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Abstract

The electronic transport coefficients of three Earth-abundant metal oxides Cu2O,

CuO, and NiO were investigated using hybrid density functional theory (DFT). Hybrid

DFT methods combined with local Gaussian-type basis sets enabled band structure

studies on both non-magnetic and magnetic p-type metal oxides without empirical

corrections. Crystal code was used for obtaining the wavefunction and the transport

properties were calculated with two different methodologies to benchmark their accu-

racy: a numerical approach as implemented in the BoltzTraP code and an analytical

approach recently implemented in Crystal17. Both computational methods produce

identical results in good agreement with experimental measurements of the Seebeck

coefficient. The predicted electrical conductivities are overestimated, owing likely to

the used approximation of a constant electronic relaxation time in the calculations, as

explicit electron scattering is neglected and relaxation time is considered only as a free

parameter. The obtained results enable us to critically review and complement the

available theoretical and experimental literature on the studied p-type thermoelectric

metal oxide materials.

Introduction

The modern world has an ever-growing need for energy due to the increasing population and

the constant technological developments. In the case of electricity generation, there is still

room for improvement in the efficiency of energy conversion processes. In particular, the

majority of the electricity we produce comes from combustion processes, and far too much

energy is lost as waste heat in this conversion process. Finding ways to harvest the waste

heat has become a major goal, not only from the economic perspective but also from the

sustainability point of view as well.1 One option is to convert the waste heat to electricity

by utilizing the thermoelectric Seebeck effect. All materials show the Seebeck effect, but

for most compounds, the magnitude of the effect is small or negligible. The thermoelectric
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efficiency is described by the dimensionless figure-of-merit zT, which can be calculated from

three fundamental material parameters as zT = σS2T/κ, where σ, S, and κ are the electrical

conductivity, Seebeck coefficient, and thermal conductivity, respectively.

Naively, one should just pursue materials with high Seebeck coefficient and electrical

conductivity accompanied by a low thermal conductivity. Unfortunately, materials with high

electrical conductivity often conduct heat equally as well, as is the case for metals where

electrons carry also the majority of the heat. Decoupling the conductivities in practice is far

from trivial.2 This can, however, to some degree be achieved by considering κ as a sum of

electronic and phononic thermal conductivity and focusing on semiconductors and insulators.

In such materials, the majority of the heat is carried by phonons. With an increasing band

gap, the electrons carry less and less heat, and with e.g. nanostructuring or other means

of structural manipulation, the flow of phonons can be suppressed without lowering the

electronic conductivity too much.3 With appropriate doping, the electronic properties can

even be enhanced along the suppression of thermal conductivity.

Even if we had a robust method to improve the thermoelectric efficiency, we still need

a suitable starting material to apply them to. Currently, some of the best thermoelectric

materials include, for example, simple tellurides such as Bi2Te3 or PbTe, that have been

improved via various degrees of doping to have zT values high enough for applications.4–6

These examples are unsuitable for mass production, however, owing to the toxicity of lead

and the scarcity of tellurium. Increasing amount of effort has gone to finding well performing

thermoelectric materials containing only non-toxic and abundant elements.7 This has lead

to shifting focus towards different compound groups such as sulfides, e.g. CuS, as well as

oxides, e.g. ZnO, Cu2O, and SnO.8–14

In stoichiometric bulk form, transition metal oxides have inherently too low zT values for

any commercial use. Using the previously mentioned techniques, the thermoelectric perfor-

mance of oxide materials has slowly increased over the years. The first major improvement

in n-type materials was seen in the work of Ohtaki et al., where ZnO was doped with 2%
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of Al and a zT of 0.30 at 1000 K was measured, a value much higher than for any other

contemporary oxide material.15 This was later on improved further by doping it also with 2%

gallium, increasing zT to 0.47 at 1000 K. Other means of thermoelectric engineering of zinc

oxide include decreasing thermal conductivity by creating an inorganic-organic superlattice,

which increases phonon scattering.16–18

Another early highlight was the discovery of NaCo2O4 as a possible p-type thermoelectric

material, which sparked a lot of interest in layered structures.19,20 Numerous other cobalt

oxides were studied soon after, but a major breakthrough for such oxides is yet to be seen.

Layered structures are in general an attractive group of compounds, as they provide a con-

venient platform for nanostructuring through intercalation, and different stoichiometries can

be rather easily explored by altering the synthesis conditions.21,22

As with many other fields of chemistry, computational methods are nowadays a key ele-

ment in design and discovery of thermoelectric materials.23,24 Along with providing a ratio-

nale to the outstanding performance of some material groups, the possibility to find trends

and engineer the band structure before even synthesizing the materials can significantly

speed up the process of finding suitable compositions for wider use.25,26 All three parameters

needed to evaluate the zT of a material can be calculated with quantum chemical methods to

a fairly accurate degree. Seebeck coefficient can be obtained rather straightforwardly within

the rigid band and constant electron relaxation-time (RT) approximations. With the same

approximations, the electrical conductivity and the electronic part of the thermal conduc-

tivity can be obtained with respect to the relaxation time, which must be either set as an

empirical parameter or obtained from more elaborate first-principles calculations (vide infra).

The minimal input required for these calculations is only the band structure with a dense

k -mesh in the reciprocal space, a rather trivial effort with modern computational capacity.

The lattice thermal conductivity can also be obtained from first-principles calculations by

means of lattice dynamics and Boltzmann transport theory.27

In this paper, we apply hybrid density functional methods to investigate the thermoelec-
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tric properties of three p-type semiconductor oxides composed of Earth-abundant elements:

Cu2O, CuO, and NiO (Figure 1). We will first recap the main theoretical and computational

aspects, then discuss the structural details and the band structures of the materials, followed

by analysis of transport properties. We solve the transport coefficients of the materials both

numerically using BoltzTraP and analytically using a novel method implemented in Crys-

tal17 by some of the present authors.28,29 This allows us to provide a thorough comparison

of the two computational strategies for both non-magnetic (Cu2O) and magnetic (CuO and

NiO) materials.

Figure 1: Unit cells and magnetic structures of the studied materials. Top left: Crystal
structure of Cu2O. Brown, Cu; Red, O. Top right: Crystal structure of NiO. Colored planes
mark the adjacent [111] planes where the nickel atoms have different spins. Green, Ni; Red,
O. Bottom left: Crystal structure of CuO. Brown, Cu; Red, O. Bottom right: Magnetic
structure of CuO. Brown, Cu spin up; Silver, Cu spin down; Red, O.

General theory and methodology

Calculation of the transport coefficients

Boltzmann theory of transport has been covered in many textbooks, e.g. by Ziman.30 Here

we summarize only some fundamental aspects required to follow the discussion of the results

obtained from BoltzTraP28 and Crystal17.29 The definitions below are given using atomic

units.
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In its simplified semiclassical form without a magnetic field, Boltzmann transport equa-

tion describes the electrical current in a material that is subjected to an electric field Eb and

a thermal gradient ∇b as

ja = σabEb + νab∇bT + ... . (1)

Prefactors of the electric field and thermal gradient are the conductivity tensors, that can be

obtained by integrating the conductivity distributions, written with tensors of Eq. 7 below

as

σqr(T ;µ) =

∫
Ξqr(ε)

[
−∂fµ(T ; ε)

∂ε

]
dε, (2)

νqr(T ;µ) =
1

T

∫
Ξqr(ε)

[
−∂fµ(T ; ε)

∂ε

]
(ε− µ)dε, (3)

κ0qr(T ;µ) =
1

T

∫
Ξqr(ε)

[
−∂fµ(T ; ε)

∂ε

]
(ε− µ)2dε, (4)

where κ0qr(T ;µ) is the electronic contribution to the thermal conductivity. Using the trans-

port tensors, the Seebeck coefficient can be written as

Sab = Ea(∇bT )−1 = (σ−1)qaνqb. (5)

The transport distribution function Ξqr(ε) is defined for band index i and reciprocal space

vector k as

Ξqr(i,k) = τi,kvq(i,k)vr(i,k), (6)

where vq(i,k) and vr(i,k) are the group velocities and τi,k is the electronic relaxation time.

For practical calculations, it is easier to define the energy projected tensor

Ξqr(ε) =
1

N

∑
i,k

σqr(i,k)δ(ε− εi,k), (7)
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where N is the number of k-points used in sampling the reciprocal space. In Eq. 7 δ(x)

is Dirac’s delta function or – more commonly – an approximation to it that involves some

broadening (e.g. Gaussian broadening).

It is clear from the above that the most challenging computational task, from an ab initio

perspective, is the determination of the band velocities

vi,q(k) =
∂εi,k
∂kq

(8)

where kq is the component of the k vector along the cartesian direction q. Such derivative

can be performed either analytically or numerically. In the BoltzTraP program28 the bands

are interpolated based on symmetry adapted planewaves that are, then, used to estimate the

derivative in Eq. 8. In Crystal17 the locality of the atom-centered basis functions adopted

is exploited allowing for the evaluation of such derivatives in a simple and straightforward

way.29,31 A similar approach, but based on the localization of the wavefunction, is adopted

in the BoltzWann code32 that was not used in this work.

The tensors in Eqs. 2 – 4 can be cast as a function of carrier concentration, rather than

chemical potential, which allows an easier comparison with the experimental data. This is

achieved through the calculation of the temperature-dependent number of carriers Nµ,T :

Nµ,T =
n

Nk

∑
k

∑
i

1

exp
(
εi(k)−µ
kBT

)
+ 1

(9)

the Fermi-Dirac distribution has been used, n is the number of electrons per state and Nk

is the number of k-points in the irreducible Brillouin zone. The carrier concentration ρ(µ)

is obtained for a given temperature T as:

ρ(µ) =
Nµ

V
(10)

where V is the unit cell volume.
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As mentioned in the Introduction, calculation of the various thermoelectric properties is

straightforward within the RT approximation. It makes the critical assumption that τi,k is

independent of the band index i and the k-vector direction, although it is obviously not.

This was shown also by some recent, more accurate calculations.33 Computing the electronic

relaxation times ab initio is a formidable task as it requires explicit information on the

electron-phonon (e-ph) scattering. Quite some effort has been put to developing techniques

that make e-ph interactions computationally tractable.34,35 When calculating the e-ph matrix

elements, the convergence with respect to q-points in the Brillouin zone is extremely slow,

and the sheer number of needed calculations still hinders the more complete solution of

becoming standard procedure, especially for high-throughput screening purposes.

Computational details

All DFT calculations were performed with Crystal14 and Crystal17 program pack-

ages.36,37 All presented results were obtained using the hybrid PBE0 functional in conjunc-

tion with all-electron, triple-ζ-valence + polarization level Gaussian-type basis sets based on

Karlsruhe def2 basis sets (detailed basis set listings are provided in the Supporting Infor-

mation).38–40 For all structures, the convergence with respect to k -points in the reciprocal

space was checked. The used meshes were 8 × 8 × 8 for Cu2O and NiO, and 4 × 8 × 4 for

CuO. The TOLINTEG parameters, controlling the tolerance factors for the Coulomb and

exchange integrals, were set to 8, 8, 8, 8 and 16. We used the default integration grid (XL-

GRID) in all Crystal calculations for the density functional part, along with the default

total energy convergence threshold in the geometry optimization (TOLDEE). The optimized

geometries together with the ground state spin configurations are provided in the Support-

ing Information. Wavefunctions from Crystal14 were used to create inputs for BoltzTraP

calculations.28 We raised TOLDEE to 10−9 a.u. to calculate a more accurate wavefunction

at the optimized geometry for BoltzTraP. The same energy convergence criterion value was

used when the structures were checked for being true local minima by calculating the vibra-
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tional frequencies at the Γ-point. For BoltzTrap, the wavefunctions were recalculated at a

much denser k -mesh than what was used in the optimizations, 48 × 48 × 48 for Cu2O and

NiO, and 30 × 40 × 30 for CuO. In the BoltzTraP calculations,the number of interpolated

lattice points per k-point (LPFAC) was set to five.

Results and discussion

Geometries and electronic properties

The studied oxides have very different structures. Cu2O crystallizes in the cubic Pn 3̄m space

group. One unit cell, shown in Figure 1, consists of two formula units. All oxygen atoms

are surrounded by copper atoms in a perfect tetrahedral coordination, the Cu atoms being

linearly coordinated to two oxygen atoms. Unlike NiO and CuO, in Cu2O the metal has

a filled d -shell and the material is thus non-magnetic. The initial lattice parameter a was

taken from a synchrotron radiation study by Kirfel and Eichhorn.41

The structure of CuO is a bit more complicated. It crystallizes in the monoclinic Cc

space group and the structure consists of zig-zagging CuO4 square planes, where the oxygen

atoms form distorted tetrahedra with copper, as shown in Figure 1. Cu(II) has an unpaired

electron and CuO has an antiferromagnetic ground state below the Néel temperature of 230

K.42 For the magnetic structure, a supercell with new lattice vectors a’ = a + c, b’ = b and

c’ = -a + c was created and spins were assigned similar to a previous computational study

by Rödl et al., shown in Figure 1.43 Initial lattice parameters were taken from an x-ray study

by Åsbrink and Waskowska.44

NiO, on the other hand, has a simple face-centered cubic crystal structure (Fm 3̄m), where

all atoms are surrounded by the other species in perfect octahedral coordination. However,

due to the d9 electron configuration, NiO has a slightly more complex antiferromagnetic

ground state in temperatures below the Néel temperature (525 K).45 In the experimentally

found AF2 structure, the nickel atoms with opposite spin are arranged in adjacent [111]
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sheets (Figure 1). In the calculations this was accomplished by constructing a supercell from

the primitive lattice vectors using new lattice parameters a’ = b + c, b’ = a + c and c’ =

a + b. The initial lattice parameter a for the FCC unit cell was taken from an X-ray study

by Sasaki et al.46

Geometry optimizations at DFT-PBE0/TZVP level of theory resulted only in minor

changes in the lattice parameters and atomic positions compared to the initial experimental

values. Table 1 shows all the optimized lattice parameters and the relative change com-

pared to the experimental structure is shown in parentheses (lattice parameters and atom

positions in Crystal input format are found in the Supporting Information). All lattice

vectors elongated slightly during the optimization. Using the correct magnetic structures is

paramount in the calculations, as the ground state is predicted to be metallic for both NiO

and CuO without the correct antiferromagnetic spin configurations. Magnetic moments of

the metal atoms given by PBE0 agree well with experimental measurements. The calculated

spin-only magnetic moment of the Ni atoms is 1.67 µB, compared to the experimental full

magnetic moment of 1.90 µB.47 It is known from experiment and calculations that orbital

momentum plays some role in the full magnetization density of NiO, thus improving the

comparison between our results and experiments as we do not consider spin-orbit coupling

in the calculations.48,49 For CuO our calculations produce a spin moment of 0.64 µB for the

Cu atoms, while the experimental values for the atomic magnetic moments are rounded to

0.68 µB.50,51

Figure 2 shows the band structures and DOS plots for all three systems calculated at

the PBE0/TZVP level of theory. For Cu2O, the band gap is in good agreement with earlier

experimental results, considering that hybrid functionals have a tendency to overestimate the

band gap of insulating and semiconducting materials. The calculated gap is 2.39 eV while

the experiments give results varying from 2.0 to 2.2 eV, most often cited value being 2.17

eV.52,53 The use of hybrid functionals is rationalized with the more accurate description of the

electronic structure it provides. In fact, the presence of a fraction of Hartree–Fock like exact
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Table 1: Optimized lattice parameters of Cu2O, NiO and CuO at the
PBE0/TZVP level of theory. Difference to the experimental values is shown
in parentheses.a

Species a b c β
Cu2O 4.32 (+1.2 %) - - -
NiO 4.19 (+0.2 %) - - -
CuO 4.73 (+1.1 %) 3.43 (+0.3 % ) 5.15 (+0.4 %) 99.7 (+0.3 %)

a Geometry optimizations for NiO and CuO were done using supercells described in the
text to incorporate the correct spin configuration. The tabulated NiO and CuO cell pa-
rameters are obtained by transforming the supercell back to the original crystallographic
cell.

exchange acts in reducing, and eventually neutralizing, the self-interaction errors inherent

in the DFT approach. This is particularly important in magnetic systems since it favours

the spatial localization of the unpaired electrons. Not only is the agreement of the band

gap compared to experiments worse using a GGA functional, say PBE, it has been shown

to heavily affect other predicted properties as well, such as lattice thermal conductivity.54

At first glance, the band gap for CuO seems to be too large open when compared to the

often cited values for the experimental band gap. The PBE0/TZVP calculation results in a

gap of 3.8 eV, while reports for the experimental gap have varied from 1.0 to 1.9 eV and other

theoretical predictions go from metallic to 4.1 eV depending on the used methods.43,55–60 In

this view, the GW study by Rödl et al. is of particular interest where the band gap increased,

not only with the fraction of exact exchange used but also with the level of the used GW

approximation up to 4.1 eV with the self-consistent GnWn, where both the Green’s function

G and the screened Coulomb interaction W are calculated again with the new eigenvalues

at each self-consistency step n until convergence is reached. When the valence bands for

Cu2O and CuO are compared (Figure 2), there is a notable difference in the relative amount

of oxygen states. Cu2O has only some very minor contributions from O states until -5 eV

from the valence band maximum, whereas for CuO the states until around -1.5 eV below

the valence band maximum are in fact dominated by the O states. As also noted in a recent

study, it is consistent with the higher oxidation state lowering the energy of the d -states due
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to reduced Coulomb repulsion.61

For NiO, the experimental band gap lies between 4.0 and 4.3 eV, while in the calculations

done here it is as large as 5.3 eV.62,63 This is in line with the previous results by Moreira et

al., where they showed that, again, increasing the amount of exact exchange in the density

functional approximation widens the band gap.64 From the atom-projected DOS, it can be

seen that the electronic structure of both Cu(II) and Ni(II) oxides are somewhat similar in

the sense that the topmost valence bands consist equally of metal and oxygen states and

bands lower in energy have more contribution from the metal.

Transport coefficients of Cu2O, CuO and NiO

We investigated the Seebeck coefficient S, electrical conductivity σ calculated with the elec-

tronic relaxation time as a free parameter (σ/τi,k), and the power factor S2σ with respect to

carrier concentration ρ at a temperature of 600 K for both p-type and n-type carriers. The

temperature in the plots shown below was chosen as to represent the performance of some

high-T heat-harvesting application at a possible operating temperature. In addition, calcu-

lations were done also at several other temperatures corresponding to experiments in order

to make reasonable comparisons. We carried out the transport coefficient calculations nu-

merically with BoltzTraP and analytically with Crystal17 to compare the results of these

two computational approaches. All the calculated transport coefficients agree perfectly with

each other, to the extent that the results are not actually distinguishable from each other.

Since all three oxides show similar behavior, Crystal17/BoltzTraP comparisons are shown

only for Cu2O, while the corresponding comparisons for CuO and NiO are shown only in

the Supporting Information. The plots for CuO and NiO in the main text show the results

from analytical Crystal17 calculations only.
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Figure 2: Band structures and atom-projected density of states for the studied materials at
the PBE0/TZVP level of theory. For CuO and NiO, the left side of the DOS plot shows
the spin down states and right side shows the spin up states. Dashed line marks the valence
band maximum, which is set to zero energy. The band paths in the first Brillouin zone have
been taken from Ref.65.
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Figure 3: Transport coefficients for Cu2O as a function of carrier concentration ρ. Top:
Electrical conductivity calculated with the electronic relaxation time as a free parameter.
Middle: Seebeck coefficient. Bottom: Power factor S2σ.

Transport coefficients of Cu2O

The first measurements of the transport coefficients of Cu2O date back more than 100 years.66

Since then they have been re-evaluated through the years and Seebeck coefficient values have

reached as high as 1700 µV/K, but the average values settle around 800 µV/K, depending

on the measurement temperature and crystal growth characteristics.67–69. Our predictions

(Figure 3) compare well with the experimental results, although direct comparisons of all

properties are difficult since most single crystal studies do not report both hole concentration

and Seebeck coefficients. In the single crystal study of Young and Schwartz, they estimated

the hole concentration at 500 K to be between 8.5×1016 and 2.5 ×1017 cm−3, and the

measured Seebeck coefficient was around 1050 µV/K.70 Our calculations using T = 500 K

predict S = 970 µV/K at the lower estimated hole concentration and S = 870 µV/K for the

higher concentration.

When we compare our predictions against the more recent thin film study by Hartung
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et al., our values differ considerably. The experimental Seebeck coefficients are much lower

than our theoretical predictions. Our calculations with T = 300 K at hole concentration

of 3 × 1015 cm−3 predict a thermopower of 1200 µV/K whereas their measurements reach

around 900 µV/K.71 They do mention in the paper, however, that their values on the hole

concentration should be taken with a grain of salt as the assumption of diffusive transport

might not hold. Additionally, the phase purity of the thin film samples will surely not

match the perfect Cu2O crystal we have in our calculations. Another thin film study by

Figueira et al. reaches Seebeck values close to 1000 µV/K in room temperature and their

Hall measurements indicate a carrier concentration of 4× 1016 cm−3.72 These results match

our calculations almost perfectly, at 300 K our predicted Seebeck with the same concentration

is 970 µV/K.

The earlier Cu2O computational study by Chen et al. reports a Seebeck coefficient of

slightly over 500 µV/K at a hole concentration of 1 × 1019 cm−3, while our calculations

give 580 µV/K at 600 K. One major difference is that they used the GGA-PBE functional

whereas we have used the hybrid PBE0 functional. All other parameters for the calculations

are the same or do not change the results, e.g. we also did the calculations with the same

(less dense) k-mesh as Chen et al. and found no difference. As the only input for the

transport coefficient calculations is the DFT band energies, the differences in the PBE and

PBE0 band energies are clearly reflected in the thermopower.

Our calculated p-type electrical conductivities are half of that what Chen et al. obtained

using the PBE-GGA functional. At 300 K their electrical conductivity with respect to

electronic relaxation time at a carrier concentration of 1.5 × 1021 cm−3 is 4 × 1019 (Ωms)−1

and we have 2 × 1019 (Ωms)−1. Similarly, at 500 K they obtained σ/τi,k of roughly 5.5

× 1019 (Ωms)−1 where we have 2.7 × 1019 (Ωms)−1. The usual conductivity values in

experiments span a few orders of magnitude roughly from 1 to 0.01 (Ωm)−1, which are

clearly smaller than the conductivities shown in Figure 3 if we set the electronic relaxation

time as a parameter.68,70–74 If we take the same value for ρ as in the results of Figueira
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et al., considerably lower than what the calculations suggest for optimized power factor,

our electrical conductivity with τi,k as a free parameter is 6.0 × 1014 (Ωms)−1. Setting the

electronic relaxation time to a typical value of 1 fs, we have an electrical conductivity of 0.6

(Ωm)−1, whereas Figueira et al. measured 3 (Ωm)−1 at room temperature.

Chen et al. report a maximum power factor 350 × 1015 µW/msK2 at a temperature of

500 K while our value is 440 × 1015 µW/msK2 with the electrical relaxation time τi,k as a free

parameter. Even though our calculated electrical conductivities are halved when compared

to the PBE-GGA study, the larger Seebeck coefficient plays a bigger role at smaller values.

As the thermoelectric performance is directly proportional to the power factor, based on

these results Cu2O seems even more applicable than what Chen et al. had estimated. It is

also worth noticing that in their study the maximum of the power factor shifts towards higher

carrier concentrations with increasing temperature. As the Seebeck coefficient increases with

temperature, the larger relative decrease of S resulting from higher carrier concentrations,

and the decline of the power factor, happens later. In reality, the relationship is not so

simple, however, as higher carrier concentrations also affect the mobility and scattering times

negatively, so the maximum is most likely found at lower ρ than what constant relaxation

time approach predicts.

Transport coefficients of CuO

Experimental results for the transport coefficients of stoichiometric CuO are rather scarce,

most likely owing to the smaller stability window of CuO compared to Cu2O at elevated

temperatures. In the study of Jeong and Choi, the pressed CuO pellets had a thermopower

between 500 and 600 µV/K at the temperature of 600 K.75 Our results, shown in Figure

4, would match reasonably well with their results if their carrier concentration would be

between 1 to 3 × 1019 cm−3. Jeong and Choi estimated ρ = 1 × 1020 cm−3 based on the

atomic density of copper in their CuO samples. Assuming that the electronic relaxation time

is in the order of femtoseconds, our single-crystal calculations within the RT approximation

16



would result in a clearly larger electrical conductivity than Jeong and Choi obtained for the

CuO pellets. We obtain σ = 1.5 × 103 (Ω m)−1 with τi,k = 1 fs, while the CuO pellets had

σ = 0.5 (Ω m)−1.

Hartung et al. report values for the Seebeck coefficient and electrical conductivity similar

to Jeong and Choi, S = 550 µV/K and σ = 0.3 (Ω m)−1, but their measurements indicate

more than two orders of magnitude lower hole concentrations, roughly 2 × 1017 cm−3.71 This

would bring the conductivities better in line with our RT approximation results as we obtain

for this hole concentration σ = 4.1 (Ω m)−1 using τi,k = 1 fs, although our Seebeck coefficient

would then be rather heavily overestimated with S = 860 µV/K at the temperature of 300

K. With the same ρ as in the Jeong and Choi’s single crystal study Hartung et al. have a

Seebeck coefficient of 300 µV/K when we have 330 µV/K, and higher concentrations up to

1 × 1021 cm−3 bring S down to around 200 µV/K for the thin film study and 135 µV/K for

the theoretical results, both at a temperature of 300 K.

The power factor of CuO thin films in the measurements of Hartung et al. reaches

slightly over 2 µW/mK2 at room temperature while in the study of Figueira et al. the

best performing CuO films have a power factor of only 0.5 µW/mK2. In comparison, the

theoretical maximum at 300 K for single crystal CuO (with τi,k = 1 fs) is over 300 µW/mK2

at a carrier concentration of 6 × 1020 cm−3. Here the large difference probably arises both

from the single-crystal vs. polycrystalline comparison and the possible overestimations in

our σ/τi,k values.

Transport coefficients of NiO

As a textbook example of a strongly-correlated d-metal oxide, electrical properties of nickel(II)

oxide have been studied extensively over the years. The theoretical results around the power

factor optimum at the temperature of 600 K are plotted in Figure 5. The experimental See-

beck coefficient for single crystal NiO with near-perfect stoichiometry is roughly 900 µV/K

at the temperature of 600 K, as recommended by Keem and Honig in their comprehensive
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Figure 4: Transport coefficients for CuO as a function of carrier concentration ρ. Top:
Electrical conductivity calculated with respect to electronic relaxation time. Middle: Seebeck
coefficient. Bottom: Power factor S2σ with respect electronic relaxation time.

review.76 Such high thermopower would indicate a rather low hole concentration, and low

values seem reasonable, considering how the carrier concentration in naturally occurring

semiconductors is mostly due to defects and deviation from perfect stoichiometry. Natu-

rally, the electrical conductivity varies strongly between samples of different quality. At the

temperature of 600 K, Keem and Honig cite values for σ ranging over six orders of magnitude

from 5 × 10−4 to 25 (Ω m)−1, not taking into account polycrystalline samples.

For a 900 µV/K thermopower, our calculations predict a carrier concentration of roughly

9 × 1016 cm−3 and σ/τi,k of 2 × 1015 (Ω m s )−1. It is rather safe to estimate that when the

Seebeck coefficient is as high as 900 µV/K, the electrical conductivity is more likely to be

found near the lower end of the experimental results. Only few previous studies mentioned in

Keem’s review give estimates of the hole concentration. Parravano calculated ρ = 1 × 1021

cm−3 at 600 K based on the measured Fermi level and the number of energy levels from the

atomic density of nickel in NiO.77 The study reports a thermopower of 450 µV/K while our

calculations predict only 130 µV/K at such high values of ρ. It is a similar situation to CuO,
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where carrier concentration seems to be overestimated by the total level density calculation.

In another study, Nachman et al. measured a thermopower of 600 µV/K at slightly over 600

K.78 They determined a hole concentration of 2.18 × 10 18 cm−3 based on the jodometric

titration of Ni(III) in the sample closest to perfect stoichiometry at a temperature of 300

K, which did not change when performed at 340 K. The same sample showed an electrical

conductivity of roughly 5 (Ω m)−1 at 600 K and the calculations predict σ/τi,k = 100 × 1015

(Ω m s)−1, a twentyfold overestimation with the example value τi,k = 1 fs. It is less than in

the case of CuO, but still rather large.

The power factor of pure NiO is rarely the focus of experimental studies as it is far

too low for practical applications, owing to the very low electrical conductivity for a TE

material. Shin et al. measured a power factor of 0.1 µW/mK2 at a temperature of 650

K.79 The measured sample had a thermopower of 450 µV/K which according to calculations

would indicate a carrier concentration of 2 × 1019 cm−3. The corresponding σ/τi,k is 4.3 ×

1017 (Ω m s)−1, and if we use the example value τi,k = 1 fs, the resulting power factor is 190

µW/mK2, an overestimation like in the case of CuO.

Conclusions

We have performed hybrid density functional theory calculations on three Earth-abundant

transition metal oxide materials and assessed their thermoelectric transport coefficients using

a BTE methodology based on analytical derivatives of electronic bands implemented in

Crystal17. The results obtained are in excellent agreement with those obtained by the

BoltzTrap code starting from the same Crystal wavefunction.

The calculated Seebeck coefficients agree well with the experimental measurements, but

the electrical conductivity is clearly overestimated for CuO and NiO. The poorer predictive

performance for σ is to be expected as constant relaxation time approximation does not affect

the thermopower calculation as strongly as it does the conductivity calculations. Because
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the relaxation times could not be obtained from first-principles calculations, the predicted

conductivities can only be used as ballpark estimates rather than absolute values. There

is a clear need for high-efficiency and high-accuracy methods of predicting the electronic

relaxation times of transition metal oxides in conjunction with hybrid DFT methods.

From an electronic point of view Cu2O, CuO, and NiO show very similar theoretical

maximum TE performance within the constant relaxation approximation. In improving the

electrical conductivities of NiO and CuO, suitable doping plays a key role. For example, the

power factor of NiO at 650 K has been improved three orders of magnitude by 2.4% addi-

tion of lithium alone, and there is still room for improvement.79 Hence, the thermoelectric

properties of these relatively simple p-type oxides composed of Earth-abundant elements are

encouraging their further enhancement by doping and nanostructuring.
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Additional computational details, Crystal/BoltzTraP comparison of transport coefficients

for NiO and CuO, optimized geometries and ground state spin configurations of the studied
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