ε

(0)
K

∣∣∣ψ(0)
K

〉
, (2.1)

where H(0) is the atomic Dirac-Coulomb Hamiltonian including the perturbation due to a

homogeneous external electric field Eext, with the nucleus placed at the origin:

Ĥ(0) := ĤDirac-Coulomb + ĤInt-Dipole

=

N∑
j

[
cαj · pj + βjc

2 +
Z

rj
114

]
+

N∑
j,k>j

1

rjk
114 +

∑
j

rj ·Eext 114 , (2.2)

where the indices j, k run over N electrons, Z is the proton number (N = Z for neutral

atoms), and α, β are standard Dirac matrices. We use atomic units (a.u.) throughout

(e = m0 = ~ = 1). Since we solve eq. (2.1) variationally (i.e. by diagonalization), the effect

of the external electric field in
∣∣∣ψ(0)
K

〉
is taken into account to all orders in perturbation

theory. These states are technically electronic configuration interaction (CI) vectors [19].

The first-order perturbed wavefunction due to the magnetic hyperfine interaction can

be written as ∣∣∣ψ(1)
J

〉
=
∣∣∣ψ(0)
J

〉
+
∑
K 6=J

〈
ψ

(0)
K

∣∣∣ Ĥ(1)
HF

∣∣∣ψ(0)
J

〉
ε

(0)
J − ε

(0)
K

∣∣∣ψ(0)
K

〉
, (2.3)
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where in practice the summation is carried out over a restricted set of CI vectors. The

perturbation sum in eq. (2.3) will only be well-defined if
∣∣∣ψ(0)
J

〉
is a non-degenerate state,

which is the case for the electronic ground state of a closed-shell atom.

Since Ĥ
(1)
HF is a totally symmetric operator with respect to all valid symmetry oper-

ations of the system including the external field (axial symmetry), the sum in eq. (2.3)

includes only states of the same irreducible representation as the reference state
∣∣∣ψ(0)
J

〉
.

The magnetic hyperfine Hamiltonian reads

ĤHF = − 1

2cmp

µI

I
·
n∑
i=1

αi × ri
r3
i

, (2.4)

where µ = gI is the nuclear magnetic moment, g the nuclear g-factor, mp the proton mass

and I the nuclear spin. The minus sign in eq. (2.4) relates to the charge of an electron in

a.u. The hyperfine Hamiltonian can also be written as Ĥ
(1)
HF = I AJ , where A is the rank

2 cartesian hyperfine interaction tensor and J is the total electronic angular momentum.

It is, therefore, generally a sum of nine terms that due to µ := 〈I,MI = I|µ̂z|I,MI = I〉
and µ ∝ I reduces to Ĥ

(1)
HF = Iz (AzxJx +AzyJy +AzzJz). The required matrix elements

are defined as follows:

(Azk)MN = − µ[µN ]

2cImp

n∑
i=1

〈
ψ

(0)
M

∣∣∣ (αi × ri
r3
i

)
k

∣∣∣ψ(0)
N

〉
, (2.5)

where k is a cartesian component and the nuclear magnetic moment enters in units of the

nuclear magneton µN = 1
2cmp

(in a.u.).

For evaluating the S-PS-ne coefficient in the atom we use the effective Hamiltonian

operator [20]

ĤS-PS-ne(S) = ı
GF√

2
ACS

∑
e

γ0
e γ

5
e ρ(re) , (2.6)

where GF is the Fermi constant, A the nucleon number, CS the dimensionless S-PS-ne

coupling constant, ρ the normalized nuclear charge density, and γµ are standard Dirac

matrices. Given the smallness of this interaction, even compared to the hyperfine interac-

tion, higher-order perturbative corrections are clearly negligible. Given, furthermore, the

CP-conserving nature of the hyperfine interaction, the energy shift of a given atomic state

indicating CP violation can to leading order be written as

(∆ε)J =
1

〈ψ(1)
J |ψ

(1)
J 〉

〈
ĤS-PS-ne

〉
ψ

(1)
J

. (2.7)

The atomic EDM in terms of the S-PS-ne interaction is a function of the polarizing external

electric field Eext, and so

da = − lim
Eext→0

[
∂(∆ε)

∂Eext

]
≈ −ACS

GF√
2

〈
ı
∑
e
γ0
e γ

5
e ρ(re)

〉
ψ(1)(Eext)

Eext 〈ψ(1)|ψ(1)〉
≡ αCS

CS , (2.8)

where the approximation holds in the linear regime which is assured by external fields

chosen significantly smaller than the internal ones and we have introduced αCS
, the atomic
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S-PS-ne coefficient factor. In the present case Eext(Hg) = 0.00024 a.u. This leads to shifts of

the energies ε
(0)
K (see eq. (2.1)) on the order of 10−6 a.u. for Hg. CI vectors are consequently

optimized such that the energies ε
(0)
K are converged to at least 10−9 a.u.

We now focus on the evaluation of the normalized expectation value, part of the ex-

pression on the right-hand side of eq. (2.8),

1〈
ψ

(1)
J

∣∣∣ ψ(1)
J

〉 〈ψ(1)
J

∣∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣∣ψ(1)
J

〉
=

1〈
ψ

(1)
J

∣∣∣ ψ(1)
J

〉
 ∑
K 6=J

〈
ψ

(0)
K

∣∣∣ Ĥ(1)
HF

∣∣∣ψ(0)
J

〉
ε

(0)
J − ε

(0)
K

〈
ψ

(0)
J

∣∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣∣ψ(0)
K

〉
(2.9)

+
∑
K 6=J

〈
ψ

(0)
J

∣∣∣ Ĥ(1)
HF

∣∣∣ψ(0)
K

〉
ε

(0)
J − ε

(0)
K

〈
ψ

(0)
K

∣∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣∣ψ(0)
J

〉 ,
up to higher-order terms in the hyperfine interaction, where we used the hyperfine-

perturbed wavefunction from eq. (2.3). The leading term in this equation (for open-shell

atoms) vanishes for closed-shell atoms, and is omitted. This conclusion has also been tested

numerically in the present work. Transition matrix elements of the type
〈
ψ

(0)
K

∣∣∣ Ĥ(1)
HF

∣∣∣ψ(0)
J

〉
and

〈
ψ

(0)
K

∣∣∣ ı ∑
e
γ0
e γ

5
e ρ(re)

∣∣∣ψ(0)
J

〉
, required for evaluating these two terms, can be readily

made available using the developed methodology in refs. [21, 22]. The practical problem is

then to provide a sufficient set of CI states for the perturbation sum. The final expression

for evaluating the S-PS-ne coefficient is, therefore,

αCS
(ψJ) =

−AGF√
2

Eext

〈
ψ

(1)
J

∣∣∣ ψ(1)
J

〉
∑
K 6=J

〈
ψ

(0)
K

∣∣∣Ĥ(1)
HF

∣∣∣ψ(0)
J

〉
ε

(0)
J −ε

(0)
K

〈
ψ

(0)
J

∣∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣∣ψ(0)
K

〉
+h.c.


(2.10)

For convenience, we use in the following also the S-PS-ne ratio S (in analogy to the electron

EDM enhancement R and not to be confused with the nuclear Schiff moment, also denoted

S in the literature), defined as

S :=
da

ACS
GF√

2

=
αCS

AGF√
2

≈ −

〈
ı
∑
e
γ0
e γ

5
e ρ(re)

〉
ψ(1)(Eext)

Eext 〈ψ(1)|ψ(1)〉
. (2.11)

In order to facilitate comparison with the literature, we note that the states
∣∣∣ψ(0)
K

〉
can

be considered as wavefunctions perturbed to infinite order by E, and so the expression in

eq. (2.9) contains terms of third order of the type

∑
K,N 6=J

〈
ψ

(0)
J

∣∣∣∑
i
r̂z(i)

∣∣∣ψ(0)
N

〉
Ez

〈
ψ

(0)
K

∣∣∣ Ĥ(1)
HF

∣∣∣ψ(0)
J

〉
(
ε

(0)
J − ε

(0)
N

)(
ε

(0)
J − ε

(0)
K

) 〈
ψ

(0)
N

∣∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣∣ψ(0)
K

〉
, (2.12)
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plus higher-order contributions in E, where
∣∣∣ψ(0)
N

〉
is now an unperturbed eigenstate of

the plain atomic Dirac-Coulomb Hamiltonian without external electric field. The terms in

eq. (2.12) are just the equivalent of the electron EDM contribution via magnetic hyperfine

interaction to an atomic EDM, as given by Flambaum and Khriplovich in reference [20],

eq. (17). These third-order terms, declared important but left untreated in reference [23],

are taken into account in the present approach. Moreover, the higher-order contributions

in E are included automatically in the present approach.

3 S-PS-ne coefficient in atomic mercury

For our zeroth-order atomic wavefunctions the quantum number MJ , corresponding to the

projection of the total angular momentum onto the axis defined by the external electric

field, is an exact quantum number and characterizes an irreducible representation of the

axial double point group. Since the external perturbation is small, the quantum number J

is still approximately valid and we denote CI states in the approximate Russell-Saunders

picture as MLJ,MJ
, where M is the spin multiplicity. The S-PS-ne interaction Hamilto-

nian in eq. (2.6) is rotationally invariant; as a consequence,
〈
MJ |ĤS-PS-ne|M ′J

〉
= 0 for

MJ 6= M ′J , which reduces the perturbation sum in eq. (2.9) to states from the irreducible

representation MJ = 0, a computational advantage which we exploit.

Applying the framework developed in the last section to Mercury, a consistent finding in

all our calculations is that among the 35 energetically lowest-lying excited states of symme-

try MJ = 0 only three states contribute sizably to the perturbation sum eq. (2.9) determin-

ing αCS
, namely ψ

(0)
K ∈ {3P0,MJ=0(5d106s6p), 3S1,MJ=0(5d106s7s), 3P0,MJ=0(5d106s7p)}.

This finding can be understood qualitatively analyzing the product of matrix elements in

eq. (2.9): for contributions of the type〈
3P0,MJ=0

∣∣ Ĥ(1)
HF

∣∣1S0,MJ=0

〉 〈
1S0,MJ=0

∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣3P0,MJ=0

〉
the off-diagonal S-PS-ne matrix element is large due to the parity-odd excitation 6s→ np

characterizing the excited state, and the off-diagonal hyperfine matrix element is non-

negligible due to sp-mixing via the external electric field. For the other leading type

of contribution,〈
3S1,MJ=0

∣∣ Ĥ(1)
HF

∣∣1S0,MJ=0

〉 〈
1S0,MJ=0

∣∣ ı∑
e

γ0
e γ

5
e ρ(re)

∣∣3S1,MJ=0

〉
,

the off-diagonal S-PS-ne matrix element is now two orders of magnitude smaller than

in the above case — for obvious reasons related to symmetry —, but the off-diagonal

hyperfine matrix element becomes almost three orders of magnitude larger than for the

previous mechanism. This is explained by the fact that the excited state 3S1 exhibits a

non-vanishing spin-density near the nucleus.

Results from many-body models of different sophistication are compiled in table 1. The

S-PS-ne coefficient is largely converged when at least the 12 lowest-lying MJ = 0 states

are included in the perturbation sum, since then the three main contributors are covered.

– 5 –
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Basis/cutoff # of CI states MJ = 0/Model/X Meandev.
%

S
10−2a.u.

αCS
10−22 ecm

DZ/150 a.u. 4/M12/6p7s7p6d5f8p8s7d −3.3 −5.4

DZ/150 a.u. 16/M12/6p7s7p6d5f8p8s7d −2.3 −3.8

TZ/50 a.u. 12/M12/6p7s7p 6.1 −2.1 −3.5

TZ/50 a.u. 12/M20/6p7s7p −2.1 −3.5

TZ/50 a.u. 12/M12/6p7s7p6d8p8s 5.4 −2.2 −3.7

TZ/50 a.u. 29/M12/6p7s7p6d8p8s9p9s10p10s 6.2 −2.22 −3.67

Table 1. S-PS-ne interaction ratio S for the 1S0 ground state of the 199Hg isotope, I = 1/2,

µ(199Hg) = +0.5058855 [24], EExt = 0.00024 a.u.; CI models M12: 12 electrons correlated, Single,

Double and Triple excitations from occupied space into X, Single and Double excitations into the

remaining virtual space (SDT12-X-SD12); M20: S8-SDT12-X-SD20. DZ and TZ denote Dyall’s

Gaussian atomic basis sets [25, 26] including 1f,1g valence- and core-correlating exponents (DZ)

and 2f,4g,1h valence- and core-correlating and valence-polarizing exponents (TZ), resulting in a

total of 24s,19p,12d,8f,1g for DZ and 30s,24p,15d,11f,4g,1h functions for TZ. The mean deviation

concerns the difference of the calculated excited-state energies from experiment [27]. The Hg nucleus

is described by a Gaussian charge distribution [28] with exponent ζ = 1.4011788914× 108.

It is furthermore important that the extent of the active spinor space is sufficient, as

can be seen from the results for different values of X, the parameter defining the atomic

functions constituting the space into which triple excitations are allowed. The remaining

virtual spinors up to the cutoff threshold are allowed to be up to doubly occupied, in order

to include dynamic electron correlation effects for all states described to lowest order by

the structure of the active space. Correlation effects between 5s, 5p and valence electrons

are tested through the model including 20 electrons and are seen to be small.

For the purpose of estimating the contribution from higher-lying excited states we use

a larger basis set, denoted QZ and consisting of 34s,30p,19d,13f,4g,2h functions. Due to

computational demand the model M12 is limited to X-SDT12 with X set to the value

7p7s8p9p8s10p9s with reference to table 1. This means that correlation effects are largely

neglected for a large set of small contributions, ≈ 100 states with MJ = 0. We observe that

only two notable contributions occur, and only in the energetically lower half, indicating

that the contributions as expected fall off as energy and principal quantum number of the

involved states increase. With the resulting enhancement correction ∆S(QZ), where S is

defined in eq. (2.11), our final value is obtained as follows:

S(TZ) + ∆S(QZ) = (−2.22 + 0.53)× 10−2a.u. = −1.69× 10−2 a.u. (3.1)

The uncertainty of this value is estimated by linearly adding the errors from the energy

denominator (6.2%, “mean deviation” in table 1), and uncertainties from atomic basis set

(3.5%), outer-core correlations (1.5%), and higher excitation ranks (5%, estimated from

comparable previous calculations of S-PS-ne enhancements, see refs. [29, 30]). To this

uncertainty of 16% on the base value S(TZ) we add an uncertainty of 30% times the

relative weight (0.24) of the correction ∆S(QZ), i.e. 7.2%, resulting in a total uncertainty

of 23% for αCS
, which we consider very conservative. Note that adding the individual terms

– 6 –
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Method Ref. CCT
αCS

/(10−22e cm)

RPA [32] −6.0 (−6.0)

MCDHF [33] −4.8 (−4.8)

CI+MBPT [23] −5.1 (−5.1)

PRCC [34] −4.3 (−4.3)

CCSD(∞) [12] −3.4 (−3.4)

CCSDpT(+) [35] −4.0 (−4.0)

CCSDpT(+) [36] −3.2 (−3.2)

NCCSD [37] −3.3 (−3.3)

Chupp et al. (est.) [11, 38] (−5.9)

Engel et al. (est.) [9] (−8.1)

This work (−2.8) −2.8

Table 2. Comparison of the direct calculation presented here with previous calculations of αCS
,

using calculations of αCT
and the phenomenological relation eq. (3.3) (indicated by parentheses

around the result, µHg = 0.506). The literature values are ordered as to increasing sophistica-

tion of the treatment of dynamic electron correlation. Numerically the conversion factor for Mer-

cury reads αHg
CS

= 10−2αHg
CT
/(〈σ〉 · I/I), and a simple shell model for the nucleus is used, yielding

〈σ〉 · I/I = −1/3.

in quadrature, as commonly done in the literature, would result in an uncertainty of 11%.

From these considerations, we finally obtain from eq. (3.1) the S-PS-ne interaction constant

αCS
= −2.8(6)× 10−22 e cm . (3.2)

An indirect determination of αCS
is obtained via the coefficient of the P,T-odd tensor

interaction, using the phenomenological relation [18, 20, 31]

〈σ〉 · I
I

αCS
= 5.3× 10−4(1 + 0.3Z2α2)A2/3µAαCT

, (3.3)

where 〈σ〉CT ≡ 〈
∑

N=n,pC
N
T σN 〉 (〈. . .〉 denoting the expectation value over a nuclear state

with spin I), µA denotes the magnetic moment of the atom’s nucleus (in units of the

nuclear magneton), and the coefficients CNT parametrize the tensorial P,T-odd electron-

nucleon interaction,

HT =
iGF√

2

∑
N=n,p

CNT (N̄σµνγ5N)(ēσµνe) . (3.4)

To further facilitate the comparison with other works, we note that the coefficient of the

tensor interaction is typically parametrized via dA = 10−20CCT
〈σ〉CT e cm, implying

αCT
= 10−20CCT

〈σ〉 · I
I

e cm . (3.5)

The comparison is shown in table 2. We note that effects of interelectron correlations

reduce CCT
by about a factor of 1/2. Due to relations (3.3) and (3.5) these effects are

– 7 –
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expected to be qualitatively similar for the coefficient αCS
. In our result from the direct

calculation electron correlation effects among the outermost 20 electrons of the Hg atom

have been taken into consideration. There are two main sources for a potential difference

between our value and the Coupled Cluster (CC) results via the phenomenological relation:

1) Our correlation model differs from the correlation models used in the CC calculations.

2) The phenomenological relation employs a uniform nuclear charge density whereas in our

calculations a more realistic Gaussian charge distribution is used (see table 1) [28]. Since

correlation effects tend to reduce the absolute value of αCS
and our value is already about

15% below the CC results, it is reasonable to assume that no major correlation effects have

been missed in our final computational model. The present difference is furthermore within

the expected precision of this relation.

4 Phenomenological consequences

In order to explore the phenomenological consequences of our results, we follow two different

strategies: (i) The common method to limit the corresponding Wilson coefficients assuming

the absence of cancellations, i.e. setting all other contributions to zero. (ii) Limiting both

CS and the electron EDM de model-independently, i.e. allowing for cancellations between

the two. This is achieved by combining information from the Mercury system with that of

paramagnetic ones, following ref. [16], using the experimental results in table 3. The key

point in this strategy is that Mercury constrains a linear combination of de and CS that is

approximately orthogonal to the one constrained from paramagnetic systems, specifically

ThO. This observation can be used to constrain CS and de, following a three-step argument:

1. The EDMs of paramagnetic systems are to good approximation dominated by contri-

butions from de and CS [45–47].1 While CS depends in general on the system under

consideration, the combination that enters heavy atoms and molecules is to good

approximation universal [16]. CS cannot be neglected model-independently: while

NP models exist where the electron EDM clearly gives the leading contribution, this

is not true in general. In Two-Higgs-Doublet models (2HDMs) for instance, the dom-

inating Barr-Zee diagram for the electron EDM avoids a second small mass factor

in addition to me, but as a two-loop diagram competes with a tree contribution to

the S-PS-ne coupling that is suppressed by a light-quark mass and contains addi-

tional small factors like gauge couplings [13]. Schematically, we have mu,d,s× tree vs.

mt × two-loop ∼ mt/(16π2)2. Also in R-parity-violating SUSY models cancellations

can occur, see for instance ref. [48].

2. Both contributions can in principle easily be taken into account, once two experiments

with comparable sensitivity are available. The problem is that most of the constraints

1Strictly speaking also contributions from the Schiff moment and in some cases the magnetic quadrupole

moment of the nucleus in paramagnetic systems could cancel these enhanced contributions. Given the large

enhancement of the latter by Z3 ∼ 105, this would however imply huge contributions in other systems,

which are at least as severely constrained. However, formally a chain of cancellations in all constrained

systems remains a possibility, due to the large number of potential sources.
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Molecule ωexp/(mrad/s) Refs.

HfF+ 0.3± 2.7± 0.6a [39]

ThO 2.6± 4.8± 3.2 [40, 41]

YbF 5.3± 12.6± 3.8 [42, 43]

Atom dA/(e cm) Refs.

Tl −(4.0± 4.3)× 10−25 [44]

Hg (2.20± 2.75± 1.48)× 10−30 [14]

a Adapted to match the conventions used here.

Table 3. Experimental limits for the systems entering the global fit.

from paramagnetic systems are essentially parallel, so that typically fine-tuned so-

lutions exist, where electron EDM and S-PS-ne contributions both oversaturate the

experimental limit, but cancel to large extent in the measured observables. This leads

to a situation where the model-independent approach yields a limit on the electron

EDM that is about a factor of 10 weaker than the naive limit obtained when setting

the S-PS-ne coupling to zero. This situation can be resolved by measurements on

systems with different slopes, for example with relatively light atoms like Rb and

very heavy ones like Fr. The recent measurement [39] already improves the situation

significantly, as shown below.

3. In diamagnetic systems, there are several contributions to a potential EDM; assum-

ing the presence of only electron EDM and S-PS-ne contributions here is clearly

not a good description of, e.g., the Mercury EDM. However, the different hierar-

chy in this case can be used to turn the argument around: in diamagnetic systems

both contributions are not enhanced, but strongly suppressed, because they yield

a non-vanishing contribution only in combination with the hyperfine splitting. The

sensitivity of Mercury to the electron EDM is about 3×108 weaker than in ThO. The

relative sensitivity to other contributions, specifically the Schiff moment, to which

for instance the quark (C)EDMs and the theta term contribute, and even tensor

electron-nucleon couplings is much higher. This is why it is conservative to assume

that these — often neglected — contributions saturate the experimental limit.

The conditions that have to be met for the resulting limit to be invalid are consequently

very specific:

• The individual electron EDM and S-PS-ne contributions to the relevant paramagnetic

systems would have to be larger than the experimental limits, but cancel in all of

them sufficiently well.

• The electron EDM and S-PS-ne contributions to Hg would also have to be larger

than the experimental limit, despite the massively different sensitivity.

• Since in the latter case a cancellation between the two contributions in Hg is not

possible simultaneously with the paramagnetic systems, other contributions, that are
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each individually expected to be much larger than those from the electron EDM or

S-PS-ne couplings, would have to combine in such a way that the net effect on the

Hg EDM is again smaller than the experimental limit.

It is not impossible that all these things happen simultaneously, but since several cancel-

lations on very different levels and in very different systems are necessary, we consider the

limit resulting from our procedure conservative. Assumptions are made only on a sublead-

ing level, while in the literature it is very common to make them at the leading level, i.e.

simply neglecting the S-PS-ne coupling. For convenience we provide below also the results

without this assumption, i.e. when using the data from paramagnetic systems, only.

Note that the calculation presented here will remain useful even if the procedure out-

lined above should become unnecessary because of measurements in paramagnetic systems

providing sufficiently precise and non-parallel constraints. Ultimately the goal should be

a global analysis separating as many sources for EDMs as possible, see ref. [38] for a first

attempt. Should both de and CS be determined/limited from paramagnetic systems alone,

the impact of the Mercury measurement on the remaining sources will increase, given a

sufficiently precise determination of the corresponding coefficients.

Starting with strategy (i), i.e. assuming CS to give the only contribution to the Mercury

EDM, we obtain from ref. [14] and eq. (3.2)

CS = −
(
0.8+1.5
−1.2

)
× 10−8, or |CS | ≤ 3.2× 10−8 (95% CL) (CS only). (4.1)

This value is significantly larger than the one given in ref. [14], for two reasons: Heckel

et al. used an indirectly obtained value for αCS
[32], where moreover electron correlation

effects have largely been neglected, which is much larger than our result on the absolute

(and also larger than newer indirectly obtained results), and presumably used only the

central value of that result. It is also significantly larger than the values obtained from

ThO (|CS | ≤ 0.7 × 10−8 (95% CL)) and HfF+ (|CS | ≤ 1.8 × 10−8 (95% CL)); however, as

we will see below, the Hg result nevertheless improves the global fit significantly.

We perform global fits to the available data in table 3, using the theoretical inputs

given in table 4. The molecular measurements are typically expressed in terms of the

angular frequency ωM , which can for our purposes be written as

ωM =

(
−1.52 sgn(Ω)

Eeff

GV/cm

de
10−27e cm

+ 2π 106 Ω
AM
ZM

WS

kHz
CS

)
〈n̂ · ẑ〉mrad

s
(4.2)

≡ αMdede + αMCS
CS , (4.3)

where Eeff the effective electric field, Ω = 〈Je · n〉 is the projection of the total electronic

angular momentum Je on the molecule-fixed internuclear axis n, ẑ is the laboratory-frame

z axis defined by the direction of the external electric field, AM and ZM are the nucleon

and the proton number of the heavy nucleus in the molecule M , respectively. The fit

results are visualized in figure 1. The shape of the individual constraints is determined

by two factors: for a given ratio of the coefficients of de and CS , the slope of the two-

dimensional constraint is fixed and the experimental uncertainty determines the width of

the associated band. Theoretical uncertainties add to that width, but mostly allow for
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Molecule Eeff
(GV/cm)

WS
kHz

a Ω 〈n̂ · ẑ〉 αM
de

mrad/s/(10−27e cm)

αM
CS

107mrad/s
Refs.

HfF+ -23.0(0.9) 20.4(0.8) 1 1 34.9± 1.4 32.0± 1.3 [39, 49, 50]

ThO -79.4(3.2) 112.1(4.5) 1 1 120.6± 4.9 181.6± 7.3 [29, 40, 41, 51]

YbF 23.1(1.8) -40.5(3.2) 1/2 0.558 −19.6± 1.5 −17.6± 2.0 [42, 43, 52, 53]

Atom αAde
αA
CS

10−20e cm
Refs.

Fr 885± 35 1090± 17 [54–56]

Tl −573± 20b −700± 35c [60, 61]

Cs 120± 3 78± 2 [54, 59, 61, 62]

Rb 25.7± 0.8 11.0± 0.2 [54, 62]

Hg 0.012± 0.012 −0.028± 0.006 [63], this work

a Note the existence of different conventions in the literature; for instance, the coefficient WS used here

is called WT,P in ref. [49], while WS in that reference denotes the product A/ZWT,P appearing in

eq. (4.2).
b For discussions regarding this value, see also refs. [57, 58]. Note that the global fit is not affected by

this discussion.
c See also ref. [59].

Table 4. Relevant information regarding the systems under consideration. αA
de,CS

are defined in

analogy to eq. (4.3) as dA = αde
de + αCS

CS .

a range of slopes, which yields fan-shaped constraints. Hence, the more important the

theoretical uncertainties, the more fan-shaped the constraint will be, the most obvious

example being Hg. Apart from the individual constraints from the paramagnetic systems

ThO, HfF+, YbF, Tl, we show the one from Hg, as well as the combinations of only the

paramagnetic constraints and the global fit to all systems. The fit to only paramagnetic

systems is massively improved by the HfF+ measurement: before this measurement it

extended essentially over the whole green area. Our result for Mercury, including only

the contributions from de and CS as discussed above, is seen to additionally improve the

fit, reducing the model-independent limits for both quantities significantly. This is due to

the constraint being essentially orthogonal to those from the paramagnetic systems: we

obtain for the paramagnetic systems a range αM,A
CS

/αM,A
de
∈ [0.4, 1.5]×10−20e cm, while for

Mercury we obtain conservatively αHg
CS
/αHg

de
< −0.9 × 10−20e cm. The latter ratio will be

more precisely determined once the coefficient for the electron EDM in Hg is known better,

which is work in progress; here we assumed an uncertainty of 100%, given the unreliable

estimate. This will also improve the determination of de and CS . In table 5 we give

the numerical results of both fits (global and paramagnetic only), including the effective

correlations between the results for de and CS , as well as the corresponding upper limits.

While the individual constraints from Hg are weaker than those extracted from ThO and

HfF+, its inclusion in the global fit results in model-independent limits about a factor of

two stronger than those from the paramagnetic systems alone.
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Figure 1. Fit to the available data from paramagnetic systems plus the constraint from Mercury,

using the result presented in this work. The bands from the individual constraints as well as the

global fit without Mercury correspond to 95% CL, the global fit with Mercury to 68% and 95% CL.

These bands include both experimental and theoretical uncertainties. Individual constraints have

1 effective degree of freedom, the global fits 2.

Fit de/10−28e cm CS/10−8 Correlation

global (w/ Hg)
1.1± 1.7

|de| ≤ 3.8

−0.6± 1.2

|CS | ≤ 2.7

−96%

param. only (w/o Hg)
−0.9± 3.2

|de| ≤ 6.4

0.8± 2.4

|CS | ≤ 4.9

−99%

Table 5. Fit results for the global fit, using our result for Hg, and the fit using only the results

from paramagnetic systems. The former yields limits about a factor of two stronger than the latter.

5 Conclusions and outlook

We performed global fits to the available data constraining the electron EDM and the

S-PS-ne nucleon-electron coupling entering heavy atoms and molecules, using up-to-date

calculations of the atomic and molecular structures. The inclusion of the recent result

on HfF+ ions improves drastically the fit to paramagnetic systems, only. As pointed out

in ref. [16], diamagnetic systems can be used to improve this fit additionally; while the

corresponding contributions are heavily suppressed in this case, diamagnetic systems have

the advantage of constraining in some cases combinations orthogonal to those accessible in
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Atom Limits for |dA|/10−26e cm

Inferred (this work) Experimental

Rb 0.7 (1.2) 108(1200) [64, 65]

Cs 2.7 (4.2) 1400 [66]

Fr 13.0 (14.8) —

Molecule Limits for |ωM |/(mrad/s)*

YbF 3.7 (5.6) 27.8 [42, 43, 67]

* Assuming the same degree of polarization as in the previous

experiment.

Table 6. Model-independent limits for paramagnetic systems from our global fits; the numbers in

brackets correspond to the fit including paramagnetic systems, only.

paramagnetic systems. As an illustration we performed the first direct calculation of the

coefficient of the S-PS-ne coupling in Mercury, including the effect of electron correlations.

In combination with the recently improved experimental limit for this system we obtain

limits on both the electron EDM and the S-PS-ne coupling of about a factor of two stronger

than from paramagnetic systems alone, see table 5.

Having a model-independent determination of both quantities determining the EDMs

of paramagnetic systems in hand, we proceed to evaluate the impact on on-going searches.

The global fits imply non-trivial upper limits for every paramagnetic system that is not

effectively constraining the fits in figure 1. These limits, given in table 6, indicate the

necessary precision for a given system to contribute significantly to the global fit or the

fit to paramagnetic systems, only (given in parentheses). A significant result above both

limits would indicate an experimental problem, unless the dominance of the enhanced con-

tributions in paramagnetic systems or the calculations of their coefficients are invalidated

by some as-of-yet unknown mechanism. A measurement below the limit from the fit to

paramagnetic systems, but above the one from the global fit, could in principle also in-

dicate the contrived situation with a series of cancellations, described at the beginning of

section 4.

In the future, it is to be expected that measurements in paramagnetic systems alone will

yield sufficiently precise results to limit or determine the two contributions discussed here

by themselves. In that case our calculations will serve to improve the model-independent

determination of hadronic contributions to diamagnetic EDMs in the context of a global

fit extending over the whole set of P,T-odd interactions.
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