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ABSTRACT 

Bird eggs can become part of the archaeological record either accidentally or as a result of 

human activities but, in both instances, they can reveal important aspects of the environment 

at the site, the ways in which people chose to exploit it, and even the existence of subtle 

ecological balances between humans and other animals. This is the case for El Mirόn, one of 

the most important cave sites in Cantabrian Spain, with occupation levels spanning around 

40,000 years, from the late Middle Palaeolithic to the Bronze Age. This mountainous area in 

Cantabria was an ideal environment for hunting medium-sized game and, as such, supported 

both human and non-human predators, including birds of prey. 

Here we use a combination of peptide mass fingerprinting (by MALDI-MS) and protein 

sequencing (by LC-MS/MS) in order to taxonomically identify ninety-five fragments of 

eggshells recovered from nineteen archaeological layers. We firmly identify these as diurnal 

birds of prey (Accipitridae) and suggest that the species might have been Bearded vulture, 

based on previous taphonomic studies that highlighted its presence at the cave. The 

implication is that both species of diurnal predators, humans and birds, inhabited the cave and 

used the surrounding environment during different periods of the year.  

 

KEYWORDS: Avifauna; Birds of prey; Zooarchaeology; Mass Spectrometry (ZooMS); 

Paleolithic; El Mirόn Cave, Cantabrian Spain 

 

INTRODUCTION 

Birds are liminal animals, connecting sky and earth, and as such have inhabited both the real 

and the symbolic worlds of humans since early prehistory (Serjeantson, 2009). It is not a 

coincidence that one of the few pictorial representations of the human figure in parietal 

prehistoric art, in the “Shaft of the dead man” at Lascaux, is a bird-man fighting a bison, and 

the whole scene is enigmatically observed by a bird on a pole (Lewis-Williams, 2002). Among 

all avifauna, birds of prey occupy a special place in the mental landscape during prehistory, 

as testified by the increasing number of findings of raptors’ and corvids’ claws and bones 

bearing cut-marks typical of feather-removing, or used as musical instruments, both in Middle 

and Upper Palaeolithic sites (Conard et al., 2009; Finlayson et al., 2012; Hardy and Moncel, 

2011; Kuhn et al., 2001; Morin and Laroulandie, 2012; Peresani et al., 2011; Romandini et al., 



 

2014). However, the preservation bias affecting bird remains, as well as the lack of widespread 

iconographic representations, have consistently hindered all efforts to gain a deeper 

understanding of the reciprocal relationship between humans and birds in the past.  

 

In this study we apply a novel methodology for taxonomic identification of bird eggshell remains 

based on the analysis of proteins preserved within the eggshell calcite crystals (Presslee et 

al., 2018). In order to assess whether eggshell can add another dimension of understanding 

to archaeo-faunal assemblages and, by extension, to how humans behaved in a certain 

landscape in the past, we focus on a long archaeological sequence from Cantabria, Northern 

Spain, spanning ~40,000 years from the late Middle Palaeolithic to the Bronze Age in the cave 

of El Mirón.  

 

El Mirόn is a large, west-facing cave located at 260 m a.s.l. on a cliff in a foothill range (1000 

m a.s.l.) of the Cantabrian Cordillera near the edge of the Basque Region c. 20 km from the 

Holocene shore of the Bay of Biscay (c. 25 km from the Last Glacial shore) (Figure 1). It 

consists of a spacious, dry, fully sunlit vestibule (30 m-deep x 8-16 m-wide and 13-20 m-high) 

and a narrower, higher, 100 m-long, dark inner cave, filled to the roof with alluvial sediments 

at its rear. The principal excavations (directed by Gonzalez Morales and Straus between 1996-

2013) consisted of a 9.25 m2 block in the outer vestibule, a 10.5 m2 block in the vestibule rear 

with two contiguous extensions: a 2 m2 sondage, dug from the base of a large clandestine 

pothole, and a 4 m2 area in the space between a large roof-fall block and the south-east corner 

of the vestibule, where a 19,000 year-old human burial was discovered (Straus & González 

Morales, 2012; Straus et al., 2015a and 2015b). The outer and rear vestibule excavation areas 

were connected by a 9-m-long, 0.5-1.0-m-wide connecting trench. The archaeological 

sequence in the outer vestibule consists of levels pertaining to the Lower, Middle and Upper 

Magdalenian, Azilian, Mesolithic, early and late Neolithic, Chalcolithic and early Bronze Age. 

All but the Upper Magdalenian, Azilian and Mesolithic levels are extremely rich in 

archaeological materials. The Lower Magdalenian through Neolithic layers are represented in 

the mid-vestibule trench, and the whole Magdalenian sequence, plus Solutrean, Gravettian 

and Mousterian levels are present in the vestibule rear. There are traces of Medieval uses of 

the cave (dated torch fragments) both in the vestibule and in a test trench in the inner cave, 

which also has evidence of Lower Magdalenian occupation. The archaeological levels are 

dated by 92 radiocarbon assays ranging from >45,000-500 years ago. 

 

The human burial is of a robust, apparently healthy, 35-40-year-old female, who had a mixed 

diet including terrestrial meat (the majority), seafood and plant foods (including mushrooms). 

She is the only interment known from the Magdalenian of the Iberia and only the second one 

from the entire Upper Palaeolithic of the Peninsula. Her body and/or later her bones had been 

stained with non-local hematite ochre. She was buried in tight foetal position in a small hole 

dug into a rich Lower Magdalenian layer between a 2x1x1 m roof-fall block and the cave wall. 

Her cranium and most of her long bones had been removed in an apparent reburial after 

disturbance by a carnivore (Marín-Arroyo, 2015). Her grave seems to have been “marked” by 

engravings (including a multi-line inverted [pubic?] triangle) on the outer (western) face of the 

block and the inner face, contiguous with the burial, is stained red with the same ochre (Straus 

et al., 2015). 

 

El Mirón represents an ideal case study because the important, yet elusive, presence of birds 

has been posited in the past. The analysis of bird bones has been published only for the 



 

Holocene layers, from the Mesolithic to the Bronze Age (Elorza, 2012), and showed the 

presence of the following species: Accipiter gentilis (northern goshawk), Falco sp. (falcons), 

cf. Tetrao tetrix (black grouse), Columba livia/oenas (rock dove/stock dove), Columba 

palumbus (wood pigeon), Strix aluco, (tawny owl) Asio sp. (true owl), Turdus sp. (thrush), 

Coccothraustes coccothraustes (hawfinch), Pyrrhocorax graculus (alpine chough), Corvus 

corax (common raven). Bird bones are relatively abundant in the Mousterian and Early Upper 

Palaeolithic levels (Marín-Arroyo et al., 2018), present in modest numbers in the Solutrean 

levels, and very rare in the Magdalenian and Azilian ones (M. Carvalho; J.M. Geiling; E.L. 

Jones, pers. comm., Oct 2018). In general, the frequency of bird bones seems to be inversely 

related to the abundance and density of cultural and macromammal remains in the cave; the 

scanty, ephemeral Early Upper Palaeolithic human occupations have more bird bones than 

the overlying layers, and some of these display carnivore gnaw marks, suggesting non-human 

accumulation (Marín-Arroyo et al., 2018). On the contrary, zooarchaeological analysis of the 

few avian remains from other caves in the Cantabrian region shows the presence of a wide 

variety of birds. For example, at La Riera, birds were exploited as a food resource, as testified 

by a species assemblage relatively rich in waterfowl and one bone with cutmarks (Eastham, 

1986). Similarly, the spectacular assemblage recovered from Santa Catalina (Bay of Biscay) 

shows that, in the Upper Magdalenian, seabirds were heavily exploited as one of the many 

coastal resources (Laroulandie et al., 2016), while this was not the case for other sites, for 

example the Magdalenian and Solutrean levels at Las Caldas (Eastham, 2017). 

 

The presence of birds of prey (mainly nocturnal) at El Mirón is demonstrated by taphonomic 

studies of the small mammal bone assemblages in the cave (Cuenca-Bescós et al., 2012). 

Additionally, the diurnal bird of prey Gypaetus barbatus (Bearded vulture) has been identified 

as an important bone accumulator agent on the basis of the clear digestion marks on specific 

anatomical elements of medium-sized mammals (Marín-Arroyo, 2009; Marín-Arroyo et al., 

2009), such as in Corsica (Robert and Vigne, 2002) but also at Caldeirão cave (Central 

Portugal; Davis et al., 2007). In Hornos de la Peña (Cantabria) Harlé (1912) indicated the 

presence of black vulture. However, so far the direct evidence for vultures at El Mirón is limited 

to one black vulture humerus in the Lower Magdalenian level 17.  

 

The study of the ninety-five eggshell fragments recovered from the sieved sediments from 

nineteen layers within El Mirón aims primarily to clarify the composition of the avifaunal 

assemblage at the site and whether this changed over time. Taxonomic identification was 

carried out on the basis of the analysis of the ancient proteins preserved in eggshell, using 

both peptide mass fingerprinting (by MALDI-MS) and proteomics (by LC-MS/MS). Our second 

aim was to assess whether the eggshell assemblages were due to natural (i.e. eggshell 

fragments falling from nests on the ceiling) or anthropic (i.e. exploitation of bird eggs by 

humans) deposition, by integrating the results obtained on the eggshell proteins with available 

zooarchaeological information and by interpreting this within the archaeological context of the 

cave. 

 

Approximate location of figure 1 

 

 

MATERIALS AND METHODS 

Eggshell was recovered post-excavation by floating sediments with a 1 mm mesh and sieving 

with 2 mm mesh. Most of the eggshell comes from the > 2 mm fraction, and is kept in storage 



 

at the Museum of Prehistory and Archaeology of Cantabria (MUPAC), Santander, Spain. 

There are only a few excavation squares where the concentration of eggshell is clear (Figure 

1): square O6 from the mid-vestibule (Mesolithic, Final Magdalenian-Early Azilian, Upper 

Magdalenian, Lower Magdalenian); squares J4 and I4 from the Cabin area (Final 

Magdalenian-Early Azilian, Lower Magdalenian), T9 (Upper Magdalenian) and X10 (Solutrean, 

Gravettian and Early Upper Palaeolithic) from the Corral area. Only one sampled layer (503.1, 

square X6, above the burial of the Lower Magdalenian “Red Lady” (Straus et al., 2015)) 

represented an intact hearth, with ash and charcoal. The upper part of the southern wall and 

the east section of the vestibule, along the ramp that ascends to the cave interior, have a 

series of horizontal ledges suitable for nesting and almost inaccessible to humans. In the case 

of squares T9 and X10, at the foot of the ramp, a provenance due to erosional processes 

cannot be excluded.  

 

Samples were taken for each archaeological layer available, randomly selecting five fragments 

per layer, for a total of ninety-five eggshell samples. Each fragment was subsampled, 15-20 

mg taken, powdered, bleached for 100 hours, demineralised in cold weak 0.6 M hydrochloridric 

acid and the extracted proteins digested with trypsin as described previously (Demarchi et al., 

2016; Presslee et al., 2018). Tryptic digests were spotted in triplicate (1 μL each) with α-Cyano-

4-hydroxycinnamic acid (α-CHCA) matrix on a clean MTP384 Bruker ground steel MALDI 

target plate and analysed using a Bruker Ultraflex III MALDI-ToF/ToF mass spectrometer, with 

the following parameter settings: ion source, 25 kV; ion source, 21.4 kV; lens voltage, 9 kV, 

laser intensity 40–55% and mass range 800–4000 Da. Peptide masses below 650 Da were 

suppressed. Each sample was externally calibrated against an adjacent spot containing a 

mixture of six peptides (des-Arg1 Bradykinn m/z = 904.681, Angiotensin I m/z = 1295.685, 

Glu1-Fibrinopeptide B m/z = 1750.677, ACTH (1–17 clip) m/z = 2093.086, ACTH (18–39 

clip) m/z = 2465.198 and ACTH (7–38 clip) m/z = 3657.929). Calibrated spectra were analysed 

using the open-source software mMass (Strohalm et al., 2010), averaging the three replicates 

for each sample after a visual check of the quality of each spectrum.  

 

Three archaeological samples (LOTs 14139_2, 14145_3 and 14147_2; LOTs indicated by an 

asterisk in Table 1), were also analysed by LC-MS/MS (Liquid Chromatography Tandem Mass 

Spectrometry): peptides were separated on a PepMAP C18 column (75 μm × 500 mm, 2 μm 

particle size, Thermo) using a Dionex Ultimate 3000 UPLC at 250 nL/min and acetonitrile 

gradient from 2% to 35% in 5% dimethyl sulfoxide/0.1% formic acid. Peptides were detected 

with a Q-Exactive mass spectrometer (Thermo) at a resolution of 70,000 @ 200 m/z. Up to 15 

precursors were selected for High-energy Collision Dissociation (HCD) fragmentation. 

Tandem mass spectra were processed using the software PEAKS v. 8.5 (Ma et al., 2003) and 

searched against a database containing 2,453,941 proteins, i.e. all sequences available on 

NCBI restricting the taxonomy to Aves (fasta database downloaded on 11/02/2018) and all 

common contaminants (cRAP; common Repository of Adventitious Proteins: 

http://www.thegpm.org/crap/). We note that among all sequences, the database contains 56 

sequences of ovocleidin-116, a major eggshell protein, as well as the following C-lectins from 

a variety of species: 

 

>sp|P83515.1|SCAL2_STRCA RecName: Full=Struthiocalcin-2; Short=SCA-2 
>sp|P83514.1|SCAL1_STRCA RecName: Full=Struthiocalcin-1; Short=SCA-1 
>sp|Q9PRS8.2|OC17_CHICK RecName: Full=Ovocleidin-17; Short=OC-17 
>sp|P84616.2|DCAL2_DRONO RecName: Full=Dromaiocalcin-2; Short=DCA-2 

http://www.thegpm.org/crap/


 

>sp|P84615.2|DCAL1_DRONO RecName: Full=Dromaiocalcin-1; Short=DCA-1 
>sp|P84618.2|RCAL2_RHEAM RecName: Full=Rheacalcin-2; Short=RCA-2 
>sp|P84617.2|RCAL1_RHEAM RecName: Full=Rheacalcin-1; Short=RCA-1 
>XP_011597343.1 PREDICTED: ansocalcin-like [Aquila chrysaetos canadensis] 
>XP_013801307.1 PREDICTED: rheacalcin-1-like, partial [Apteryx australis mantelli] 
>XP_005443542.1 PREDICTED: rheacalcin-2-like [Falco cherrug] 
>XP_005243559.1 PREDICTED: rheacalcin-2-like [Falco peregrinus] 
>XP_011597342.1 PREDICTED: rheacalcin-2-like [Aquila chrysaetos canadensis] 
>XP_010564359.1 PREDICTED: rheacalcin-2-like [Haliaeetus leucocephalus] 
>XP_021238989.1 dromaiocalcin-1-like [Numida meleagris] 
>XP_021238988.1 dromaiocalcin-1-like [Numida meleagris] 
>XP_014746250.1 PREDICTED: dromaiocalcin-1-like [Sturnus vulgaris] 
>XP_014118214.1 PREDICTED: dromaiocalcin-1-like [Pseudopodoces humilis] 
>XP_013801306.1 PREDICTED: struthiocalcin-2 [Apteryx australis mantelli] 
>XP_012984941.1 PREDICTED: struthiocalcin-2-like, partial [Melopsittacus undulatus] 
>XP_012984941.1 PREDICTED: struthiocalcin-2-like, partial [Melopsittacus undulatus] 
>pdb|1GZ2|A Chain A, Crystal Structure Of The Ovocleidin-17 A Major Protein Of The Gallus 
Gallus Eggshell Calcified Layer. 
>AHA91755.1 ovocleidin-17 [Gallus gallus] 
>AAB35101.1 ovocleidin 17, OC-17=17 kda matrix protein {N-terminal} [chickens, White 
Leghorn, eggshells, Peptide Partial, 24 aa] 
>pir||S78596 ovocleidin - chicken 
>XP_021238987.1 ovocleidin-17-like [Numida meleagris] 
 

The search was performed without indicating trypsin as the digestion enzyme, i.e. performing 

a “no enzyme” search, in order to identify cleavages due to natural hydrolysis as well as those 

due to the proteolytic enzyme used (trypsin). Parent ion and fragment ion mass tolerance were 

set to 5 ppm and 0.05 Da, respectively. The following threshold values were used for 

acceptance of high-quality peptides: false discovery rate threshold 0.5%, protein scores 

−10lgP ≥ 20, number of unique peptides ≥2, de novo sequences scores (ALC %) ≥ 80. The 

mass spectrometry proteomics datasets have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD010439. 

 

Lot 

Number 

Excavation 

Area 

Level and 14C date (Straus 

and Morales, 2003) 
Square Chronology 

Number of 

fragments  

14134 Mid-Vestibule 304 O6 Mesolithic 5 

14135 Mid-Vestibule 305 (10,362-9818 cal BC) Q7 Azilian 5 

14136 Cabin 
11 (level 11.1: 12,039-

11,523 cal BC) 
J4 

Final Magdalenian-

Early Azilian 
5 

14137 Mid-Vestibule 306 (11,861-11,525 cal BC) O6 
Final Magdalenian-

Early Azilian 
5 

14138 Mid-Vestibule 306 (11,861-11,525 cal BC) O6 
Final Magdalenian-

Early Azilian 
5 

14139 * Mid-Vestibule 307 O6 Upper Magdalenian 5 

14140 Mid-Vestibule 308 (13,403-12,166 cal BC) O6 Upper Magdalenian 5 

14141 Corral 106.1 T9 Upper Magdalenian 5 

14142 Corral 107.2 T9 Upper Magdalenian 5 

14143 Mid-Vestibule 309 O6 Magdalenian 5 

14144 Mid-Vestibule 311.1 O6 Lower Magdalenian 5 

14145 * Corral 503.1 X6 Lower Magdalenian 5 

14146 Cabin 14 I4 Lower Magdalenian 5 

14147 * Cabin 15 (16,679-15,810 cal BC) J4 Lower Magdalenian 5 



 

 

 

14148 Cabin 16 (16,487-15,910 cal BC) I4 Lower Magdalenian 5 

14149 Cabin 17 (16,852-16,184 cal BC) J4 Lower Magdalenian 5 

14150 Corral 126 (21,070-20,010 cal BC) X10 Solutrean 5 

14151 Corral 128 (29,940-29,460 cal BC) X10 Gravettian 5 

14152 Corral 129 X10 
Early Upper 

Palaeolithic 
5 

Table 1: Details of the 95 eggshell samples analysed in this study. Note that the layers 

investigated span the period between the Early Upper Palaeolithic and the Mesolithic.  

 

RESULTS AND DISCUSSION 

 

MALDI-MS AND LC-MS/MS DATASETS 

 

The MALDI spectra (all available in Appendix 1) showed that at least two species of birds were 

present at the site in different periods. The first species is represented by only three of the 

samples (LOTs 14152-2, 14152-4, 14152-5), all from the Early Upper Palaeolithic level. The 

spectra were similar to each other (Figure 2A), with intense peaks at m/z 1666.8 and 1723.8, 

which could be matched to peptide sequences of ansocalcin from Anas sp. using the reference 

dataset of Presslee et al. (2018). It is likely that these three eggshells belong to a species of 

Anatidae, although further analyses will be carried out in future to refine this identification.  

 

The second species is represented by the spectra obtained on the remaining ninety-two 

eggshell fragments. These were very similar to each other, with the main values typically falling 

at m/z 832.5, 1037.5, 1158.6, 1803.9, 1847.8, 1931.9, 2087.9 (example shown in Figure 2B). 

Some samples (LOTs 14134-2, 14136-1, 14137-2, 14137-3, 14137-5, 14150-1, 14150-2, 

14150-3, 141451-1, 14151-2, 14151-3, 14151-4, 14152-1, 14152-3) yielded low-intensity 

signals (example shown in Figure 2C) but the major peaks still included m/z 832.5, 1847.8, 

1931.9. The MALDI spectra for these ninety-two samples could not be interpreted on the basis 

of the peptide markers identified in the study of Presslee et al. (2018), indicating that the taxa 

represented at the cave likely belong to avian families not included in the Presslee et al.’s 

reference collection. In order to identify this taxon, which clearly dominates the assemblage, 

we selected three representative biological replicates (LOTs 14139_2, 14145_3, 14147_2) for 

sequencing by LC-MS/MS.  

 

Approximate location of figure 2 

 

The three eggshell fragments analysed by LC-MS/MS yielded between 1500 and 2500 

peptide-spectrum matches (Table 2; search results are reported in Appendix 2).  

In sample 14139_2, the top ten proteins (coverage > 40%) all produced hits against the 

proteomes of Aquila chrysaetos canadensis (American golden eagle; 6 hits), Haliaeetus 

leucocephalus (Bald eagle; 3 hits) and Balearica regulorum gibbericeps (Grey-crested crane; 

1 hit). The major protein types identified were all common intracrystalline eggshell proteins: 

rheacalcin-like and ansocalcin-like. These are C-type lectins, involved in mineralization: the 

first exhibits 61% sequence identity with struthiocalcin-2 and the second 58% identity with 

struthiocalcin-1 (Mann and Siedler, 2004). Other major proteins are: BPI fold-containing family 

B member 4-like, bactericidal permeability-increasing proteins that are linked to lipid binding; 



 

ovomucoid-like, which is an egg-white protein; matrix extracellular phosphoglycoprotein 

(MEPE), which is the orthologue of ovocleidin-116 (Bardet et al., 2010); cystatin-like protein, 

i.e. a proteinase inhibitor protein of the cystatin superfamily (Gerhartz et al., 1997; Rose-Martel 

et al., 2012). Similarly, the top proteins of sample 14145_3 (ovomucoid-like, ansocalcin-like, 

rheacalcin-like, BPI-fold containing family member 4-like) matched the proteomes of the 

American golden eagle (4 hits), the Bald eagle (2 hits), the Red-throated dive (Gavia stellata, 

1 hit), the Grey-crested crane (1 hit) and the Dalmatian pelican (Pelecanus crispus; 1 hit).  

With regard to sample 14147_2, the top-identified proteins were rheacalcin-like, MEPE-like, 

ansocalcin-like, BPI-fold containing family member 4-like and collagen alpha1(XII) chain, all 

from H. leucocephalus. However, some matches were also found with collagen, mucins, BPI-

fold containing proteins, tubulin and other highly conserved sequences from Phaeton lepturus 

(White-tailed tropicbird), Corvus brachyrhynchos (American crow), Acanthisitta chloris 

(Rifleman).  

 

 

Statistics LOT 14139_2 LOT 14145_3 LOT 14147_2 

Peptide-Spectrum 

Matches  

2476  1465 2298 

Peptide sequences  1517  536 1520 

Proteins 177 (#Unique Peptides: 

63 (>2); 114 (=2)) 

117 (#Unique Peptides: 

26 (>2); 91 (=2)) 

363 (#Unique 

Peptides: 

199 (>2); 164 (=2)) 

De Novo Only Spectra  1151  686 718 

Top proteins (% 

coverage) 

Rheacalcin-2-like 

[Aquila chrysaetos 

canadensis] (58%); 

Rheacalcin-2-like 

[Haliaeetus 

leucocephalus] (58%) 

Ovomucoid-like [Aquila 

chrysaetos canadensis] 

(70%) 

Rheacalcin-2-like 

[Aquila chrysaetos 

canadensis] (62%) 

 

Top organism (top 

proteins frequency) 

Aquila chrysaetos 

canadensis 

Aquila chrysaetos 

Canadensis 

Haliaeetus 

leucocephalus 

Table 2: Summary of protein identification results obtained by LC-MS/MS analysis of 

three eggshell samples from El Mirón. 

 

TAXONOMIC IDENTIFICATION 

The bioinformatic analysis of the LC-MS/MS data was carried out using a database comprising 

all available bird sequences available at the time (February 2018), including the 48 annotated 

bird genomes spanning 32 orders (including all 30 neognaths) released in 2014 (Jarvis et al., 

2014; Zhang et al., 2014). All main hits obtained related to either Aquila or Halieetus, belonging 

to family Accipitridae, and not to any of the close relatives included in the database, e.g. 

Falconidae or Catharthidae. Therefore, we can exclude the possibility that the eggshells 

belonged to non-Accipitriformes. However, we cannot refine our identification within the family 

Accipitridae as the genomes available for this family are limited to Aquila and Haliaeetus; thus, 

the proteomic approach can currently only provide classification to the level of family. Such 



 

refinement will be possible in the future: at the time of writing, genomes are being constantly 

added to the public databases, with a plan of sequencing approximately 300 bird families and 

subfamilies and, ultimately, all avian species (https://b10k.genomics.cn).  

 

The peptide sequences obtained by database searches of the tandem mass spectra were 

used to obtain potential Accipitridae “marker” m/z values. Firstly, the MS data (forty-five 

spectra) for LOTs 14139, 14145 and 14147 were averaged and the m/z values with signal-to-

noise ratios > 6 obtained from this combined dataset matched with the peptide sequences 

identified by LC-MS/MS. This resulted in 100 potential “markers” for Accipitridae. Of these, 32 

peptide sequences could be assigned to ansocalcin-like from A. chrysaetos canadensis or the 

homologue carnitine O-palmitoyltransferase 1, muscle isoform from H. leucocephalus; 19 to 

rheacalcin-2-like from A. chrysaetos canadensis. Others could be assigned to sequences of 

mucins, collagen, egg white and BPI-fold-containing proteins; however, these tend to be highly 

conserved among birds and are therefore less useful for taxonomic identification. A BLASTp 

search was performed for each of the peptides in order to identify their occurrence in taxa 

other than Accipitridae. Appendix 2 contains a list of the 100 peptides, highlighting those that 

can presently be considered as Accipitridae-specific, i.e. that were not found in non-

Accipitridae birds.  

 

It is important to note that while these “marker” peptide sequences can provide family-level 

identification, the m/z values alone may not: it is possible that the same m/z value (within error) 

corresponds to several (isobaric) peptide sequences. For example, m/z 1257.8, one of the 

main peaks found in the El Mirόn MALDI-MS dataset, can be assigned to sequence 

SAWEGDDPPKR from carnitine O-palmitoyltransferase (Haliaeetus leucocephalus) but can 

also be found (within a 0.2 Da error) in the reference marker list of Presslee et al. (2018) for 

Carduelis, Passer and Muscicapa. Table 3 therefore only reports the 29 m/z values and 

associated peptide sequences that can currently be considered Accipitridae markers. Figure 

3 shows the product ion spectra for six selected peptides, which are commonly found in the El 

Mirόn MALDI-MS dataset.  

 

m/z Peptide sequence (with modifications) Protein ID  

832.5 ALAAFIAR Ansocalcin-like [ACC] 

923.4 SVHSVEEH Rheacalcin-2-like [ACC] 

943.4 WEGDDPPK Ansocalcin-like [ACC] 

1003.5 GC(+57.02)YGFFPR Rheacalcin-2-like [ACC] 

1037.5 RAEAFC(+57.02)QR Rheacalcin-2-like [ACC] 

1038.5 RAEAFC(+57.02)Q(+.98)R Rheacalcin-2-like [ACC] 

1101.5 SAWEGDDPPK Ansocalcin-like [ACC] 

1158.6 N(+.98)VWIGLYHR Ansocalcin-like [ACC] 

1243.6 AAGKEVC(+57.02)QRPK Mucin-5AC-like [HL] 

1263.6 LASVHSVEEHR Rheacalcin-2-like [ACC] 

1289.6 LASLHTPEEHR Ansocalcin-like [ACC] 

1365.7 E(-18.01)EHRALAAFIAR Ansocalcin-like [ACC] 

1408.7 FED(+14.02)GC(+57.02)YGFFPR Rheacalcin-2-like [ACC] 

1463.7 RHPELSTQ(+.98)LILR Serum albumin [ACC] 

1527.7 E(-18.01)EEN(+.98)VWIGLYHR Ansocalcin-like [ACC] 

https://b10k.genomics.cn/


 

1564.7 YSAW(+15.99)EGDDPPKRK Carnitine O-palmitoyltransferase 
1, muscle isoform [HL] 

1567.7 SQAWM(+15.99)WVDGSQTR Ansocalcin-like [ACC] 

1568.7 SQ(+.98)AWM(+15.99)WVDGSQTR Ansocalcin-like [ACC] 

1571.7 C(+42.01)HLASLHTPEEHR Ansocalcin-like [ACC] 

1785.8 E(-18.01)EEEEN(+.98)VWIGLYHR Ansocalcin-like [ACC] 

1795.8 REEEEEEN(+.98)VWIGLY Ansocalcin-like [ACC] 

1803.9 EEEEEN(+.98)VWIGLYHR Ansocalcin-like [ACC] 

1847.8 GWVPFED(+14.02)GC(+57.02)YGFFPR Rheacalcin-2-like [ACC] 

1914.9 E(-18.01)EEEEEN(+.98)VWIGLYHR Ansocalcin-like [ACC] 

1931.9 EEEEEENVWIGLYHR Ansocalcin-like [ACC] 

1932.9 EEEEEEN(+.98)VWIGLYHR Ansocalcin-like [ACC] 

2087.9 REEEEEENVWIGLYHR Ansocalcin-like [ACC] 

2088.9 REEEEEEN(+.98)VWIGLYHR Ansocalcin-like [ACC] 

2104.9 REEEEEEN(+.98)VW(+15.99)IGLYHR Ansocalcin-like [ACC] 

 

Table 3: Accipitridae markers frequently found in El Mirόn eggshells. ACC = [Aquila 

chrysaetos canadensis]; [HL] = [Haliaeetus leucocephalus] 

 

Approximate location of Figure 3 

 

DISCUSSION 

We found that the preservation of the intracrystalline proteins is overall very good, and this 

study is the first to report proteomics-based taxonomic identification of eggshell from a 

Paleolithic site from a relatively temperate environment (at Ramales de la Victoria 

temperatures typically vary between a maximum of 28°C and a minimum of 5°C, although 

these variations will be considerably dampened in the cave). We also note that Pleistocene 

temperatures were certainly colder.  

 

The main sequences identified in the eggshell typically display very acidic (Glu-rich) domains, 

including an EEEEEENVWIGLYHR (m/z = 1931.9) peptide from an ansocalcin-like protein. 

Peptide YSAWEGDDPPK from ansocalcin is also present among the main peptides detected 

by both MALDI-MS and LC-MS/MS. The domain ALDDDDYPK from the sequence of 

struthiocalcin-1, which corresponds to YSAWEGDDPPK in an alignment of the two proteins, 

is preserved in fossil ostrich eggshell for up to 3.8 Ma (Demarchi et al., 2016). Peptides 

ALAAFIAR (m/z = 832.5, ansocalcin-like) and GWVPFEDGCYGFFPR (m/z = 1847.8, 

rheacalcin-2-like) are among the most stable and are typically found in the spectra of the most 

degraded eggshell. Poor-quality spectra were obtained mainly for some of the oldest samples 

(LOTs 14150-14151-14152, from the Solutrean, Gravettian and Early Upper Palaeolithic 

layers of the Corral Area, respectively). However, three of the samples from LOT 14137 (Mid-

Vestibule, Final Magdalenian-Early Azilian) also yielded low-intensity spectra.  

 

Before discussing the archaeological relevance of the results, it is important to state clearly 

that our dataset is affected by inherent biases: 

1. Thicker eggshells, such as that of large birds of prey, survive better than thinner, 

smaller eggs laid by, for example, small Passeriformes, which are therefore under-

represented in the faunal assemblage; 



 

2. The recovery of the eggshell during and post-excavation varies according to excavation 

season and operator; 

3. The relative paucity of avian genomic data limits our ability to identify birds beyond the 

family/order level in most cases, including for Accipitridae (genomes available: Aquila 

chrysaetos, Haliaeetus leucocephalus, Haliaeetus albicilla). 

4. The use of two different analytical techniques, namely MALDI-MS and LC-MS/MS, may 

result in the over- or under-representation of certain charged species / peptides.  

 

Despite these caveats, the datasets obtained clearly indicate that eggshell from one main bird 

taxon was deposited in the cave from the Gravettian until the Mesolithic. This bird taxon can 

be firmly identified as a member of the Accipitridae, the diurnal birds of prey. The Early Upper 

Palaeolithic level yielded two fragments (14152-1 and 14152-3) that could be identified as 

members of this same taxon, with relatively poor-quality spectra, but also three (14152-2, 

14152-4 and 14152-5) that are likely to belong to a member of the Anatidae family, based on 

one marker value at m/z 1723.8. At this stage we did not attempt to identify this Anatidae using 

LC-MS/MS analyses.  

 

Our work provides direct evidence for the presence of a species of diurnal bird of prey in the 

area of El Mirón. However, the identification of the species is only possible by combining the 

biomolecular data on the eggshell with the existing taphonomical data on the macromammal 

remains. For the Pleistocene levels of El Mirón, taphonomic studies of medium-sized mammal 

bones have highlighted the possible presence of Gypaetus barbatus (Marín-Arroyo et al., 

2009), a bird which is known to have been present in the area, for example at Santa Catalina 

(Esplosin, 2014), Aitzbitarte IV, Hornos de la Peña, as well as other Iberian sites from the 

Upper Pleistocene until the Middle Ages (see a summary in Marίn-Arroyo, 2010). This is not 

surprising, given the nature of the environment: mountains with caves and sheer cliff faces, 

ideal for nesting. If we accept this identification, then the biology and behaviour of the bird can 

give precious clues as to the way vultures and humans coexisted in the past, alternating the 

use of the same cave and exploiting the same environment. The imposing, awe-inspiring and, 

probably, menacing presence of these bone-eating predators at the site could have not been 

ignored by humans, and vice versa: where one existed, the other must have behaved carefully.  

 

The bearded vulture or ossifrage (“bone breaker”) has a highly specialised diet, feeding on the 

bones of dead animals (Margalida and Marín-Arroyo, 2013; Marín-Arroyo and Margalida, 

2012). Both Paleolithic humans and bearded vultures predated on medium-sized ungulates 

(southern chamois Rupicapra pyrenaica, Spanish ibex Capra pyrenaica, red deer Cervus 

elaphus and roe deer Capreolus capreolus (Margalida and Marín-Arroyo, 2013)), and the 

analysis of the remains from El Mirón showed that bearded vultures had a preference for foot 

limb bones (metapodials and phalanges). This is because the quality of the fatty acids 

involved, in terms of oleic acid percentage, is higher in these anatomical parts, resulting in 

easier digestibility and better nutritional value. While small bones can be ingested directly, 

larger bones are typically broken by throwing them to the ground from a great height; the birds 

often use specific ossuaries for this purpose. Interestingly, this produces the same breakage 

pattern as that resulting from bones being broken by humans using tools.  

 

This behaviour must certainly have been known to the human frequenters of the cave, 

although it is important to try to understand the extent and level of interaction between humans 

and birds of prey. Firstly, the population of vultures they would have observed would have 



 

been rather sparse: today, each breeding pair might control a huge territory (200-400 km2; 

website of the Vulture Conservation Foundation, accessed 04/07/2018) and therefore the 

eggshell accumulation within the cave would have been caused by only one “family” of birds. 

The size of the family would have been small, because each female lays two eggs (but typically 

only one young fledges). This is interesting to note, because it implies that the accumulation 

of eggshell fragments would have been achieved by just two eggs per year. Secondly, recent 

data collected on modern bearded vulture eggs show that the surface areas can be estimated 

at around 1870 mm2 (Hernández et al., 2018). Assuming that the minimum surface area of 

each fragment is ~4 mm2, as the eggshell fragments were recovered from the fraction sieved 

with a 2 mm mesh size, we can estimate that the maximum number of fragments from each 

egg would be ~465. As a consequence, the number of individual eggs effectively incorporated 

in the archaeological sediments would be rather low. Thirdly, most eggshell fragments come 

from layers without hearth features, and are in areas of the cave where the ceiling is almost or 

totally inaccessible to humans. These three considerations support the interpretation that the 

presence of eggshell in the sedimentary record represents episodes of accidental 

incorporation rather than exploitation of the eggs - at least not systematically.  

 

As noted by Marín-Arroyo et al. (2009), the fact that vultures and humans cannot coexist 

suggests that the cave was a place of recurrent but episodic occupation, humans possibly 

tending to occupy the cave after the vulture young had left the nest. Bearded vultures nest in 

autumn, and the young would have left the cave in winter. Therefore, human occupation would 

have occurred during the spring/summer, at least during certain periods of the Magdalenian. 

However, the fact that birds and humans cannot occupy the same space at the same time 

does not necessarily mean that they were unaware of each other. On a practical level, we can 

speculate that bones processed and left over by humans could have later been eaten by the 

birds, although we cannot provide evidence for this, as all animal bones which may have been 

digested by vultures would have lost traces of the anthropogenic activity (cutmarks). Another 

thought-provoking aspect is the striking appearance of the bird, with its red eyes and rusty red 

body, the latter being achieved by the vultures rubbing themselves with iron oxides - ochre 

(Website of the Vulture Conservation Foundation, accessed 04/07/2018). The exceptional 

Magdalenian human burial, “the Red Lady”, takes its nickname (after the “Red Lady of 

Paviland”) from the fact that her body and/or, later, her bones had been coated in red ochre 

(Straus et al., 2015). The use of ochre is one of the harbingers of modern human behaviour 

and is frequent during the Upper Paleolithic (Brooks et al., 2018; Henshilwood et al., 2011); 

we are not suggesting, therefore, that the inhumation ritual was an attempt at mimicking the 

bird’s behaviour. Nevertheless, it is not beyond reason to speculate a multi-faceted symbolic 

meaning for the use of this pigment in this specific cave, which was likely inhabited by a 

resident breeding pair of vultures, themselves a powerful reminder of the cycle of life and 

death.  

 

CONCLUSIONS 

This study shows that the analysis of eggshell can add another layer of information to the 

interpretation of human-bird relationships, including the alternate use of a site. At El Mirón, we 

found direct confirmation of the presence of diurnal birds of prey, previously known from only 

a single black vulture bone and from taphonomic alterations of the macromammal remains, 

from the Upper Paleolithic until the Mesolithic. This finding implies that humans and birds of 

prey, which are well known for occupying a special role in the life of Paleolithic people in 



 

Cantabria (Gómez-Olivencia et al., 2018), must have found a delicate balance in this 

environment.  

As a concluding remark, we highlight that the preservation of the eggshell proteins at this 

Upper Palaeolithic site from a relatively temperate environment is sufficiently good as to allow 

the successful identification of all fragments. However, only the availability of a large number 

of bird genomes, including that of the Bearded vulture, which is currently being sequenced 

(https://b10k.genomics.cn/), will be able to fully reveal the power of resolution of the technique. 

Therefore, we stress the importance of integrating molecular analyses with zooarchaeological 

and taphonomic studies of the material.  
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Figure 1: A) Bearded vulture (Credits: Richard Bartz, Creative Commons Attribution-Share 

Alike 2.5 Generic license). B) El Mirón, cave entrance; C) Plan of the excavation of El Mirón, 

showing the areas of recovery of the eggshell fragments (in red).  

 

Figure 2: A) Example of an “Anatidae” spectrum (LOTs 14152-2, 14152-4, 14152-5, Early 

Upper Palaeolithic); B) Typical spectrum found for the 92 eggshell fragments attributed to 

Accipitridae; C) Example of a low-intensity spectrum, which shows the presence of some 

Accipitridae markers.  

 

Figure 3: Product ion spectra for a selection of common Accipitridae markers: ALAAFIAR (m/z 

= 832.5), RAEAFCQR (m/z = 1037.5), NVWIGLYHR (m/z = 1158.6), EEEEENVWIGLYHR 

(m/z = 1803.9), GWVPFEDGCYGFFPR (m/z = 1847.8), EEEEEENVWIGLYHR (m/z = 

1931.9).  


