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ABSTRACT

Aims. We aim to study the formation and evolution of solar spicules using numerical simulations of a vertical velocity pulse that is
launched from the upper chromosphere.
Methods. With the use of the PLUTO code, we numerically solved adiabatic and non-adiabatic magnetohydrodynamic (MHD) equa-
tions in 2D cylindrical geometry. We followed the evolution of spicules triggered by pulses that are launched in a vertical velocity
component from the upper chromosphere. Then we compared the results obtained with and without non-adiabatic terms in the MHD
equations.
Results. Our numerical results reveal that the velocity pulse is steepened into a shock that propagates upward into the corona.
The chromospheric cold and dense plasma follows the shock and rises into the corona with the mean speed of 20–25 km s−1. The
nonlinear wake behind the pulse in the stratified atmosphere leads to quasi-periodic rebound shocks, which lead to quasi-periodic
rising of chromospheric plasma into the corona with a period close to the acoustic cut-off period of the chromosphere. We found that
the effect of non-adiabatic terms on spicule evolution is minor; the general properties of spicules such as their heights and rising-time
remain slightly affected by these terms.
Conclusions. In the framework of the axisymmetric model we devised, we show that the solar spicules can be triggered by the vertical
velocity pulses, and thermal conduction and radiative cooling terms do not exert any significant influence on the dynamics of these
spicules.
Key words. Sun: activity – magnetohydrodynamics (MHD) – methods: numerical – Sun: corona – Sun: transition region

1. Introduction

Spicules are thin, cool, and dense structures that are observed
in the solar limb (Beckers 1968, 1972; Suematsu 1998; Sterling
2000; Zaqarashvili & Erdélyi 2009). They are seen to emerge
from the chromospheric background at an altitude of about
2000 km above the solar surface where they reveal a speed of
25 km s−1, reach a maximum level, and then either disappear or
sink down to the chromosphere. A typical lifetime of spicules is
within the range of 5–15 min with an average value of ∼7 min
(Pasachoff et al. 2009). Spicules seem to consist of double-
thread structures (Tanaka 1974; Dara et al. 1998; Suematsu et al.
2008), and they reveal bidirectional flows (Tsiropoula et al.
1994; Tziotziou et al. 2003, 2004; Pasachoff et al. 2009). Typ-
ical electron temperature and electron density in spicules are
(15–17) × 103 K and 2 × 1011–3.5 × 1010 cm −3 at altitudes
of 4–10 Mm above the solar surface (Beckers 1968) with a
diameter estimated as 660 ± 200 km (Pasachoff et al. 2009).
As a result, spicules are much cooler and denser than ambi-
ent coronal plasma. High-resolution observations by the Solar
Optical Telescope onboard Hinode have revealed another type
of spicules with many features different from those of classi-
cal limb spicules, and they are referred to as type II spicules
(De Pontieu et al. 2007). The type II spicules are distinguished
by (a) smaller diameters (≤200 km) in the Ca II H line and a

significantly shorter height of 4 Mm; (b) a lifetime of 10–150 s;
(c) the evolution, which shows an upflow and then disappears;
and finally by (d) much higher speeds of 50–100 km s−1 (e.g.,
De Pontieu et al. 2007, 2009; Rouppe van der Voort et al. 2009;
Kuridze et al. 2015). Macrospicules were recently discussed by
Nóbrega-Siverio et al. (2016), who considered whether the rel-
evance of the entropy sources in the surges, such as the op-
tically thin losses, can be applied to similar phenomena as
macrospicules.

In spite of various theoretical models that have been brought
forward to explain the spicule ejection in the lower solar at-
mosphere, many recent numerical methods have been devel-
oped to simulate the solar spicules or macrospicules with an
energy input at their base in the photosphere such as a gas
pressure pulse or an Alfvén wave that steepens into a shock
wave (Sterling 2000, and references therein). Hansteen et al.
(2006) and De Pontieu et al. (2007) simulated the formation of
dynamic fibrils that are due to slow magneto-acoustic shocks
through two-dimensional (2D) numerical simulations. They sug-
gested that these shocks are formed when acoustic waves gen-
erated by convective flows and global p-modes in the lower
lying photosphere leak upward into the magnetized chromo-
sphere. Heggland et al. (2007) used the initial periodic pis-
ton to drive the upward propagating shocks in 1D simulation,
and Martinez-Sykora et al. (2009) considered the emergence of
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new magnetic flux, but the drivers of spicules originate from
collapsing granules, energy release in the photosphere, or in
the lower chromosphere. However, these simulations were un-
able to mimic the double structures and bidirectional flows in
spicules. On the other hand, Murawski & Zaqarashvili (2010)
performed 2D numerical simulations of magnetohydrodynamic
(MHD) equations and showed that the 2D rebound shock model
of Hollweg (1982) may explain both the double structures and
bidirectional flows. They used a single initial velocity pulse,
which led to the formation of consecutive shocks as a result of
the nonlinear wake in the stratified atmosphere. However, they
considered a simple model of atmospheric temperature that was
approximated by a smoothed step function for the temperature
profile.

Understanding exact drivers of spicules requires further
investigation, and more than one mechanism may trigger their
evolution depending on the local plasma and magnetic field con-
ditions. The goal of this paper is to contribute to the above-
mentioned studies by performing simulations of the generation
and evolution of the spicules in the solar atmosphere and com-
pare our results for adiabatic and non-adiabatic MHD equa-
tions. The method we chose to trigger a spicule is a localized
vertical velocity pulse launched from the upper chromosphere.
This method is similar to the calculations performed by Shibata
(1982), Sterling et al. (1993), Murawski & Zaqarashvili (2010),
and Guerreiro et al. (2013). This approach differs from the
models that attempt to model spicules with a disturbance in
the photosphere (e.g., Suematsu et al. 1982; Hollweg 1982).
Guerreiro et al. (2013) studied the mid-chromospheric energy
inputs of earlier simulations by adding additional physics to the
radiative loss term and including hydrogen ionization and re-
combination. They concluded that it would be difficult to pro-
duce spicules through those previously suggested mechanisms
(specifically that of Sterling et al. 1993). Our simulations do not
include the detailed energy losses of Guerrero et al. However,
the energy input is different from that assumed by Guerrero et al.
and Sterling et al., who adopted localized increase in the heating
rate. Since the form of input energy is different, it is not clear
whether the losses Guerrero et al. took into account would have
any effect on the velocity of pulse-driven spicules. This will be
tested in the future studies.

This paper is organized as follows. A numerical model is
presented in Sect. 2, and the corresponding numerical results are
shown in Sect. 3. Our paper is concluded by a summary of the
numerical results in Sect. 4.

2. Physical model of the solar atmosphere

2.1. MHD equations

We consider a gravitationally stratified and magnetically con-
fined solar plasma that is governed by the following set of non-
adiabatic MHD equations:

∂%

∂t
+ ∇ · (%V) = 0, (1)

%
∂V
∂t

+ % (V · ∇) V = −∇p +
1
µ

(∇ × B) × B + %g, (2)

∂p
∂t

+ V · ∇p + (γ − 1)p∇ · V = −(γ − 1)(L + ∇ · q − H), (3)

∂B
∂t

= ∇ × (V × B), ∇ · B = 0, (4)

Fig. 1. Hydrostatic solar atmospheric temperature vs. height y.

where % is the mass density, p the gas pressure, V represents the
plasma velocity, B is the magnetic field, T the temperature, q
the anisotropic thermal conduction flux, L(%,T ) radiatively thin
cooling terms (Mignone et al. 2007), and H(%e,Te) denotes the
external heating therm that balances L and ∇·q at the equilibrium
that is specified in Sect. 2.2. This term depends only on the equi-
librium plasma quantities and therefore it does not vary in time.
The symbol kB denotes the Boltzmann constant, γ = 5/3 is the
adiabatic index, m is the particle mass that is specified by a mean
molecular weight of 0.6, and g = (0,−g, 0) is the gravitational
acceleration. The value of g is equal to 274 m s−2.

2.2. Equilibrium solar atmosphere

In a static solar atmosphere all plasma quantities are time-
invariant, which means that ∂ fe/∂t = 0, where fe denotes a
plasma quantity and the subscript e corresponds to the equilib-
rium. Then, from Eqs. (1)–(4) it follows that for a still (Ve = 0)
medium the Lorentz force must be balanced by the gravity force
and the gas pressure gradient,

1
µ

(∇ × Be) × Be − ∇pe + %eg = 0, (5)

and the heating term must compensate for the radiative losses
and thermal conduction,

H = L(%e,Te) + ∇ · qe. (6)

This model of the solar atmosphere corresponds to a quiet Sun.

2.2.1. Force-free magnetic field of the hydrostatic
atmosphere

A hydrostatic atmosphere corresponds to the force-free ((∇ ×
Be) × Be = 0) magnetic field. We additionally assume a current-
free (∇×Be = 0) magnetic field whose radial Ber, azimuthal Beθ,
and vertical Bey components are given as

Ber(r, y) =
3S r(a − y)

(r2 + (a − y)2)
5
2

,

Beθ(r, y) = 0,

Bey(r, y) =
S (r2 − 2(a − y)2)

(r2 + (a − y)2)
5
2

, (7)
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Fig. 2. Vertical profile of plasma β (left) and sound speed cs (right) at the plasma equilibrium.
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Fig. 3. Magnetic field lines at the plasma equilibrium.

where a and S are free parameters corresponding to the vertical
location of the singularity in the magnetic field and the magnetic
field strength, respectively. We set a = −1 Mm and S in such way
that at the reference point (r = 0, y = yr = 6) Mm the magnitude
of magnetic field Be = 9.5 Gauss. The corresponding magnetic
field lines are displayed in Fig. 3. We note that the magnetic lines
diverge with height and Be is vertical along the symmetry axis,
r = 0 Mm.

For a force-free magnetic field it follows from Eq. (5) that
the gas pressure gradient has to be balanced by the gravity
force,

∇ph = %hg. (8)

The subscript h corresponds to a hydrostatic quantity. With the
use of the ideal gas law and the vertical y-component of Eq. (8),
we express the hydrostatic gas pressure and mass density as

ph(y) = p0 exp
(
−

∫ y

yr

dy′

Λ(y′)

)
, %h(y) =

ph(y)
gΛ(y)

, (9)

where

Λ(y) =
kBTh(yr)

mg
(10)

is the pressure scale height, and p0 denotes the gas pressure at
the reference level, y = yr.

For simplicity reasons we assume that Th varies with height y
only, and it specifies a hydrostatic atmosphere that is determined
by the semi-empirical model of Avrett & Loeser (2008) that is
extrapolated into the solar corona (Fig. 1). In this model, the tem-
perature attains a value of about 7× 103 K at the top of the chro-
mosphere, y ≈ 2.0 Mm. At the transition region, which is located
at y ' 2.1 Mm, Th exhibits an abrupt jump (Fig. 1) and grows to
about 1.0×106 K in the solar corona at y = 10 Mm. Higher up in
the solar corona, the temperature increases very slowly, tending
to its asymptotic value of about 2 MK at y = 40 Mm. The tem-
perature profile uniquely determines the equilibrium mass den-
sity and gas pressure profiles, which decrease with height (not
shown).

We specify the plasma β as the ratio of gas to magnetic
pressures,

β(y) =
pe(y)

B2(y)/2µ
· (11)

The vertical profile of plasma β is illustrated in Fig. 2 (left panel).
We note that for the coronal plasma, the value of plasma β is
lower than 1 within the displayed region. The vertical profile of
the sound speed

cs(y) =

√
γpe(y)
%e(y)

(12)

is displayed in the right panel of Fig. 2. Below the transition
region, cs ≈ 10 km s−1. Higher up cs grows, first fast right above
the transition region, and higher up slowly, reaching a value of
about 100 km s−1 at y ≈ 20 Mm.

2.2.2. Perturbation

Initially, at t = 0 s we perturb the model equilibrium by the
initial pulse in the y-component of velocity, which is expressed
as follows:

Vy(r, y) = AV × exp
(
−

r2 + (y − y0)2

w2

)
, (13)

where y0 is the vertical position of the initial pulse, w is its width,
and AV its amplitude. We set and hold fixed w = 0.25 Mm, while
allowing other parameters to vary. For our studies, the initial
position of y0 varies between 1.5 Mm and 1.75 Mm, and the
amplitude AV varies between 30 km s−1 and 50 km s−1. The de-
tailed studies were performed for the case of AV = 40 km s−1

and y0 = 1.75 Mm. The value of AV may be associated with
reconnection of magnetic field lines.
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Fig. 4. Temporal evolution of log(%(r, y)) at t = 20 s, t = 50 s, t = 110 s, t = 175 s, t = 220 s, t = 300 s (from top left to bottom right), for adiabatic
MHD equations and for the case of AV = 40 km s−1 and y0 = 1.75 Mm. Arrows represent velocity vectors in the r − y plane, [Vr,Vy].

3. Numerical simulations of MHD equations

To solve Eqs. (1)–(3) numerically, we used the PLUTO code
(Mignone et al. 2007, 2012). In our problem, we set the Courant-
Friedrichs-Levy number equal to 0.3 and chose piecewise TVD
linear interpolation in a second-order Runge-Kutta method,
which leads to second-order accuracy in space and time. Ad-
ditionally, we adopted the Harten-Lax-van Leer discontinu-
ities (HLLD) approximate Riemann solver (Miyoshi & Kusano
2005).

Our simulation box in (r, y) was set as (0.0, 5.12) Mm ×
(1.0, 40.0) Mm, where y = 0 denotes the bottom of the photo-
sphere. For our study we used the uniform grid within the re-
gion (0.0 ≤ r ≤ 5.12) Mm × (1.0 ≤ y ≤ 11.24) Mm, which
is covered by 1024 × 2048 grid points. This leads to a resolu-
tion of 5 km in the lower regions of the simulation box. Above
this region, namely within the box (0.0 ≤ r ≤ 5.12) Mm ×
(11.24 ≤ y ≤ 40.0) Mm, we implemented a stretched grid along
the y-direction; this box was divided into 648 cells whose size
grows with y. Such a stretched grid plays the role of a sponge as

it absorbs incoming signal and allows us to avoid significant re-
flections from upper boundary. We imposed open boundary con-
ditions at r = 5 Mm, but at the bottom and top, we fixed all
plasma quantities to their equilibrium values. The left boundary
(r = 0) was set as axisymmetric.

The heating source term H in Eq. (3) was implemented as
follows. The code computed the residuum R0 using the initial
condition and then it subtracted R0 also at later times during the
update over time step ∆t as

Un+1 = Un + ∆t(Rn − R0), (14)

where Un is a plasma vector state at time t = n∆t, n = 1, 2, ...
This automatically mimics the heating term without any need to
explicitly write it.

To fully understand the influence of non-adiabatic effects on
simulated spicules, we performed first simulations of the adia-
batic case, that is, without the thermal conduction and cooling
terms. Figure 4 shows the spatial profiles of logarithm of %(r, y)
at six instants of time. We note that the system is axisymmet-
ric along r = 0 Mm. The initial pulse in Vy is launched from
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Fig. 5. Temporal evolution of %(r = 0, y) (top) and Vy(r = 0, y) (bottom) for the case of adiabatic (left) and non-adiabatic (right) MHD equations
and for AV = 40 km s−1 and y0 = 1.75 Mm.

r = 0 Mm, y = 1.75 Mm, which is located about 0.35 Mm be-
low the transition region. The amplitude of the initial pulse is
AV = 40 km s−1. The shock front that results from the initially
launched pulse arrives at the transition region and triggers the
plasma jet (top panels), which reaches its maximum height of
≈4.3 Mm (top right panel). At later moments in time, the chro-
mospheric plasma injected into the corona begins to fall toward
the transition region (bottom left panel). The falling plasma then
triggers the second pulse (bottom middle panel), which results
in the second spicule (bottom right panel).

Figure 5 shows the temporal evolution of %(r = 0, y) (top
panels) and Vy(r = 0, y) (bottom panels) for adiabatic (left
panels) and non-adiabatic (right panels) cases. The rise time
of the spicule to its maximum height in the adiabatic case is
≈110 s, which is shorter by about 15 s than in the non-adiabatic
case (≈125 s), and the chromospheric plasma reaches a height
of ≈4.3 Mm. This value is lower than in non-adiabatic case
(≈4.7 Mm). In the adiabatic case we spot three waves (Fig. 5,
top left panel): the leading wave is a shock wave, which travels
with velocity ≈170 km s−1; this shock is followed by the contact
wave, and the rarefaction wave. We note that all plasma quanti-
ties are continuous across a contact wave; the only exception is
the mass density, which is discontinuous. As a result, all three
waves are seen on the mass density profiles, while Vy(r = 0, y)
profiles reveals only two of these waves. As in the non-adiabatic
case, in later moments, the system becomes thermally unstable.
The right panels show the initial phase of the system evolution.
The cross-section of Fig. 5 for the adiabatic case for a fixed value

Fig. 6. Temporal evolution of %(r = 0, y = 5) Mm for the case of AV =
40 km s−1 and y0 = 1.75 Mm.

of y = 3.5 Mm is presented in Fig. 6. The corresponding three
waves (shock, contact, and rarefaction) are represented by steep
gradients at t ≈ 30 s, t ≈ 55 s, and t ≈ 75 s. As the forma-
tion mechanism of the spicule is a shock wave, we assume that
it is the crest-shock-type jet (Shibata 1982). The mass density at
the top of the spicule is ∼102 higher than in the ambient coronal
plasma (Fig. 6, t ≈ 75 s), and it matches the predicted value for
the crest-shock-type jet.
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Fig. 7. Radial profile of %(r, y = 3.1 Mm) at t = 35 s (solid line), t = 80 s
(dashed line), and t = 155 s (dotted line) in the case of adiabatic MHD
equations. The case of AV = 40 km s−1 and y0 = 1.75 Mm.

Fig. 8. Maximum height of spicule ymax vs. amplitude of the initial pulse
AV for y0 = 1.75 Mm. The case of adiabatic (+) and non-adiabatic (+×)
MHD equations.

Figure 7 shows the effect caused by the rarefaction wave. The
horizontal plane is located at y = 3.5 Mm. The plasma inside the
spicule-like structure becomes rarefied. The time at which this
rarefaction occurs is clearly shown: the dense plasma at t = 35 s
(solid line) experiences rarefaction within the central part of the
spicule at t = 80 s (dashed line), which keeps its trend up to t =
155 s (dotted line). At this time, plasma is so rarefied that it may
be missed by the detectors. This may mimic the disappearance
of II type spicules.

Figure 8 illustrates spicule height ymax vs. amplitude of the
initial pulse AV with a fixed position of the initial pulse y0 =
1.75 Mm. Hence we infer that a larger amplitude pulse results
in chromospheric plasma reaching a higher maximum altitude,
which is intuitively expected as a larger amplitude corresponds
to more energy being launched initially. This more energetic
pulse leads to higher jets. Figure 9 shows a similar trend in the
arise time of the spicule for a growing amplitude of the pulse.

Fig. 9. Rise time of spicule tr vs. amplitude of the initial pulse AV for
y0 = 1.75 Mm. The case of adiabatic (+) and non-adiabatic (+×) MHD
equations.

Fig. 10. Maximum height of spicule ymax vs. vertical position of the
initial pulse y0 for AV = 40 km s−1 and in the case of adiabatic MHD
equations.

The comparison of results for adiabatic (+) and non-adibatic (*)
MHD equations reveals that the non-adiabatic effects have a mi-
nor influence on both spicule height and rise time of the spicule.
The non-adiabatic terms result in a growth of the maximum
height by about ∼10–15%, while the rise time of the spicule
grows by about ∼15–20%.

Figure 10 illustrates the influence of the vertical position of
the initial pulse on the maximum height of the spicule. For a
pulse launched closer to the transition region, the mass density of
the upward-pushed plasma is lower. Thus such a pulse exhibits a
lower momentum, and we can expect it to penetrate lower coro-
nal regions. We also expect that the rise time of the spicule be-
comes shorter with a higher value of y0. Indeed, Fig. 11 illus-
trates this declining trend. The obtained values of spicule height
lie within the range of the observed height of the spicules.

Figure 12 displays the dependence of spicule velocity on
time. The location of the top of the spicule is determined by the
vertical position of the contact wave. The upward movement of
the transition region plasma starts at t ≈ 10 s, and at this time the
spicule reaches its speed of about 45 km s−1. At later moments
in time, this spicule decelerates until at t ≈ 100 s the spicule
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Fig. 11. Rise time of spicule tr vs. vertical position of the initial pulse
y0 for AV = 40 km s−1 and in the case of adiabatic MHD equations.

Fig. 12. Spicule velocity Vy vs. time for y0 = 1.75 Mm, AV = 40 km s−1

and adiabatic MHD equations.

speed attains zero, which occurs at the highest location of the
spicule. At the lowest location of the spicule, which is reached
at t = 200 s, the vertical velocity of the decreasing plasma is
about 30 km s−1. After the first rise and fall, the transition region
subsequently experiences oscillations.

The transition region exhibits oscillations that are due to the
rebound shocks (Hollweg 1982). It is interesting that these oscil-
lations occur with a wave period of about 250 s (Fig. 13). This
wave period is close to the acoustic cut-off period,

Pac(y) =
4πcs(y)
γg

, (15)

which for y = y0 = 1.75 Mm attains a value of about 259 s
(Fig. 14).

4. Summary and conclusions

We performed numerical simulations of a spicule by launching
initially (at t = 0 s) a localized pulse in the y-component of
a plasma velocity in the upper chromosphere. The initial mag-
netic field configuration was force-free and the initial stratifi-
cation remained in static equilibrium. We simulated both ideal

0 100 200 300 400 500
t [s]

1.5

2.0

2.5

3.0

3.5

y 
[M

m
]

101 102 103
rho [10−12  kg m−3 ]

Fig. 13. Time-distance plot of %(r = 0, y, t) vs. time for y0 = 1.75 Mm,
AV = 30 km s−1 and adiabatic MHD equations.

Fig. 14. Acoustic cut-off wave period Pac vs. altitude y.

and non-ideal MHD equations to reveal non-adiabatic effects
such as thermal conduction and radiation. Numerical simulations
showed that an upward-propagating signal quickly steepened
into a shock that propagated into the corona along the mag-
netic field lines. This shock was followed by the cold and dense
chromospheric plasma jet, which exhibited properties of a con-
tact wave and reached a certain height (typically 4–5 Mm) and
then returned to the chromosphere. The mean up-flow speed was
20–25 km s−1. The obtained values match those given for the
spicules observed by Beckers (1968, 1972). However, subse-
quent shocks come from the chromosphere with a periodicity
of almost the chromospheric acoustic cut-off period, which is
the result of the nonlinear wake behind the pulse that propagates
in the stratified atmosphere (Kuridze et al. 2009). These shocks
again lift up the chromospheric plasma into the corona and cause
the quasi-periodic appearance of plasma jets. This is consistent
with the rebound shock model suggested by Hollweg (1982).
Numerical solutions show that the rarefaction wave that follows
the shock-wave results in a reduction of the mass density inside
the structure. Both ideal and non-ideal simulations give similar
results for the maximum height, upward speed, rise time, and
periodicity. Therefore, non-adiabatic effects do not significantly
affect the dynamics of jets, but slightly increase the maximum
heights and rise time.
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In conclusion, our numerical simulations of the solar spicules
approximately mimicked the observed properties of the spicules.
Since we did not attempt to synthesize observables, an exact
comparison with observations cannot be achieved here.
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