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Abstract:
We present the computer code RECOLA2 along with the first NLO electroweak corrections

to Higgs production in vector-boson fusion and updated results for Higgs strahlung in the Two-
Higgs-Doublet Model and Higgs-Singlet extension of the Standard Model. A fully automated
procedure for the generation of tree-level and one-loop matrix elements in general models, includ-
ing renormalization, is presented. We discuss the application of the Background-Field Method
to the extended models. Numerical results for NLO electroweak cross sections are presented for
different renormalization schemes in the Two-Higgs-Doublet Model and the Higgs-Singlet exten-
sion of the Standard Model. Finally, we present distributions for the production of a heavy Higgs
boson.
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1 Introduction

Since the discovery of a Higgs boson at the Large Hadron Collider (LHC) [1, 2] the community
is moving forward focusing on precision. Precision is the key to probe the Standard Model (SM)
and Beyond Standard Model (BSM) physics and potentially allows, together with automation, to
disprove the SM or even to single out new models. State of the art predictions involve typically
two-loop and occasionally three-loop QCD and one-loop electroweak (EW) corrections for many
processes of interest at the LHC. As the aim is to cover all accessible processes at the LHC and
future colliders, a lot of effort has gone into the full automation of one-loop amplitudes. With
one-loop QCD amplitudes being available since a long time, more recently much effort has been
spent on the automation of EW one-loop corrections, which are more important than ever in
view of the recent progress in multi-loop QCD calculations. SM EW corrections are nowadays
available in various approaches, e.g. OpenLoops [3], MadGraph5 aMC@NLO [4], GoSam
[5, 6], FeynArts/FormCalc [7, 8], and in our fully recursive approach RECOLA [9, 10]. For
BSM physics precision is important, and especially EW corrections should not be underestimated
as they can be comparable to QCD corrections in certain BSM scenarios.

The automation for one-loop BSM physics requires three ingredients: First, new models need
to be defined, typically in form of a Lagrangian and followed by the computation of the Feynman
rules. For this kind of task Feynrules [11] and SARAH [12] are established tools. Then, a
systematic and yet flexible approach to the renormalization and computation of further ingre-
dients is required to deal with generic models. Finally, the renormalized model file needs to be
interfaced to a generic one-loop matrix-element generator. As for the automation of renormal-
ization, there has been progress in the Feynrules/FeynArts approach [13]. In this paper we
present an alternative and fully automated procedure to the renormalization and computation of
amplitudes in general models, thus, combining the second and third step. Our approach makes
use of tree-level Universal FeynRules Output (UFO) model files [14] and results in renormalized
one-loop model files for RECOLA2, a generalized version of RECOLA, allowing for the com-
putation of any process in the underlying theory at the one-loop level, with limitations only due
to available memory or CPU workload.

As an application of the system, we focus on two BSM Higgs-production processes at the
LHC, namely Higgs production in association with a vector boson, usually referred to as Higgs
strahlung, and Higgs production in association with two jets, known as vector-boson fusion
(VBF), in the Two-Higgs-Doublet Model (2HDM) and the Higgs-Singlet extension of the SM
(HSESM). Those processes are particularly interesting for an extended Higgs sector, as they
represent the next-to-most-dominant Higgs-production mechanisms at the LHC. There has been
enormous progress in higher-order calculations to Higgs strahlung and VBF in the SM and
BSM. For Higgs strahlung the QCD corrections are known up to NNLO for inclusive [15–17]
and differential [18, 19] cross sections. On-shell EW corrections were computed in Ref. [20] and
followed by the off-shell calculation in Ref. [21]. Higgs strahlung has also been investigated in
the 2HDM for QCD [22] and EW [23] corrections. NLO QCD corrections matched to parton
shower have been presented in Ref. [24] in an effective field theory framework. For VBF, the
first one-loop QCD corrections were obtained in a structure function approach [25] followed by
the first two-loop prediction [26, 27] in the same framework. As for differential results, the first
one-loop QCD and EW corrections were calculated in Ref. [28] and Refs. [29, 30], respectively.
Since recently also the differential two-loop [31] and three-loop [32] QCD corrections are available.
VBF has been interfaced to parton showers [33,34] and has been subject to studies for a 100 TeV
collider [35]. In view of BSM, VBF has been studied in the MSSM [36]. Higgs strahlung and
VBF are nowadays available in public codes, such as V2HV [37], MCFM [38], HAWK2.0 [39]
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and vh@nnlo [40].
This paper is organized as follows. In Section 2 the computer program RECOLA2 is

presented as a systematic approach towards the automated generation of one-loop processes.
RECOLA2 relies on one-loop renormalized model files which are automatically generated with
the new tool REPT1L from nothing but Feynman rules. The computation steps are explained
in different subsections, where we discuss the translation from UFO to RECOLA2 model files
(Section 2.1), the counterterm expansion and renormalization, and the computation of rational
terms of type R2 (Section 2.2). In Section 3 we give details on the HAWK 2.0 interface with
RECOLA2, which has been used for the phenomenology. In Section 4 we list our conventions
for the 2HDM and the HSESM, focusing on the physical input parameters. In Section 5 we
discuss the application of the Background-Field Method (BFM) in RECOLA2. We present the
renormalization for extended Higgs sectors in the BFM and give details on the implementation
in REPT1L. In Section 6 we fix the calculational setup and define the benchmark points, which
were mainly taken from the Higgs cross section working group (HXSWG). For the numerical
analysis we use different renormalization conditions for the mixing angles, which we introduce in
Section 6.3. In Section 7 we present the numerical results, discussing total cross sections in view
of different renormalization schemes and distributions for heavy Higgs-boson production. After
the conclusions in Section 8, we illustrate in App. A how the colour flow is derived and provide
additional information on the derivation of a minimal basis for off-shell currents in App. B. Fi-
nally, in App. C we discuss the application of on-shell renormalization schemes combined with
different tadpole counterterm schemes focusing on the gauge dependence.

2 RECOLA2: RECOLA for general models

RECOLA2 is a tree-level and one-loop matrix-element provider for general models involving
scalars, fermions and vector particles. It is based on its predecessor RECOLA [9, 10], which
uses Dyson–Schwinger equations [41–43] to compute matrix elements in a fully numerical and
recursive approach. The implementation at tree level follows the strategy developed in Ref. [44],
supplemented by a special treatment of the colour algebra. The one-loop extension, inspired
by Ref. [45], relies on the decomposition of one-loop amplitudes as linear combination of ten-
sor integrals and tensor coefficients. The former are evaluated by means of the library COL-
LIER [46], while the latter can be computed by making use of similar recursion relations as
for tree amplitudes. The key point is the construction of the proper tensor structure of the
coefficients at each step of the recursive procedure, which has been implemented in RECOLA
relying on the fact that in the Standard Model in the ’t Hooft–Feynman gauge the combination
(vertex)×(propagator) is at most linear in the momenta. RECOLA2 circumvents these and
other limitations of RECOLA. In the following we give an introduction to RECOLA2 and its
capabilities, focusing on the generalization with respect to RECOLA and on the applications
presented in Section 7.

The generalization of RECOLA has required to remove all SM-based pieces of code, replacing
them with generic structures which are able to retrieve any necessary information from the model
file. Furthermore, the process-generation algorithm makes use of recursive functions dealing with
different cases on equal footing. This has produced a more compact code as no model-dependent
information has been hard-coded. Finally, RECOLA2 just needs the Feynman rules to be
provided by model files in a specific format to directly evaluate NLO amplitudes in the model
under consideration by using similar recursion relations to those of the SM. As for RECOLA,
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the key ingredients are the so-called off-shell currents

wi(P, {n}) = n
P

(2.1)

defined as the sum of all Feynman graphs which generate the off-shell particle P combining n
external particles.1 The generic index i is related to the spin. For example, in the case of a vector
field i is a Lorentz index or in the case of a fermionic field i is a spinor index. Other indices are
suppressed and not relevant for the following discussions.

The off-shell currents (2.1) are build recursively according to the Berends–Giele recursion
relations (BGR) [47]

=
∑ λ3

+
∑ λ4

+
∑ λ5

+ . . . , (2.2)

which constitute a generalization of Eq. (2.2) of Ref. [9] for general models where elementary
couplings with more than four fields are present. Note that in RECOLA [10] the terms with
λi, i > 4 are absent as only 2-, 3-, and 4-point interaction vertices are supported. Practically,
each term on the right-hand side of the BGR equation (2.2) combines off-shell currents, referred
to as incoming currents, and contributes to the construction of the current on the left-hand
side, referred to as outgoing current. An outgoing off-shell current with n external particles is
calculated using the vertices of the theory connecting incoming off-shell currents with less than
n external particles, which, when combined, add up to n external particles. This can be realized
for tri-linear, quadri-linear, quinti-linear, or even higher n-point vertices if present in the theory.
The contribution to the outgoing current generated in each term of equation (2.2) can be formally
seen as the result of the action of the BGR operator defined by

wIn,1

wIn,N

=: BGR (wIn,1, . . . wIn,N) ⇒ wOut =
∑

BGR (wIn,1, . . . wIn,N) , (2.3)

with the sum running over all contributions in (2.2).
The equations (2.2) and (2.3) can be written in a model-independent way as a linear com-

bination of Lorentz structures from which the couplings, colour structures and other relevant
information that needs to be propagated from the left to the right is factorized. RECOLA2
is fully relying on the model file to provide those rules, in addition to recursive rules for the
colour-flow and helicity-state propagation. One could argue, that not too many different oper-
ators are required, at least for the renormalizable theories, which could have been hard-coded.
However, in view of different conventions, different gauges and non-renormalizable theories, we

1The n external particles of the sub-graph are on-shell (their wave functions are included, but not their prop-
agator). Particle P is off-shell, its wave function is not included and, for n > 1, replaced by its propagator.
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decided for a flexible system by moving this dependence to the model file. As now the model
file provides the rules for computing off-shell currents, we can easily incorporate the BFM and
Rξ-gauge for the SM and BSM models for NLO computations which is discussed in Section 5. In
addition, RECOLA2 has been generalized to deal with arbitrary n-point vertices,2 and, thus,
can compute processes with elementary interactions between more than four fields. Dealing with
higher n-point vertices required to improve, among other parts of the code, the generation of the
tree graphs of the process. The generation of those graphs is a combinatorial problem which is
practically solved in the binary representation as introduced in Ref. [48] (see also Ref. [44]). For
elementary interactions involving an arbitrary number of fields the method requires to compute
distinct ordered integer partitions of arbitrary size with no bitwise overlap between elements.

Further, RECOLA2 allows for arbitrary powers of momenta3 in Feynman rules, which is
crucial for EFTs and the Rξ-gauge at one-loop level. In order to implement this important
generalization, we had to generalize the construction of the tensor structure of loop currents (i.e.
of the coefficients of the tensor integrals), allowing the combination (vertex)×(propagator) to
contain any power of momenta.

New theories may involve new fundamental couplings, and RECOLA2 can deal with an
arbitrary number of them.4 The computation of matrix elements is ordered according to powers of
fundamental couplings, and RECOLA2 provides methods to automatically compute amplitudes
and interferences for all possible orders of these couplings. For instance, this feature can be used
to control the number of insertions of a higher dimensional operator in a given amplitude.

Finally, RECOLA2 comes with almost all features and optimizations as provided by RECOLA.
It is designed to be backward compatible in the sense that a program which successfully runs
with RECOLA can be linked to RECOLA2 and a SM (or SM BFM) model file and is guaran-
teed to run without any code adaptation. This is realized by a dedicated SM interface which has
been developed on top of the general interface to model files. The most notable optimizations
concern partial factorization in colour-flow representation, the use of helicity conservation and
the identification of fermion loops for different fermions with equal masses.

2.1 RECOLA2 model-file generation

RECOLA2 model files are generated with the tool REPT1L (Recola’s rEnormalization Pro-
cedure Tool at 1 Loop) which is a multi-purpose tool for analytic computations at the one-
loop order. REPT1L is written in Python 2.75 and depends on other tools, most notably
RECOLA2 for the model-independent current generation, which is used in combination with
FORM [49] to construct analytic vertex functions or S-matrix elements, and SymPy [50], which
is a computer-algebra system (CAS) for Python.

REPT1L requires the Feynman rules in the UFO format [14] which can be derived via
Feynrules [11] or SARAH [12]. As there has been progress for an automated renormalization
in the Feynrules framework [13], we stress that we do not require any results for counterterms
or rational terms. Those terms are automatically derived from the tree-level Feynman rules in a

2For reasons of optimization n is restricted to n ≤ 8.

3RECOLA2 has been tested with Feynman rules involving momentum powers up to the power of 3. Note that
at one-loop order significant increase in the rank may cause limitations due to available internal memory and CPU
power.

4This feature has been tested with 8 different fundamental couplings in Φ8 theory. Note that a large number
of fundamental couplings could worsen the performance in the process-generation and computation phase.

5There is ongoing work for Python 3.x compatibility.

4



self-contained fashion as explained in Section 2.2.
The RECOLA2 model-file generation consists of two phases. In the first phase REPT1L

loops over all vertices in the UFO model file, disassembling each into the vertex particles, Lorentz
and colour structures, and couplings. The colour structure is transformed to the colour-flow basis
possibly rearranging Lorentz structures and couplings. This is discussed in more detail in App. A.
The resulting Lorentz structures are used to derive the BGR operators in a model-independent
way. For every Feynman rule REPT1L tries to map the encountered Lorentz structure onto
one of those operators. If a new structure cannot be mapped onto an existing operator a new
operator is added. In an optional second pass, the existing base of operators is minimized (see
App. B for more details).

In the second phase of the model-file generation the information is exported as Fortran95
code in form of a model-file library as depicted in Fig. 1. Particle configurations are linked to the
individual contributions on the right-hand side of (2.2), which differ in the underlying BGR (2.3),
colour flow, colour factors, couplings, coupling orders or other information, via a Fortran95
hash table, allowing for a flexible and efficient access. The actual BGR are computed and
exported as Fortran95 subroutines in different forms. For the numerical evaluation tree and
loop BGR are used to construct tree-level and one-loop amplitudes as it is done in RECOLA.
The tree BGR are a special case of the loop BGR, with no loop-momentum dependence. As a new
feature in RECOLA2, an analytic version of the BGR allows to generate amplitudes as FORM
code.6 In this way the analytic expressions for the amplitudes needed in the renormalization
conditions are derived in the same framework as the loop amplitudes of the computed processes,
ensuring that properly defined renormalization schemes automatically imply UV-finite results
in numerical computations. In general, the UV finiteness of the theory can (and should) be
verified numerically in RECOLA2 process by process by varying the scale µUV related to the
dimensional regularization of UV singularities [10]. This check also works in combination with
MS subtraction schemes, even though in this case amplitudes have an intrinsic scale dependence.
To this end, we separate the scale dependence originating from the MS subtraction from the one
of regularization.

Finally, RECOLA2 requires particle information such as the mass, spin, and colour of par-
ticles. This information is directly obtained from UFO particle instances and is translated to
Fortran95 code. These steps conclude the tree-level model-file generation. In the next sec-
tion we discuss the counterterm generation and renormalization and the computation of rational
terms of type R2.

2.2 Counterterm expansion, renormalization and computation of R2 terms

REPT1L supports an automated renormalization of model files following the standard procedure
(see e.g. Ref. [51]). Here we give a short summary of all the steps, followed by details on the
counterterm expansion, the renormalization conditions, and the computation of rational terms
of type R2.

The starting point is a tree-level UFO model file. In the first step an independent set of
parameters is identified, followed by a counterterm expansion. The RECOLA2 model file is
derived, enabling the formal counterterm expansion in REPT1L and leaving the values for
counterterm parameters unspecified. Renormalization conditions are used to fix the counterterm
parameters. REPT1L allows to renormalize counterterm parameters in various schemes, and

6REPT1L is exporting Fortran95 subroutines which are able to write the analytic expression for the BGR
in FORM.
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UFO
model file

UFO Vertex

UFO Particles
UFO Parameters

BGR basis

CT expansion

R2
(pre-computed)

Phase I

BGR
(Subroutines)

Vertices
(hash table)

Couplings
CT Couplings
R2 Couplings

(Modules)

Particles
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CT Parameters
(Modules)

Phase II

Recola2 model file

Figure 1: The RECOLA2 model-file generation. UFO vertices are taken as input and each
vertex is permuted and mapped to a suited BGR operator. Given a counterterm expansion
(2.4), REPT1L can generate all counterterm vertices and include them in the BGR. Once the
renormalization is done and the R2-terms are computed, the model file is derived once again,
including solutions to counterterm parameters and R2 terms.

specific schemes are selected at run-time in RECOLA2. The rational terms of type R2 are
constructed from vertex functions of the underlying theory. The model file is derived once again,
including the counterterm expansion, solutions to counterterm parameters and R2 terms. The
result is the desired renormalized model file, ready for computation of processes supported by
the underlying theory.

Counterterm expansion

In the default setup, REPT1L defines the counterterm expansion rules of the masses MV , MS ,
mf , associated to scalars (S), vector bosons (V ) and fermions (f), of the not necessarily physical
bosonic (φ) and fermionic fields (ψ), and of a set of external couplings gk, according to7

M2
V →M2

V + δM2
V , M2

S →M2
S + δM2

S , mf → mf + δmf ,

φj →
∑

l

(
δjl +

1

2
δZjl

)
φl, ψL

i →
(

1 +
1

2
δZL,i

)
ψL,i, ψR

i →
(

1 +
1

2
δZR,i

)
ψR,i,

gk → gk + δgk, (2.4)

with δZjl being, in general, a non-diagonal matrix and L, R denoting the left-and right-handed
components of fermionic fields, which, by default, are assumed to be diagonal. REPT1L auto-
matically deals with counterterm dependencies if the parameters, being assigned a counterterm
expansion, are declared as external parameters in the UFO format. Here, an external param-
eter is an independent parameter, whereas internal parameters depend on external ones and
their counterterm expansion can be determined by the chain rule. Once all parameters have a
counterterm expansion, the most efficient way to generate counterterm vertices of the theory is
through an expansion of the bare vertices via (2.4). It is possible to add counterterm vertices
by hand, or, as a third alternative, to induce counterterm vertices from bare ones, which are not
included in the model, via counterterm expansion rules. The latter is used to handle 2-point
counterterms and counterterms originating from the gauge-fixing function since both of these
types have no corresponding tree-level Feynman rules.

7We follow the conventions for the mass and field counterterms as in Ref. [51].
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REPT1L
(Python2.7)

Renormalization R2

FORM
Sympy
(CAS)

Off-shell currents

FORM Amplitudes

Numerical Amplitudes

Analytics

RECOLA2
(Fortran95)

Model file
(Fortran95)

Numerics

Model file generation

Figure 2: The REPT1L–RECOLA2 tool chain. REPT1L can generate tree-level model files
which can then be used in combination with the RECOLA2 library to generate building blocks
required in the renormalization process. The process generation is done via the same off-shell
currents also used in numerical computations. The currents are evaluated analytically with
FORM and further processed with SymPy. The results are then available to REPT1L and are
used in the renormalized model file derivation. The red box indicates the analytic computations
which uses the tool chain combining RECOLA2, FORM and SymPy. After the renormalized
model-file derivation, this tool chain and REPT1L are no longer needed. The blue box, i.e.
RECOLA2 and model files, can be used as stand-alone versions (pure Fortran95) for numerical
computations.

Renormalization conditions

A standard set of renormalization conditions is implemented in Python as conditions, rather than
solutions to conditions, which are solved upon request. As an advantage of solving equations, the
form of vertex functions or conventions can change without breaking the system. REPT1L sup-
ports on-shell, MS, and momentum-subtraction conditions for general (mixing-)two-point func-
tions. MS subtraction is implemented generically for n-point functions. We assume standard
renormalization of the physical fields and masses from the complex poles of Dyson-resummed
propagators and their residues, while we allow for several choices of renormalization conditions
for the gauge-fixing function and for unphysical fields. In addition, we provide standard renor-
malization conditions for the SM couplings, e.g. the definition of α in the Thomson limit (TL)
and in the GF scheme, which are implemented via self-energies8, and the Nf -flavour scheme for
αs in QCD9, which is implemented as a combined MS/momentum subtraction on vertex func-
tions. All conditions are implemented in a model-independent way. Instead of the standard
set of renormalization conditions already implemented, REPT1L can also handle alternative
conditions properly set by the user.

Setting up renormalization conditions requires a RECOLA2 model file including counter-
terms. The derivation of model files is done as discussed in the previous section with enabled ver-
tex counterterm expansion (see Fig. 1) and leaving the counterterm parameter unspecified. The
renormalization conditions are derived analytically as FORM code. REPT1L uses RECOLA2
to generate the skeletons for processes. The result is written to a FORM file and evaluated,

8 The (gauge-dependent) vertex and box contributions of the muon decay are taken from the SM. In general,
they depend on the model under consideration and need to be computed explicitly, but for extended Higgs sectors
they are well approximated by the SM ones for small muon Yukawa couplings.

9 For theories with the SM–QCD particle content a running dynamical-flavour scheme is supported.
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yielding vertex functions which are parsed to Python and processed with SymPy solving the
conditions for the counterterm parameters. The procedure is visualized in Fig. 2. Multiple
schemes for the very same counterterm parameters can be implemented by imposing different
renormalization conditions. All schemes are exported to the RECOLA2 model file and, for a
given parameter, a specific scheme can be selected before the process generation phase. For
instance, this system can be used to allow the user to choose between different QCD and EW
renormalization schemes within the same model file. The same system is used for dealing with
singularities from light fermions. In general, particles can be tagged as light particles, which,
when a particle is subject to on-shell renormalization, makes REPT1L to regularize the asso-
ciated diagonal two-point function in three different setups, namely dimensional regularization,
mass regularization, and keeping the full mass dependence. In a RECOLA2 session a suited
regularization scheme for light particles is set automatically, depending on the choice of the mass
value, unless the regularization for a particle is explicitly required in a specific scheme. In the
case of unstable particles, i.e. massive particles with finite widths, REPT1L applies, by default,
the Complex-Mass Scheme (CMS) as discussed in more detail in Section 5.2.

Computation of R2 terms

The computation of R2 uses the methods developed in Refs. [52–54] and follows the same compu-
tation flow as solving renormalization conditions which is depicted in Fig. 2. For renormalizable
theories all existing R2 terms can be computed. To this end, REPT1L can generate the skele-
tons at NLO for all vertex functions in the theory which are potentially UV divergent by power
counting. FORM is used to construct each vertex function, replace tensor integrals by their pole
parts and take the limit D → 4. The finite parts are identified as Feynman rules associated to
the original vertices, which are precisely the R2 terms. These steps are done in Python with the
help of SymPy.

The computation of tensor coefficients is done in conventional dimensional regularization.
Different regularizations will be supported in the future by exchanging the responsible FORM-
procedure files. In view of EFTs, the power counting can be disabled, and specific vertex functions
can be selected. Further, the R2 extraction rules [52–54] have been extended to higher n-point
functions and higher rank.10

3 HAWK 2.0 interface to RECOLA2

In this section we describe the interface between HAWK 2.0 and RECOLA2 which allows for
an automated computation of NLO EW and QCD corrections to observables in associated Higgs
production with a vector boson or two jets. We start with the LO partonic channels and virtual
corrections and conclude with the computation of the real corrections. The implementation has
been realized in a model-independent way, allowing in the future, apart from the two presented
BSM models, for predictions in alternative models.

3.1 Process definitions at LO and NLO with RECOLA2

In the case of associated Higgs production with a vector boson, also known as Higgs strahlung,
we consider processes with an intermediate vector boson decaying leptonically as

pp→ HV→ Hl+l−/Hl±ν/Hνν. (3.1)

103-and 4-point functions up to rank 6, 5- point functions up to rank 7, and 6-point functions up to rank 8.
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Depending on the initial-state partons, the intermediate vector boson can be a Z or a W boson.
For example for the signature pp→ HZ→ Hl+l−, neglecting bottom contributions in the PDFs,
there are four different initial-state parton combinations:

ūu, d̄d, c̄c, s̄s. (3.2)

Whenever possible, we optimize computations involving different quark generations. For in-
stance, in (3.2) the processes involving the second generation are not computed explicitly, but
the results for the first generation are employed instead. For the first generation of quarks the
RECOLA2 library is used to generate the processes at tree and one-loop level.

The second process class under consideration is Higgs production in association with two
hard jets

pp→ Hjj, (3.3)

also known as VBF. There are plenty of partonic channels and, again, we exploit optimizations
with respect to the different quark generations. For the LO, virtual NLO EW, virtual NLO
QCD, real emission EW, and real emission QCD contributions RECOLA2 generates 32 par-
tonic channels each, with the real kinematic channels corresponding to the Born kinematic ones,
with an additional gluon or photon. For the gluon- and photon-induced channels RECOLA2
generates 20 channels each.

At the stage of the process definition the Higgs boson entering in (3.1) or (3.3) can be chosen
freely11 as long as it is supported by the RECOLA2 model file currently in use. For instance, in
the case of the 2HDM the Higgs flavour can be set to Hl, Hh or Ha (see Section 4), which is done
in the HAWK 2.0 input file. In HAWK 2.0 the relevant parameters for process generation and
computation are set by input files. This information is forwarded to RECOLA2, allowing to
choose specific contributions. The selection works for individual corrections such as QCD or EW
either virtual or real. For the results presented in this work we selected the pure electroweak
corrections, including photon-induced corrections.

3.2 Infrared divergences

RECOLA2 provides the amplitudes for the partonic processes under consideration as well as the
colour-correlated squared matrix elements needed for the Catani–Seymour dipole subtraction.
In order to deal with IR singularities, an IR subtraction scheme needs to be employed. We
adhere to the Catani–Seymour dipole subtraction [55] which is used in HAWK 2.0 and employ
mass regularization for soft and collinear divergences, i.e. a small photon mass and small fermion
masses are used wherever needed. From the point of view of the interface, dealing with EW
dipoles is a matter of replacing certain Born amplitudes with the ones computed by RECOLA2.
As for the QCD dipoles one needs in general colour-correlated matrix elements. For processes
with only two partons, as it is the case for Higgs strahlung, the colour correlation is diagonal
owing to colour conservation (see Eq. A1 in Ref. [55]) and again no colour-correlated matrix
elements are required. For VBF we compute the colour-correlated matrix elements directly with
RECOLA2, and use colour conservation to minimize the number of required computations. The
dipoles are used as implemented in HAWK 2.0 and are not part of RECOLA2. For the QCD
dipoles consider Refs. [55, 56] and for EW dipoles see Refs. [57, 58].

11Charged Higgs bosons are not supported by the HAWK 2.0 Monte Carlo. Pseudo-scalar Higgs-boson produc-
tion is possible, but suppressed in the considered CP-conserving 2HDM.
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4 2HDM and HSESM model description

In this section, we sketch the definition of the scalar potential of the 2HDM and the HSESM. In
both cases we restrict ourselves to a CP-conserving Z2-symmetric scalar potential, which in the
case of the 2HDM is allowed to be softly broken. For a comprehensive introduction to the 2HDM
we refer to Refs. [59, 60] and for the HSESM to the original literature [61–63] and applications
to LHC phenomenology in Refs. [64–67]. For the kinetic terms we refer to the conventions used
in Ref. [64].

4.1 Fields and potential definition

Both models are simple extensions of the SM, only affecting the form and fields entering the
scalar potential and for the 2HDM also the Yukawa interactions. In the case of the 2HDM we
have two Higgs doublets, generically denoted as Φi with i = 1, 2 and defined component-wise by

Φi =

(
φ+
i

1√
2

(vi + ρi + iηi)

)
, (4.1)

with vi denoting the vevs. Under the constraint of CP conservation plus the Z2 symmetry
(Φ1 → −Φ1,Φ2 → Φ2), the most general, renormalizable potential reads [59]

V2HDM = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)

+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+
λ5

2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2
]
, (4.2)

with five real couplings λ1 . . . λ5, two real mass parameters m2
1 and m2

2, and the soft Z2-breaking
parameter m2

12.
The HSESM scalar potential involves one Higgs doublet Φ and a singlet field S defined as

Φ =

(
φ+

1√
2

(v + ρ1 + iη)

)
, S =

vs + ρ2√
2

. (4.3)

Under the same constraints, the most general, renormalizable potential reads

VHSESM = m2
1Φ†Φ +m2

2S
2 +

λ1

2

(
Φ†Φ

)2
+
λ2

2
S4 + λ3Φ†ΦS2, (4.4)

with all parameters being real.

4.2 Parameters in the physical basis

Both potentials are subject to spontaneous symmetry breaking which requires a rotation
of fields to the mass eigenstates in order to identify the physical degrees of freedom. For the
2HDM there are five physical Higgs bosons Hl, Hh, Ha, H

± and in the HSESM there are two
neutral Higgs bosons Hl and Hh, intentionally identified with the same symbols as in the 2HDM.
Besides the physical Higgs bosons, there are the three would-be Goldstone bosons G0 and G±
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in the ’t Hooft–Feynman gauge. The mass eigenstates for the neutral Higgs-boson fields are
obtained in both models by the transformation

(
ρ1

ρ2

)
= R(α)

(
Hh

Hl

)
, with R(α) =

(
cosα − sinα
sinα cosα

)
, (4.5)

and α being fixed such that the mass matrix

Mij :=
∂2V

∂ρi∂ρj

∣∣∣∣
ϕ=0

, (4.6)

is diagonalized via R(−α)MR(α), with the potential V being either (4.2) or (4.4). The solution
to (4.6) for symmetric 2× 2 matrices is generically given by (see Ref. [59])

sin 2α =
2M12√

(M11 −M22)2 + 4M2
12

. (4.7)

In the 2HDM there are additional mixings between charged and pseudo-scalar bosons and Gold-
stone bosons, which are diagonalized as follows
(
φ±1
φ±2

)
= R(β)

(
G±

H±

)
,

(
η1

η2

)
= R(β)

(
G0

Ha

)
, with R(β) =

(
cosβ − sinβ
sinβ cosβ

)
. (4.8)

The angle β is related to the vevs according to tβ ≡ tanβ = v2/v1 in the 2HDM. For the HSESM
we define tβ ≡ tanβ = vs/v. The Higgs sector is minimally coupled to the gauge bosons.
Collecting quadratic terms and identifying the masses one obtains the well-known tree-level
relations

MW =
1

2
gv, MZ =

1

2

√
g2 + g′2 v, (4.9)

where g and g′ denote the weak isospin and hypercharge gauge couplings, and MW and MZ the
W- and Z-boson masses, respectively. For the 2HDM we identify v =

√
v2

1 + v2
2. Finally one

employs the minimum conditions for the scalar potential which, in both models, read

〈ρi〉 = 0. (4.10)

Then, one substitutes the potential parameters with physical parameters obtained after spon-
taneous symmetry breaking and after diagonalizing the Higgs sector. For the 2HDM we choose
the Higgs-boson masses MHl

(light Higgs boson), MHh
(heavy Higgs boson), MHa (pseudoscalar

Higgs boson), MH± (charged Higgs boson), the soft-Z2-breaking scale Msb defined via

M2
sb =

m2
12

cosβ sinβ
, (4.11)

and the two mixing angles as cαβ := cos(α− β) (sαβ := sin(α− β)) and tβ := tan(β), which is a
natural choice for studying (almost) aligned scenarios. For the HSESM we use the neutral Higgs-
boson masses MHl

(light Higgs boson), MHh
(heavy Higgs boson) and the angles sα := sin(α)

and tβ := tan(β). To summarize, we transform the parameters from the generic basis to the
physical one by choosing the following parameters as external ones
2HDM: λ1, λ2, λ3, λ4, λ5,m1,m2,m12 → MHl

,MHh
,MHa ,MH± ,Msb, cαβ, tβ, v (g,MW) ,

HSESM: λ1, λ2, λ3,m1,m2 → MHl
,MHh

, sα, tβ, v (g,MW) ,

where we have indicated that the vev is traded for gauge couplings and masses according to (4.9).
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4.3 Yukawa interactions

The fermionic sector in the HSESM is the same as in the SM, whereas the 2HDM allows for
a richer structure. In the general case of the 2HDM, fermions can couple to both Φ1 and Φ2,
leading to flavour-changing neutral currents (FCNC) already at tree level. Since FCNC processes
are extremely rare in nature they highly constrain BSM models. In order to prevent tree-level
FCNC, one imposes the Z2 symmetry

Z2 : Φ1 → −Φ1, Φ2 → Φ2, (4.12)

as already introduced in the Higgs potential in Section 4.2. This Z2 symmetry is motivated
by the Glashow–Weinberg–Paschos theorem in Refs. [68, 69], which states that for an arbitrary
number of Higgs doublets, if all right-handed fermions couple to exactly one of the Higgs doublets,
FCNCs are absent at tree level. This can be realized by imposing, in addition to (4.12), a parity
for right-handed fermions under Z2 symmetry. One obtains four distinct 2HDM Yukawa terms,
the so-called natural flavour-conserving models canonically described in the literature.
Type I: By requiring for all fermions an even parity under Z2, all have to couple to the second

Higgs doublet Φ2. The corresponding Yukawa Lagrangian reads

LY = −ΓdQLΦ2dR − ΓuQLΦ̃2uR − ΓlLLΦ2lR + h.c., (4.13)

where Φ̃2 is the charge-conjugated Higgs doublet of Φ2. Neglecting flavour mixing, the
coefficients are directly expressed by the fermion masses md, mu and ml, and the mixing
angle β,

Γd =
gmd√

2MW sinβ
, Γu =

gmu√
2MW sinβ

, Γl =
gml√

2MW sinβ
. (4.14)

Again, the vev v has been substituted using Eq. (4.9).

Type II: This is the MSSM-like scenario obtained by requiring odd parity for down-type quarks
and leptons: dR → −dR, lR → −lR and even parity for up-type quarks. It follows that
the down-type quarks and leptons couple to Φ1, while up-type quarks couple to Φ2. The
corresponding Yukawa Lagrangian reads

LY = −ΓdQLΦ1dR − ΓuQLΦ̃2uR − ΓlLLΦ1lR + h.c.. (4.15)

Neglecting flavour mixing, the coefficients are expressed by the fermion masses md, mu and
ml, and the mixing angle β,

Γd =
gmd√

2MW cosβ
, Γu =

gmu√
2MW sinβ

, Γl =
gml√

2MW cosβ
. (4.16)

Type Y: This type, also referred to as lepton-specific 2HDM, is obtained by requiring odd parity
only for leptons: lR → −lR.

Type X: This type, also referred to as flipped 2HDM, is obtained by requiring odd parity only
for down-type quarks: dR → −dR.

In the analysis of this paper we focus on Type II, which is equivalent to Type I for massless
leptons and quarks, except for the top quark. We remark that exactly one RECOLA2 model
file can handle all Yukawa types, and switching between different Yukawa types is done by a
simple function call.
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5 Background-Field Method for extended Higgs sectors

The BFM is a powerful formulation for gauge theories which renders analytic calculations eas-
ier due to a simple structure of the Feynman rules and additional symmetry relations. The
method was originally derived by DeWitt in Refs. [70, 71]12 and has since then been used in
many applications. The additional symmetry relations emerge for gauge theories in combina-
tion with a suited gauge-fixing term and encode the invariance of the theory under so-called
Background-Field gauge invariance. This property is particularly useful for the calculations of
β functions [73] in higher orders and is also of interest in beyond flat space-time quantum field
theory. The BFM can be used to calculate S-matrix elements, as constructed in Ref. [74], which,
despite having to deal with many more Feynman rules, is in our implementation as efficient
as the conventional formalism. Further, the BFM, which can be viewed as a different choice
of gauge, allows for an alternative way of computing S-matrix elements and, thus, provides a
powerful check of the consistency of the REPT1L/RECOLA2 tool chain. This is particularly
useful for the validation of R2 terms where mistakes are difficult to spot. In addition, we checked
a few Background-Field Ward identities. We stress that the BFM can be used as a complemen-
tary method in RECOLA2 besides the usual formulation. Even though the use of the BFM in
practical calculations is steered in precisely the same way as for model files in the conventional
formulation, the internal machinery is different. In particular, the derivation of the Feynman
rules and renormalization procedure requires special attention which is discussed in the following.

5.1 BFM action for extended Higgs sector

The results presented here are a simple generalization of Ref. [75], which deals with the BFM
applied to the SM at one-loop order. The BFM splits fields in background and quantum fields
and combines the new action with a special choice for the gauge-fixing function resulting in a
manifest background-field gauge invariance for the effective action at the quantum level. This
splitting separates the classical solutions of the field equations, represented by background fields,
from the quantum excitation modes, represented by quantum fields. The Feynman rules are
derived as usual, treating background and quantum fields on equal footing, which we have done
with Feynrules. In principle, the splitting can be done for every field in the theory, however, as
we are only interested in a background-field gauge-invariant action, it is sufficient to shift fields
which enter the gauge-fixing function. Thus, we perform

W a,µ →W a,µ := W a,µ + Ŵ a,µ, Bµ → Bµ := Bµ + B̂µ,

Φi → Φi := Φi + Φ̂i, S → S := S + Ŝ, (5.1)

where W a (Ŵ a) and B (B̂) are the SM quantum (background) gauge fields in the gauge eigenbasis
with a = 1, 2, 3. The index i runs over all Higgs doublets Φi in the theory under consideration,
and S is a singlet field, absent in the 2HDM or SM. While the singlet field S does not appear
explicitly in the gauge-fixing function [see (5.3)], the inclusion of S in the splitting (5.1) is
necessary due to the mixing with the neutral component of a Higgs doublet. The components
for the background- and quantum-field doublets are defined as

Φi =

(
φ+
i

1√
2

(ρi + iηi)

)
, Φ̂i =

(
φ̂+
i

1√
2

(vi + ρ̂i + iη̂i)

)
. (5.2)

12See Ref. [72] for a pedagogical introduction.
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By convention, we keep the original vev of the Higgs doublet in the Higgs background-field
doublet. The quantum gauge-fixing term has the traditional form. In the gauge eigenbasis it
reads

LGF = −1

2

3∑

a=1

(F aW )2 − 1

2
F 2
B, (5.3)

with generalized gauge-fixing functions

F aW = D̂µW a
µ − i

g

2

∑

i

[
Φ̂†iσ

aΦi − Φ†iσ
aΦ̂i

]
,

FB = ∂µBµ + i
g′

2

∑

i

[
Φ̂†iΦi − Φ†i Φ̂i

]
, (5.4)

and i running over all Higgs doublets. The covariant derivative D̂ is similar to the usual one,
but with a background-field gauge connection instead of a quantum-field one. For a field αj in
the adjoint representation it acts in the following way

D̂µα
a = ∂µα

a + gεabcŴ b
µα

c, (5.5)

with εabc being the structure constants of SU(2). The form (5.3), (5.4) is invariant under
background-field gauge transformations, which can be shown using the techniques presented
in Ref. [72], but suitably generalized in the presence of spontaneous symmetry breaking.

The construction of the ghost term follows the standard BRST quantization procedure. Once
the symmetry transformations are defined on the fields, a valid ghost Lagrangian, leading to a
BRST invariant action, is given by

Lghost = −
3∑

a=1

ūaW δBF
a
W − ūBδBFB. (5.6)

The fields in the gauge eigenbasis are rotated to the physical basis in the following way

W 1
µ =

W−µ +W+
µ√

2
, W 2

µ =
W−µ −W+

µ

i
√

2
, W 3

µ = cwZµ − swAµ, Bµ = swZµ + cwAµ,

u1
W =

u−W + u+
W√

2
, u2

W =
u−W − u+

W

i
√

2
, u3

W = cwuZ − swuA, uB = swuZ + cwuA. (5.7)

The BRST transformations on the gauge eigenbasis, expressed in terms of physical fields via
(5.7), read

δBW
1
µ = Dµu

1
W =

1√
2
∂µ
(
u−W + u+

W

)
− ie√

2

[(
u−W − u+

W

)(
Aµ −

cw

sw
Zµ

)
+

(
uA −

cw

sw
uZ

)(
W+

µ −W−µ
)]
, (5.8)

δBW
2
µ = Dµu

2
W =

i√
2
∂µ
(
u+
W − u−W

)
− e√

2

[(
u−W + u+

W

)(
Aµ −

cw

sw
Zµ

)
−
(
uA −

cw

sw
uZ

)(
W+

µ +W−µ
)]
, (5.9)

δBW
3
µ = Dµu

3
W = ∂µ (cwuZ − swuA)− ie

sw

(
u−WW

+ − u+
WW

−) , (5.10)

δBBµ = DµuB = ∂µ (cwuA + swuZ) . (5.11)
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Note that in contrast to the conventional formalism, the covariant derivatives entering the BRST
transformations use the shifted gauge fields (5.1). For the Higgs doublets the BRST transforma-
tion rules can be defined at the level of components as follows

δBΦi :=

(
δBφ

+
i

1√
2

(δBρi + iδBηi)

)
, (5.12)

with

δBφ
+
i =

ie

2sw
(iη

i
+ ρ

i
+ vi)u

+
W +

ie
(
c2

w − s2
w

)

2cwsw
φ+
i
uZ − ieφ+

i
uA (5.13)

δBρi =
e

2cwsw
η
i
uZ +

ie

2sw

(
φ+
i
u−W − φ−i u

+
W

)
(5.14)

δBηi = − e

2cwsw

(
ρ
i
+ vi

)
uZ +

e

2sw

(
φ+
i
u−W + φ−

i
u+
W

)
(5.15)

The transformations for δBρi and δBηi are fixed by taking the real and imaginary part of the
BRST transformation of the lower doublet component, respectively. In this way, if the ghost
term is formulated directly in the physical basis, as it is done in Ref. [75], the Lagrangian is
guaranteed to be hermitian.

5.2 Renormalization in the BFM

The renormalization in the BFM is performed in the same fashion as in the conventional formu-
lation, except that only background fields need to be renormalized. REPT1L can distinguish
between both types of fields by checking the field-type attribute. A field can be assigned to be a
background and/or quantum field. In the conventional formalism, all fields play both roles and
can thus appear in tree and loop amplitudes. In the presence of pure quantum fields, as it is the
case in the BFM, the only contributing Feynman rules to tree and one-loop amplitudes are the
ones with exactly none or two quantum fields.

Since we aim at the computation of S-matrix elements, an on-shell renormalization of phys-
ical fields is suited. However, fixing the field renormalization constants via on-shell conditions
breaks background-field gauge invariance and, as a consequence, some Ward identities are not
fulfilled. The reason is that demanding background-field gauge invariance requires, in particular,
a uniform renormalization of all covariant derivatives in the theory which is only possible if the
field renormalization constants of gauge fields are not independent parameters but chosen accord-
ingly [75]. Since the theory is governed by BRST invariance, the breaking of the background-field
Ward identities does not pose a problem, especially not for the renormalizability of the theory
and the gauge independence of observables. Yet, we do not break the QED background-field
Ward identity, which relates the fermion–fermion–photon vertex to fermionic self-energies [75]

kµΓγf̄fµ (k, p, p′) = −eQf
[
Γf̄f (p)− Γf̄f

(
p′
)]
, (5.16)

and can be used to fix the photon field renormalization constant or the counterterm δZe. Re-
quiring (5.16) for renormalized vertex functions yields the well-known one-loop relation in the
BFM

δZe = −δZA
2
, (5.17)

which is consistent with the renormalization of α in the TL and the photon renormalized on-shell.
For LHC phenomenology the TL does not provide an appropriate renormalization due to the
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difference of the scale in the underlying processes. A popular choice is the GF scheme [76–78]
which can be defined via the muon decay. To this end, the renormalized electric charge is related
to the experimentally measured value for the Fermi constant GF. At one-loop order, neglecting
pure QED corrections, finite corrections to the renormalization in the TL are defined by ∆r

δZGF
e = δZTL

e − ∆r

2
, (5.18)

where in the SM [51]

∆r =
Σ1PI,T
WW (0)− Σ1PI,T

WW

(
µ2

W

)

µ2
W

+
2

cwsw

Σ1PI,T
AZ (0)

µ2
Z

+
2δg

g

+
g2

16π2

[
log
(
c2

w

)

s2
w

(
7

2
− 2s2

w

)
+ 6

]
, (5.19)

and Σ1PI,T being an unrenormalized transverse 1PI mixing or self-energy. Note that all terms,
except for the W self-energy, originate from vertex and box corrections, in particular, the term
Σ1PI,T
AZ has just been introduced to match the divergence structure. Equation (5.19) is valid for

the conventional formulation in the ’t Hooft–Feynman gauge, but not in the BFM since mixing
and self-energies, or, in general, vertex functions differ by gauge-dependent terms in both formu-
lations. Since the parameter ∆r connects physical quantities it is necessarily gauge independent,
which implies that both formulations differ merely by a reshuffling of gauge-dependent terms
between the self-energy and vertex parts. We have determined the difference in the vertex cor-
rections between the BFM and conventional formulation in the ’t Hooft–Feynman gauge, and, as
expected, it cancels against the difference in the W self-energy. For a model-independent evalu-
ation in the BFM, the result can be expressed in the same form as (5.19), but with a modified
vertex correction13

∆r =
Σ1PI,BFM,T
WW (0)− Σ1PI,BFM,T

WW

(
µ2

W

)

µ2
W

+
2

cwsw

Σ1PI,BFM,T
AZ (0)

µ2
Z

+
2δg

g

+
g2

16π2

[
log
(
c2

w

)

s2
w

(
−1

2
+ 2s2

w

)
+ 2

]
, (5.20)

which is valid only in the ’t Hooft–Feynman gauge in the BFM.
Another subtlety concerns the renormalization within the CMS. REPT1L automatically

renormalizes unstable particles in the CMS following the general prescription of Refs. [79–81].
The corresponding on-shell renormalization conditions require scalar integrals to be analytically
continued to complex squared momenta. This can be avoided by using an expansion around
real momentum arguments,14 which gives rise to gauge-dependent terms of higher perturbative
orders. Thus, comparing the BFM to the conventional formalism leads to somewhat different
results for finite widths. The effect can be traced back to the difference of full self-energies in
both formulations, e.g. the difference in the W self-energy is given by

Σµν,BFM
WW (p)− Σµν

WW (p) =
g2

4π2

(
µ2

W − p2
)
gµν

[
c2

wB0

(
p2, µZ, µW

)
+ s2

wB0

(
p2, 0, µW

)]
, (5.21)

13Note that Σ1PI,BFM,T
AZ (0) is zero in the BFM due to a Ward identity.

14The expansion breaks down for IR-singular contributions resulting from virtual gluons or photons. This can
be corrected by including additional terms (see Ref. [80]) which is automatically handled in REPT1L.
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with the conventions for scalar integrals as in Ref. [51]. The gauge dependence drops out in

the mass renormalization constant, i.e. δµ2
W

BFM
= δµ2

W in the CMS, because the self-energy is
evaluated on the complex pole, i.e. for p2 = µ2

W. However, performing an expansion of the self-
energy around the real mass M2

W results in differences of the order of O
(
α3
)
. For a comparison

of both formulations it is useful to modify the expanded (exp) mass counterterm to match the
conventional formalism in the following way

δµ2
W

BFM
,exp → δµ2

W,exp =

= δµ2
W

BFM
,exp −

g2

4π2

(
M2

W − µ2
W

)2 [
c2

wB
′
0

(
M2

W, µZ, µW

)
+ s2

wB
′
0

(
M2

W, 0, µW

)]
, (5.22)

with B′0 being defined as the derivative of B0 with respect to p2. Note that the difference is of
order O(α3) and phenomenologically irrelevant.

The renormalization of the tadpoles in the BFM is performed analogously to the conventional
formulation. From a theoretical point of view the renormalization of tadpoles is not necessary,
and the theory is well-defined just by including tadpole graphs everywhere. However, in practical
calculations it is desirable to avoid unnecessary computations of graphs with explicit tadpoles if
their contribution can be included indirectly by other means, e.g. via a suited renormalization.
The renormalization of the tadpoles has to be done with care because a naive treatment of the
tadpole counterterms can lead to spurious dependencies on the gauge-fixing procedure which
ultimately spoil the gauge independence of the one-loop part of S-matrix elements. From the
point of view of applicability, automation and gauge independence, we strongly recommend the
FJ Tadpole Scheme,15 which has been automated for arbitrary theories [23]. In contrast to other
schemes, the FJ Tadpole Scheme is purely based on the field reparametrization invariance of
quantum field theory (see Ref. [23]), which can be shown to be equivalent to not renormalizing
the tadpoles at all, but with the benefit of not having to compute graphs with explicit tadpoles.
Under the general assumption that the theory under consideration is expressed in the physical
basis without tree-level mixings and restricting to the one-loop case, the FJ Tadpole Scheme is
equivalent to the field redefinition

Ĥi → Ĥi −
δtĤi
m2
Ĥi

, (5.23)

for every physical (background-)field Ĥi that develops a vev and with δtĤi being the associated
tadpole counterterm. By fixing δtĤi to the tadpole graphs TĤi via

δtĤi = −TĤi , (5.24)

explicit tadpoles are cancelled and only tadpole counterterms to 1PI graphs remain. REPT1L
can automatically derive all tadpole counterterms in the FJ Tadpole Scheme. In the FJ Tadpole
Scheme the value of each counterterm needs to be independent of δtĤi which can be verified

analytically.16 Additional checks concerning the tadpole renormalization can be performed on
a process-by-process basis by including the tadpole graphs explicitly instead of renormalizing
them. Finally, we note that RECOLA2 is able to use any tadpole counterterm scheme, but only
the FJ Tadpole Scheme is fully automated.

15See original SM formulation in Ref. [82] and explicit formulas for the 2HDM in Ref. [23, 83]

16The invariance follows from Eq. (2.26) in Ref. [23].
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6 Setup and benchmark points

6.1 Input parameters

For the numerical analysis in the two Higgs-boson production processes we use the following
values for the SM input parameters [84]:

GF = 1.16638 · 10−5 GeV−2, mt = 173.21 GeV, Mh = 125.09 GeV,

MW = 80.385 GeV, ΓW = 2.085 GeV, MZ = 91.1876 GeV, ΓZ = 2.4952 GeV. (6.1)

For the 2HDM we present updated and new results for the benchmark points in Tables 1 and 3
as proposed by the HXSWG [85]. The corresponding Higgs self-couplings λi are given for con-
venience in Tables 2 and 4. For the HSESM we compiled a list of benchmark points in Table 5
featuring different hierarchies and being compatible with the limits given in Refs. [65, 66].17 The
results include the SM-like and heavy Higgs-boson production for both models. The computa-
tions were carried out in the ’t Hooft–Feynman gauge both in the conventional formalism and
in the BFM. In case of the 2HDM the matrix elements have undergone additional tests. Most
notably, we have compared results obtained with RECOLA2 for Higgs decays into four fermions,
which is closely related to the considered processes, to an independent calculation [86] based on
FeynArts/FormCalc [7, 8] for various channels. We found agreement to more than 7 digits
for 3348 out of 3500 phase-space points in the virtual amplitude, none differing by more than
5 digits. We compared off-shell two-point functions for all distinct external states, i.e. scalars,
fermions, and vector bosons, against an independent approach in QGRAF [87] and QGS, which is
an extension of GraphShot [88]. Against the same setup we compared Higgs decays into scalars,
fermions and vector bosons on amplitude level. In addition, we verified (on-shell) Slavnov–Taylor
identities for two-point functions (see Eq. (4.16) and the following in Ref. [86]).

6.2 Cut setup

For the analysis of Higgs strahlung we consider the case of two charged muons in the final state,
pp→ Hµ+µ− +X. The muons are not recombined with collinear photons, and are assumed to
be perfectly isolated, treated as bare muons as described in Ref. [21]. We use the cuts given in
Ref. [89], i.e. we demand the muons to

• have transverse momentum pT,l > 20 GeV for l = µ+, µ−,

• be central with rapidity |yl| < 2.4 for l = µ+, µ−,

• have a pair invariant mass mµµ of 75 GeV < mµµ < 105 GeV.

Further, we select boosted events with a

• transverse momentum pT,µµ > 160 GeV.

For VBF we employ the cuts as suggested by the HXSWG in Ref. [85], i.e. we require two hard
jets ji, i = 1, 2, emerging from partons i with

• pseudo-rapidity |ηi| < 5.

The recombination is done in the anti-kT algorithm [90] with jet size D = 0.4. Further, events
pass the cuts if the two hard jets have

17Our conventions differ from those of Ref. [65]. We identify cα, tβ in Ref. [65] with −sα, 1/tβ in our conventions.
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MHh
MHa MH± m12 tβ Msb

BP21A 200 GeV 500 GeV 200 GeV 135 GeV 1.5 198.7 GeV

BP21B 200 GeV 500 GeV 500 GeV 135 GeV 1.5 198.7 GeV

BP21C 400 GeV 225 GeV 225 GeV 0 GeV 1.5 0 GeV

BP21D 400 GeV 100 GeV 400 GeV 0 GeV 1.5 0 GeV

BP3A1 180 GeV 420 GeV 420 GeV 70.71 GeV 3 129.1 GeV

Table 1: 2HDM benchmark points in the alignment limit, i.e. sαβ → −1, cαβ → 0, taken from
Ref. [92]. The parameter Msb depends on the other parameters and is given for convenience.

λ1 λ2 λ3 λ4 λ5

BP21A 0.28 0.26 0.27 3.45 −3.47

BP21B 0.28 0.26 7.19 −3.47 −3.47

BP21C 6.19 1.43 −0.71 −0.83 −0.83

BP21D 6.19 1.43 2.89 −5.11 −0.16

BP3A1 2.59 0.29 5.26 −2.63 −2.63

Table 2: Higgs self-couplings for the 2HDM benchmark points in the alignment limit. We omit
the imaginary parts appearing in the CMS.

• a transverse momentum pT,ji > 19 GeV each,

• a rapidity |yji | < 5 each,

• a rapidity difference |yj1 − yj2 | > 3,

• an invariant mass Mj1j2 > 130 GeV.

We present the results for hadronic cross sections at the centre-of-mass energy of 13 TeV using
the NLO PDF set NNPDF2.3 with QED corrections [91].

6.3 Mixing angles at one-loop order

The prime vertices of interest in the processes studied in Section 7 are the HlVV and HhVV
vertices. Thus, the relevant one-loop corrections require to renormalize α and β in the 2HDM

MHh
MHa MH± m12 tβ cαβ Msb

a-1 700 GeV 700 GeV 670 GeV 424.3 GeV 1.5 −0.0910 624.5 GeV

b-1 200 GeV 383 GeV 383 GeV 100 GeV 2.52 −0.0346 204.2 GeV

BP22A 500 GeV 500 GeV 500 GeV 187.08 GeV 7 0.28 500 GeV

BP3B1 200 GeV 420 GeV 420 GeV 77.78 GeV 3 0.3 142.0 GeV

BP3B2 200 GeV 420 GeV 420 GeV 77.78 GeV 3 0.5 142.0 GeV

BP43 263.7 GeV 6.3 GeV 308.3 GeV 52.32 GeV 1.9 0.14107 81.5 GeV

BP44 227.1 GeV 24.7 GeV 226.8 GeV 58.37 GeV 1.8 0.14107 89.6 GeV

BP45 210.2 GeV 63.06 GeV 333.5 GeV 69.2 GeV 2.4 0.71414 116.2 GeV

Table 3: 2HDM benchmark points outside the alignment limit taken from Ref. [93] (a-1, b-1)
and Ref. [92]. The parameter Msb depends on the other parameters and is given for convenience.
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λ1 λ2 λ3 λ4 λ5

a-1 1.76 1.97 0.09 −0.29 −1.65

b-1 0.01 0.26 3.72 −1.73 −1.73

BP22A 0.26 0.26 7.98 0. 0.

BP3B1 3.60 0.25 5.46 −2.57 −2.57

BP3B2 3.44 0.27 5.74 −2.57 −2.57

BP43 4.42 0.43 2.34 −3.02 0.11

BP44 2.85 0.40 1.10 −1.55 0.12

BP45 3.16 0.35 3.92 −3.38 0.16

Table 4: Higgs self-couplings for the 2HDM benchmark points outside the alignment limit. We
omit the imaginary parts appearing in the CMS.

MHh
/GeV tβ sα λ1 λ2 λ3

BP1 500 2.2 −0.979796 0.41 0.82 −0.34

BP2 400 1.7 −0.96286 0.43 0.85 −0.36

BP3 300 1.3 −0.950737 0.38 0.81 −0.28

BP4 200 0.85 −0.932952 0.31 0.84 −0.16

MHl
/GeV tβ sα λ1 λ2 λ3

BP5 100 0.35 −0.35 0.25 1.44 −0.09

BP6 50 0.2 −0.06 0.26 1.05 −0.06

Table 5: HSESM benchmark points compiled from Ref. [94]. In the upper table typical scenarios
are depicted with a heavy additional scalar Higgs boson. In the lower table inverted scenarios
are listed with Hh identified as the SM Higgs boson and mass MHh

= 125.09 GeV. The Higgs
self-couplings λi depend on the other parameters and their real parts are given for convenience.

and α, but not β, in the HSESM. We present the counterterms for the mixing angles in an MS
scheme and two different on-shell schemes in the following:
MS: The mixing angles α, β are renormalized using MS subtraction [23] for the vertices Hl →

τ+τ−, Ha → τ+τ−, respectively, with β only being renormalized in the 2HDM. This is
equivalent to using the identities

δα =
δZMS

HhHl
− δZMS

HlHh

4
=

Σ1PI,MS
HhHl

(
M2
Hh

)
+ Σ1PI,MS

HhHl

(
M2
Hl

)
+ 2tMS

HlHh

2
(
M2
Hh
−M2

Hl

) ,

δβ =
δZMS

G0Ha
− δZMS

HaG0

4
= −

Σ1PI,MS
HaG0

(0) + Σ1PI,MS
HaG0

(
M2
Ha

)
+ 2tMS

HaG0

2M2
Ha

(6.2)

with the relation for δα being valid in the 2HDM and the HSESM and the one for δβ only
in the 2HDM. The origin of these relations can be traced back to the renormalizability of
models in a minimal (symmetric) renormalization scheme. See Ref. [86] for the derivation
of these and other UV-pole-part identities. The tadpole counterterms in (6.2) are treated
in the FJ Tadpole Scheme (see Apps. A and B in Ref. [23]) and using the renormalization
condition (5.24) for tadpoles. Estimating the size of higher-order contributions via the usual
scale variations has been improved via a partial resummation including the renormalization-
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group (RG) running of parameters.18 For the 2HDM this requires to solve a coupled system
of differential equations,

∂

∂ logµ2
α(µ) = fα(α(µ), β(µ),Msb(µ)),

∂

∂ logµ2
β(µ) = fβ(α(µ), β(µ),Msb(µ)),

∂

∂ logµ2
Msb(µ) = fMsb

(α(µ), β(µ),Msb(µ)). (6.3)

The functions fα, fβ and fMsb
can be directly read off the pole parts of the corresponding

counterterms. The counterterm δMsb was fixed from the vertex Hh → H+H− in the MS
scheme. Note that δMsb does not enter the considered processes at fixed one-loop order.
For the HSESM we keep β fixed, assuming no scale dependence, resulting in a simple
differential equation for α,

∂

∂ logµ2
α(µ) = fα(α(µ)). (6.4)

The (coupled) system has been solved to run the parameters from the reference scale µ0

to µ = µ0/2 and µ = 2µ0. The results are presented in Tables 6 and 7 for the benchmark
points of Tables 1, 3, and 5 being defined at the typical scale of the process, µ0 = 2MHl

if not stated otherwise.19 The cross sections are evaluated at the scales µ0/2, µ0, 2µ0,
using the running parameters of cαβ, tβ, Msb (sα) at the corresponding scale as input
parameters in the 2HDM (HSESM). The three different predictions for σEW

NLO normalized
to the leading-order cross section σLO(µ0) at the central scale µ0 and scale-dependent
relative EW corrections are defined as

δEW (µ, µ0) :=
σEW

NLO (µ)− σLO (µ0)

σLO(µ0)
, (6.5)

such that

σNLO(µ) =
(

1 + δEW (µ, µ0)
)
σLO (µ0) . (6.6)

Note that the tree-level matrix elements only depend on the scale through the running of
parameters, whereas the one-loop matrix elements have an explicit scale dependence. As
a shorthand notation for the relative corrections in the MS scheme we use

δMS
EW := δEW(µ0, µ0)ud ,

u := δEW(2µ0, µ0)− δEW(µ0, µ0),

d := δEW

(µ0

2
, µ0

)
− δEW(µ0, µ0) (6.7)

with u and d being the upper and lower edges of the scale variation (see e.g. Table 8).

18In Ref. [86] the running of the mixing angles is investigated within various MS and tadpole counterterm
schemes in the 2HDM.

19Note that the running of parameters is independent of the scale at which they are defined.
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BP tβ(µ0/2) cαβ(µ0/2) Msb(µ0/2)/GeV tβ(2µ0) cαβ(2µ0) Msb(2µ0)/GeV

BP21A 1.41 −0.1166 192.3 1.54 0.0504 197.7

BP21B 1.16 −0.4163 199.7 1.51 0.0293 191.2

BP21C 1.40 −0.0029 0.0 1.64 0.0067 0.0

BP21D 1.37 −0.0017 0.0 1.68 −0.0119 0.0

BP3A1 2.34 −0.0681 121.6 3.53 0.1701 133.8

a1 0.86 −0.3801 614.1 1.78 −0.0202 638.5

b1 2.36 −0.1542 203.6 2.59 0.0116 203.3

BP22A − − − 1.52 0.6538 274.5

BP3B1 3.15 0.1292 149.3 2.24 0.5972 123.8

BP3B2 4.17 0.2992 167.9 1.99 0.7809 119.3

BP43 1.76 0.0997 80.7 2.08 0.1906 82.8

BP44 1.66 0.1313 88.1 1.97 0.1511 91.5

BP45 2.29 0.6504 115.1 2.53 0.7666 117.5

Table 6: Running values for tβ, cαβ and Msb in the 2HDM at the scales µ0/2 and 2µ0. The
benchmark points are defined at the central scale µ0 in Tables 1 and 3. The results for the
alignment-limit scenarios are in the upper part of the table whereas the non-alignment scenarios
are in the lower part. For BP22A the running β reaches π/2 for a scale greater than µ0/2, thus,
tβ becomes singular. In this particular scenario the steep running is caused by the Higgs self-
coupling λ3 ≈ 8 (see Table 4) and can be stabilized by reducing its value. The running becomes
stable only for values smaller than λ3 . 0.5. Changing λ3 to 0.5 and keeping the values for all
other λi fixed has a small effect on MHl

and MHh
of the order O (5 GeV), but brings the scenario

close to the alignment limit cαβ ≈ 0.

BP sα(µ0/2) sα(2µ0)

BP1 −0.9802 −0.9794

BP2 −0.9646 −0.9612

BP3 −0.9557 −0.9455

BP4 −0.9367 −0.9293

BP5 −0.2780 −0.4463

BP6 −0.04647 −0.08194

Table 7: Running values for sα in the HSESM at the scales µ0/2 and 2µ0. The benchmark points
are defined at the central scale µ0 in Table 5.

p∗: The renormalized mixing angles α and β are defined to diagonalize radiatively corrected mass
matrices which implies a scale and momentum dependence for the mixing angles. The scale
dependence can be eliminated by a special choice for the momentum p2 = (p∗)2 at which
the mixing two-point functions, and thus the running mixing angles, are evaluated. The
original idea goes back to Ref. [95] (see also Ref. [96]) and has been applied to the HSESM
in Ref. [94] and the 2HDM in Ref. [83]. In our conventions, the counterterms are defined
as

δα =

Σ1PI,BFM
HhHl

(
M2
Hh

+M2
Hl

2

)
+ tHlHh

M2
Hh
−M2

Hl

, δβ = −
Σ1PI,BFM
HaG0

(
M2
Ha
2

)
+ tHaG0

M2
Ha

. (6.8)
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Note that for δβ alternatively the mixing energy with the charged Higgs and Goldstone
boson can be used. As the mixing energies are gauge-dependent an additional intrinsic
prescription is required to fix the gauge-independent parts. We choose the BFM with
quantum gauge parameter ξQ = 1, which corresponds to the gauge-fixing functions (5.3),
(5.4). We remark that this is equivalent [97, 98] to the self-energy in the pinch technique
[99,100] and allows to extract a well-defined gauge-parameter-independent contribution to
self-energies or, in general, vertex functions and hence counterterms in this scheme.

BFM: As an on-shell alternative to the p∗ scheme, the authors of Ref. [83] propose to use the
on-shell scalar mixing energies defined within the pinch technique which has also been
investigated in Ref. [101]. In our framework, this corresponds to

δα =
δZBFM

HhHl
− δZBFM

HlHh

4
=

Σ1PI,BFM
HhHl

(
M2
Hh

)
+ Σ1PI,BFM

HlHh

(
M2
Hl

)
+ 2tHlHh

2
(
M2
Hh
−M2

Hl

) , (6.9)

δβ =
δZBFM

G0Ha
− δZBFM

HaG0

4
= −

Σ1PI,BFM
HaG0

(0) + Σ1PI,BFM
HaG0

(
M2
Ha

)
+ 2tHaG0

2M2
Ha

, (6.10)

with the mixing energies evaluated in the BFM with quantum gauge parameter ξQ = 1.

In Ref. [83] it is argued that the use of the FJ Tadpole Scheme is essential for the consistency
of on-shell schemes in combination with (5.24). There are, however, other options. A different
tadpole counterterm scheme, such as the one of Ref. [51], yields different values and pole parts for
counterterms, e.g. δα and δβ absorb tadpoles and become gauge dependent. Yet, the absorbed
tadpoles drop out in momentum subtraction schemes [23] and do not spoil the gauge indepen-
dence of the S-matrix. In tadpole counterterm schemes other than the FJ Tadpole Scheme special
care has to be devoted to the formulation of renormalization conditions as they are necessarily
gauge dependent. This situation is encountered in standard SM and MSSM on-shell renormal-
ization schemes, where certain tadpole contributions to self-energies are left out, rendering the
counterterms gauge dependent, but the S-matrix remains gauge independent. When employing
gauge-fixing prescriptions in renormalization conditions, tadpoles can be handled naively in a
favoured tadpole counterterm scheme if the same gauge is used in the renormalization and in
the matrix-element evaluation. This is illustrated in App. C using the example of δα in the p∗

scheme. There, we also discuss the general case with arbitrary gauge-fixing functions, which is
less trivial and cannot be done in the naive way due to the mismatch of the gauge prescription
and the actual gauge-parameter choice. From a practical point of view the latter is only relevant
if one is interested in verifying the gauge independence of the S-matrix in tadpole counterterm
schemes other than the FJ Tadpole Scheme. We note that the use of MS schemes for the mixing
angles in combination with alternative tadpole counterterm schemes can be made gauge inde-
pendent by including finite tadpole terms20 which is equivalent to the use of the FJ Tadpole
Scheme.

The results for total cross sections in the BFM renormalization scheme in Section 7 were
not computed directly, but were obtained from the results in the p∗ scheme using the following
formulas, depending on the model (2HDM or HSESM) and on the produced Higgs flavour (Hl

or Hh) as follows

2HDM Hl: δ
BFM
EW = δp

∗

EW − 2
cαβ
sαβ

(
δαp

∗ − δβp∗ − δαBFM + δβBFM
)

20See Eq. (4.43) and the following ones in Ref. [86], Eq. (43) in Ref. [102], and Eq. (5.24) in Ref. [23].
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BP σHl
LO/ pb δMS

EW δp
∗

EW

BP21A 1.65 −11.8+0.7
+2.3% −11.8%

BP21B 1.65 −13.0+1.2
−48 % −13.0%

BP21C 1.65 −13.2−0.1
+0.1% −13.2%

BP21D 1.65 −13.6−0.2
+0.1% −13.6%

BP3A1 1.65 −13.3−6.4
+0.4% −13.3%

Table 8: Relative NLO corrections δEW to SM-like Higgs-boson production in Higgs strahlung
pp → Hlµ

−µ+ in alignment scenarios in the 2HDM. The results in the MS scheme are given
at the central scale µ0 = 2Mh = 250.18 GeV with scale uncertainties estimated including the
RG running of parameters as given by (6.7). Both on-shell schemes agree within the integration
error, and only results in the p∗ scheme are given. The SM EW correction is δEW = −12.4%.

2HDM Hh: δ
BFM
EW = δp

∗

EW + 2
sαβ
cαβ

(
δαp

∗ − δβp∗ − δαBFM + δβBFM
)

HSESM Hl: δ
BFM
EW = δp

∗

EW − 2 cαsα
(
δαp

∗ − δαBFM
)

HSESM Hh: δ
BFM
EW = δp

∗

EW + 2 sαcα
(
δαp

∗ − δαBFM
)

Note that the formulas can be applied uniquely to the observables under consideration as these
rely on the mixing-angle dependencies of the respective leading-order couplings.

7 Numerical results for total cross sections

In Table 8 we present updated results for the production of a SM-like Higgs boson in Higgs
strahlung in the 2HDM in alignment scenarios. Non-alignment scenarios are given in Table 9.
The corresponding SM correction is −12.4%. In Table 10 we provide the corresponding results
for heavy Higgs-boson production in non-alignment scenarios. For the HSESM all considered
scenarios are non-aligned. The results for light Higgs-boson production are given in Table 11,
and the ones for heavy Higgs-boson production in Table 12. Note that for the benchmark points
BP5 and BP6 with inverted hierarchy the heavy Higgs boson is SM-like with MHh

= 125.09 GeV.
For the benchmark points in the 2HDM the light Higgs boson is always identified as the SM
Higgs boson. Finally, in Table 13 results for SM-like and heavy Higgs-boson production in VBF
are presented for the 2HDM. The HSESM predictions for VBF are given in Table 14. The
corresponding SM correction for SM-like Higgs-boson production in VBF amounts to −5.5%.

7.1 Discussion of the numerical results

In the following, we compare cross sections in different renormalization schemes and models for
Higgs-boson production in Higgs strahlung. For VBF the picture is similar and not discussed in
detail. In particular, for the MS scheme we collect some observations concerning large corrections.
An analysis of the exact origin of these contributions would go beyond the scope of this paper.
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BP σHl
LO/ pb δMS

EW δp
∗

EW δBFM
EW

a-1 1.63 −10.4−1.6
+40.0% −12.6% −12.6%

b-1 1.64 −12.9+0.5
+2.5% −12.6% −12.6%

BP22A 1.52 −40.5−−% −15.9% −15.9%

BP3B1 1.50 −35.1−16.3
+29.7% −13.4% −13.4%

BP3B2 1.23 −66.6−−% −13.6% −13.6%

BP43 1.61 −15.0−0.67
+1.2 % −12.6% −12.6%

BP44 1.61 −11.2−−3.4% −12.6% −12.6%

BP45 0.806 −31.3+4.3
−6.7% −13.0% −13.0%

Table 9: Relative NLO corrections δEW to SM-like Higgs-boson production in Higgs strahlung
pp→ Hlµ

−µ+ in non-alignment scenarios in the 2HDM. The results in the MS scheme are given
at the central scale µ0 = 2Mh = 250.18 GeV with scale uncertainties estimated including the RG
running of parameters as given by (6.7). The scale uncertainties are large, and for some points
(BP22A, BP3B2, BP44) the running is unstable and yields corrections beyond 100%, which is
indicated as “−”.

BP σHh
LO/ fb δp

∗

EW δBFM
EW

BP22A 6.43 −12.5% −12.9%

BP3B1 79.4 −17.5% −17.4%

BP3B2 220.4 −16.2% −16.1%

BP43 10.1 −2.67% −2.74%

BP44 13.9 −8.35% −8.39%

BP45 411.6 −13.8% −13.8%

Table 10: Relative NLO corrections δEW to heavy Higgs-boson Hh production in Higgs strahlung
pp → Hhµ

−µ+ in the 2HDM. No results for the MS scheme are presented due to large scale
uncertainties exceeding 100%.

MS scheme

We start with the MS scheme and SM-like Higgs production in the alignment limit of the 2HDM in
Table 8. In a fixed-order calculation no scale dependence appears in the MS scheme, because the
relevant counterterms δZHhHl

, δα and δβ entering the vertices HlZZ and HlWW are screened
by the factor cαβ/sαβ = 0 in the alignment limit. For the same reason, the on-shell schemes
agree with the MS scheme at the central value. Yet, with the running of parameters, a small
scale dependence is visible. For BP21B the correction is unstable for smaller scales, signalling a
potential problem with the benchmark point (in fact, this scenario is close to the non-perturbative
limit, see Table 2.) or with the MS scheme. In non-alignment scenarios the MS results for the
2HDM in Table 9 are almost all unstable and suffer from large scale dependencies,21 which are
reflected in the running parameters cαβ and tβ in Table 6. For heavy Higgs-boson production in

21The Higgs self-couplings are all within the conventional tree-level perturbativity band, i.e. λi ≤ 4π, but
typically one or two are of the order λi = O (5) (see Tables 2 and 4).
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BP σHl
LO/ fb δMS

EW δp
∗

EW δBFM
EW

BP1 1580 −11.1% −12.3% −12.4%

BP2 1526 −10.5% −12.2% −12.3%

BP3 1486 −10.2% −12.3% −12.3%

BP4 1432 −9.2+0.1
−0.3% −12.4% −12.4%

BP5 242.0 − −11.7% −11.7%

BP6 9.4 +1.65−11.1
−48.1% −8.86% −10.4%

Table 11: Relative NLO corrections δEW to light Higgs-boson Hl production in Higgs strahlung
pp→ Hlµ

−µ+ in the HSESM. The scale uncertainties in the MS scheme are estimated including
the RG running of parameters as given by (6.7). The central scale for BP1–4 is µ0 = 2Mh =
250.18 GeV. For BP6 we set the scale to µ0 = 130 GeV. For BP5 the MS scheme is unstable.
The scale uncertainties for BP1–3 are smaller than the given accuracy.

BP σHh
LO/ fb δMS

EW δp
∗

EW δBFM
EW

BP1 3.28 −53.7−0.7
+1.0% −20.3% −20.5%

BP2 12.3 −47.4−1.5
+1.7% −20.0% −20.3%

BP3 36.0 −40.8−0.4
+0.5% −16.8% −16.9%

BP4 114.0 −36.8−1.2
+1.3% −16.0% −15.1%

BP5 1444 −12.6+4.7
+0.0% −12.5% −12.5%

BP6 1640 −12.3+0.4
−0.1% −12.5% −12.6%

Table 12: Relative NLO corrections δEW to heavy Higgs-boson Hh production in Higgs strahlung
pp → Hhµ

−µ+ in the HSESM. The scale uncertainties in the MS scheme are estimated includ-
ing the RG running of parameters as given by (6.7). For the BP1–4 the central scales are
580 GeV, 480 GeV, 380 GeV, and 280 GeV, respectively. For BP5 and BP6 the central scale is
µ0 = 2Mh = 250.18 GeV.

the 2HDM (Table 10) no predictions in the MS scheme are presented as these scale uncertainties
are even more enhanced due to ratios sαβ/cαβ entering the predictions.

The situation for the MS renormalization in the HSESM for light (Table 11) and heavy
(Table 12) Higgs-boson production is clearly more stable for the considered benchmark scenarios
(see Table 5 for the λi values). This is reflected in a reasonable running of the parameter sα in
Table 7, except for BP5 and arguably for BP6. Due to the smaller running, we obtain results
in the expected ballpark, with no artificially large corrections, even for the heavy Higgs-boson
production near the alignment limit, where potential problems coming from the mixing energy
would be enhanced by uncancelled finite parts. In the HSESM large scale uncertainties are
observed in the MS scheme for light Higgs-boson production in BP6 and in particular for almost
degenerate neutral Higgs bosons in BP5. Further, one observes that the MS scheme leads to larger
deviations from the SM corrections, which, however, do not come with large scale uncertainties
for the well-behaved benchmark points.

In the HSESM the main source for large corrections are the top-quark contributions to the
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BP σHl
LO/ pb δp

∗

EW δBFM
EW

BP21A 2.20 −5.3% −5.3%

a1 2.18 −5.9% −5.9%

b1 2.19 −6.0% −6.0%

BP22A 2.02 −9.6% −9.6%

BP3B1 2.00 −7.3% −7.3%

BP3B2 1.65 −7.8% −7.8%

BP43 2.15 −6.1% −6.1%

BP44 2.15 −6.0% −6.0%

BP45 1.08 −6.4% −6.4%

BP σHh
LO/ fb δp

∗

EW δBFM
EW

BP22A 26.3 +1.5% +1.1%

BP3B1 126.2 −6.1% −6.0%

BP3B2 350.5 −5.6% −5.5%

BP43 19.7 −8.4% −8.5%

BP44 23.0 −3.5% −4.6%

BP45 637.1 −5.6% −5.6%

Table 13: Relative NLO corrections δEW to Higgs-boson production in VBF pp → Hl/Hhjj in
the 2HDM. The SM-like Higgs production is in the upper table, indicated as σHl

LO whereas the

heavy one is the lower table, indicated as σHh
LO. The SM EW correction to σHl

LO is δEW = −5.5%.

BP σHl
LO/ fb δp

∗

EW δBFM
EW

BP1 2108 −5.6% −5.6%

BP2 2035 −5.6% −5.7%

BP3 1984 −5.5% −5.6%

BP4 1911 −5.6% −5.6%

BP5 315.6 −5.7% −5.7%

BP6 12.8 −3.8% −5.3%

BP σHh
LO/ fb δp

∗

EW δBFM
EW

BP3 79.2 −4.6% −4.7%

BP4 181.7 −4.4% −4.5%

BP5 1927 −5.6% −5.6%

BP6 2188 −5.5% −5.6%

Table 14: Relative NLO corrections δEW to Higgs-boson production in VBF pp → Hl/Hhjj in
the HSESM. The light Higgs production is in the upper table, indicated as σHl

LO whereas the

heavy one is in the lower table, indicated as σHh
LO.
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neutral scalar mixing energy, which is not subtracted in the MS scheme. This particular effect
is enhanced for degenerate neutral Higgs bosons owing to the denominator structure in (6.2)
which is not cancelled against the one coming from the on-shell off-diagonal field renormalization
constants. Besides the top-quark contributions it is possible to induce moderate contributions
coming from the Higgs potential by tuning λ3. This requires, however, large M2

Hh
−M2

Hl
with

not too small sα, and it is not straightforward to tune the parameters in order to exceed the
top-quark contribution without getting close to the non-perturbative limit |λi| ∼ 4π. In the
2HDM, the reason for the large corrections in the MS scheme is more difficult to grasp, especially
because in view of our observables we have to deal with the renormalization of β which is known
to cause difficulties in the MSSM [102].22 The problem with β can be traced back to large
contributions in the tadpoles. For α, the largest contributions cannot be explained by tadpoles
nor by the top-quark contribution in the neutral scalar mixing energy. Here, we observe that the
large contributions to the neutral scalar mixing energy are mediated through the charged and
pseudo-scalar Higgs boson, which, eventually, exceed all other contributions. Since these large
contributions are only found in the off-diagonal LSZ-factors they remain uncancelled in the MS
scheme.

On-shell schemes

For the considered on-shell schemes none of the observed problems of the MS scheme is encoun-
tered because the large contributions in the mixing energy and the tadpoles are subtracted via δα
and δβ, i.e. all terms involving the poles 1/(M2

Hh
−M2

Hl
) and 1/M2

Ha
cancel in S-matrix elements.

Further, in view of the size of the corrections the on-shell methods perform much better in the
sense that the SM-like Higgs-boson production processes (see Tables 8, 9 for the 2HDM and
Tables 11, 12 for the HSESM) yield corrections which are close to the SM correction. In heavy
Higgs-boson production (see Table 10 for the 2HDM and Table 12 for the HSESM) the results
for on-shell renormalization schemes remain stable even for aligned23 or degenerate scenarios.
The difference between the p∗ and BFM schemes is tiny. It seems to us that the schemes are
too similar for their difference to provide a qualitative estimate of higher orders. The difference
between these schemes just results from the momentum dependence of the neutral scalar mixing
energy, which turns out to be small and starts at the order O(M2

Hl
−M2

Hh
). Note also, that the

large contributions in the neutral scalar mixing energy were observed to have almost no momen-
tum dependence. For VBF the computation has only been carried out in the on-shell schemes.
For the 2HDM (Table 13) and HSESM (Table 14) the SM-like scenarios almost coincide with
the SM predictions.

7.2 Distributions

We present distributions for the transverse momentum pT,Hh
and rapidity yHh

of heavy Higgs
bosons in Higgs strahlung and VBF. In addition, we show distributions in the rapidity yµ− of
the muon µ− in Higgs strahlung and in the rapidity yj1 of the hardest jet j1 in VBF. We selected
a typical subset of all benchmark points, namely the benchmark points BP3B1, BP43 and BP45

22Note that β in the HSESM suffers the same problems, but does not enter our fixed-order calculations and the
observables we consider. For this reason β has been decoupled from the running of α in the HSESM in order to
avoid problems related to its renormalization.

23For heavy-Higgs production one expects large one-loop corrections in almost aligned scenarios (e.g. benchmark
point b1) because in the exact alignment the LO vanishes. In that case the cross section should be computed
including squared one-loop amplitudes, making the one-loop computation effectively a LO approximation.
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BP σhLO/ fb δEW

BP3B1 877 −13.7%

BP45 802 −13.7%

BP43 501 −13.5%

BP3 366 −13.7%

BP σhLO/ fb δEW

BP3B1 1402 −4.0%

BP45 1324 −4.1%

BP43 991 −4.7%

BP3 823 −4.8%

Table 15: Relative NLO corrections δEW to Higgs-boson production in Higgs strahlung pp →
Hlµ

−µ+ in the upper table and VBF pp → Hl/Hhjj in the lower table in the SM. The Higgs-
boson mass Mh is set to the heavy Higgs-boson mass MHh

in the corresponding benchmark point.

in the 2HDM and BP3 in the HSESM. All results are given in the p∗ renormalization scheme for
α and β. We do not show any SM-like Higgs-production scenarios in the 2HDM or HSESM as
no shape distortions are observed compared to the SM and basically only the normalization of
the distributions is affected. Our results are thus consistent with the observation made in SM
EFT matched to the full model for the HSESM and 2HDM in Ref. [103], where it is stated that
for small mixing angles, near the alignment, new operators do not play a significant role.

The results for pT,Hh
distributions in Higgs strahlung and VBF are shown in Fig. 3 and Fig. 4,

respectively, the ones for yHh
in Higgs strahlung and VBF in Fig. 5 and Fig. 6, and those for yµ−

and yj1 in Fig. 7 and Fig. 8.24 In the upper plots we show the LO and NLO EW differential cross
section. In the lower plots the relative EW corrections δEW are depicted. In order to isolate the
genuine effects of the underlying model from the kinematic ones, we have computed the pure SM
corrections with the SM Higgs-boson mass set to the heavy Higgs-boson mass MHh

denoted as
“SM” in the lower panels. The corresponding SM total EW cross sections are listed in Table 15.

In the following we focus on shape-distortion effects relative to the SM results. Starting with
the distributions in Higgs strahlung, we observe quite large effects in the pT,Hh

distribution in
Fig. 3 for BP3B1 and BP43 in the 2HDM, small effects for BP3 in the HSESM, and no effect
in BP45 in the 2HDM, which perfectly reproduces the SM result. The situation changes for
the distributions in the rapidities yHh

and yµ− in Figs. 5 and 7. Here, the largest deviations
from the SM are observed for BP43, where the relative EW corrections to the yHh

distribution
in the 2HDM are flatter than in the SM. For the yµ− curve the opposite tendency is observed,
i.e. the SM correction is flatter. For BP3B1, BP45, and BP3 shape distortions relative to the
SM appear at large rapidities, which are less important due to low statistics in those regions.
Switching to the distributions for VBF in Figs. 4, 6, and 8, we observe a stronger trend towards
SM-like results. The largest differences are observed for BP43 in the pT,Hh

and yj1 distributions.
For BP3B1 the effects for the same distributions are smaller but significant. For BP3 the shape
distortion in the pT,Hh

distribution for VBF is not larger than the one for Higgs strahlung. In

24All rapidity distributions were symmetrized.
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Figure 3: Distributions in the transverse momentum of the Higgs boson pT,Hh
for heavy Higgs

production in Higgs strahlung for the benchmark points BP3B1 in (a), BP45 in (b) and BP43
in (c) in the 2HDM, and BP3 in (d) in the HSESM.
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Figure 4: Distributions in the transverse momentum of the Higgs boson pT,Hh
for heavy Higgs

production in VBF for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the
2HDM, and BP3 in (d) in the HSESM.
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Figure 5: Distributions in the rapidity of the Higgs boson yHh
for heavy Higgs production in

Higgs strahlung for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the
2HDM, and BP3 in (d) in the HSESM.
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Figure 6: Distributions in the rapidity of the Higgs boson yHh
for heavy Higgs production in

VBF for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM, and
BP3 in (d) in the HSESM.
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Figure 7: Distributions in the rapidity of the muon yµ− for heavy Higgs production in Higgs
strahlung for the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM,
and BP3 in (d) in the HSESM.
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Figure 8: Distributions in the rapidity of hardest jet yj1 for heavy Higgs production in VBF for
the benchmark points BP3B1 in (a), BP45 in (b) and BP43 in (c) in the 2HDM, and BP3 in (d)
in the HSESM.
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general in the considered benchmark points for the HSESM the effects in VBF, but also in Higgs
strahlung, are tiny compared to the ones observed in the 2HDM.

The reason for the rather mild effects in the HSESM is due to the similiarity of the HVV
vertices to the SM ones. In particular, in the HSESM all couplings of the light and heavy
Higgs boson to gauge bosons or fermions are SM-like, but modulated with (−sα) and cα, re-
spectively. In the relative corrections these factors drop out, and the only difference due to the
presence of an additional light Higgs boson and modified Higgs-boson couplings is small in the
benchmark points under consideration (all λi . 1). Remarkably, even the corrections to the
HVV vertices involving Higgs self-couplings (and thus all corrections) scale as the corresponding
tree level with either (−sα) or cα, respectively, in the (anti-)alignment limit. Furthermore, all
mixing effects between Hl and Hh vanish in this limit. For these reasons the corrections cannot
become enhanced with respect to the LO unless tree-level perturbativity is violated. In fact, in
the HSESM the one-loop corrected HhVV vertices are exactly zero in the alignment limit. Note
that these arguments apply to the whole phase-space region, thus, no significant shape-distortion
effects are expected for the processes under consideration in the HSESM.

The 2HDM, on the other hand, exhibits non-decoupling effects in the alignment limit cαβ → 0,
where the underlying vertices for heavy Higgs-boson production become loop induced. The
largest corrections in BP43 are due to the non-decoupling term in the top Yukawa coupling25

proportional to sαβ. In this case the Yukawa coupling is of the same size as the corresponding SM
one, but with a different sign and further enhanced with respect to the LO by a factor of 1/cαβ,
leading to a non-SM-like bosonic–fermionic interplay. Furthermore, the corrections in the 2HDM
are very sensitive to the presence of new particles, especially the pseudo-scalar Higgs boson in
the case of BP43. In general, the contributions involving Higgs self-couplings can be large since
non-decoupling terms remain in the alignment limit giving rise to enhanced corrections with
respect to the LO.

8 Conclusion

We reported progress towards fully automated one-loop computations in BSM models. The pre-
sented code RECOLA2 allows one to compute QCD and EW corrections for extensions of the
SM for arbitrary processes. RECOLA2 can produce NLO corrections in general models, which
requires the model file for each BSM model built in a specific format containing the ordinary,
counterterm and R2 Feynman rules. The model-file generation and the renormalization of general
quantum-field-theoretic models is performed with the new tool REPT1L in a fully automated
way, relying on nothing but the Feynman rules of the model in the UFO format. Once the
renormalization conditions for the model are established, REPT1L performs the renormaliza-
tion, computes the R2 rational terms and builds the one-loop renormalized model files in the
RECOLA2 format. We introduced the Background-Field Method as a complementary method
in RECOLA2, which is useful for practical calculations and serves as a powerful validation
method. We described the renormalization procedure in the Background-Field Method which is
handled in RECOLA2 on equal footing with the usual formulation.

In summary, we realized the following generalizations with respect to RECOLA:

• We developed a true model-independent amplitude provider, featuring a dynamic process
generation in memory without the need for intermediate compilation.

25The effect of the top contribution has been studied for on-shell heavy Higgs-boson decay.
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• A generic interface has been developed supporting all methods available in RECOLA, but
generalized to fit in the model-file approach. This includes the computation of amplitudes
and squared amplitudes, the selection of specific polarizations and resonances, and the
computation of interferences with different powers in new fundamental couplings. Fur-
thermore, we provide spin- and colour-correlated squared matrix elements required in the
Catani–Seymour dipole formalism. The latter methods are restricted to singlet, triplet and
octet states of SU(3).

• RECOLA2 is limited to scalars, Dirac fermions and vector bosons. In the near future we
will allow for Majorana fermions.

• We support Feynman rules with a general polynomial momentum dependence and allow
for elementary interactions between more than four fields. Due to internal optimizations
the number of fields per elementary interaction is restricted to at most 8.

• We generalized RECOLA2 to support the BFM as a complementary method. Further-
more, the Rξ-gauge can be used for massive vector bosons or, alternatively, non-linear
gauges can be implemented.

• With REPT1L we have formed the basis for a fully automated generation of renormalized
model files for RECOLA2. We provide a simple framework for the implementation of
custom renormalization conditions. Presently available model files for RECOLA2 include
the Z2-symmetric Two-Higgs-Doublet Model with all types of Yukawa interactions and the
Higgs-Singlet extension of the Standard Model as well as models files with anomalous triple
vector-boson and Higgs–vector-boson couplings.

The considered simple models do by far not exhaust the range of applicability of RECOLA2
and REPT1L, and further models will be implemented in the future.

As an application of the new tools we present first results for NLO electroweak corrections
to vector-boson fusion and updated results for Higgs strahlung in the Two-Higgs-Doublet Model
and the Higgs-Singlet extension of the Standard Model. We compared Higgs-production cross
sections for different renormalization schemes in both models. We analysed the scale dependence
in an MS renormalization scheme for the mixing angles, which has been improved including the
renormalization-group running of parameters. We found unnaturally large corrections and scale
uncertainties at one-loop order for the MS scheme, while the considered on-shell schemes remain
well-behaved. These enhanced contributions can be related to uncancelled finite parts in the
MS scheme and should be investigated in more detail in the future, since a proper estimation of
higher-order uncertainties, as it can be done based on scale variation in MS schemes, is highly
desirable. For the on-shell schemes, our results for the electroweak corrections to SM-like Higgs-
boson production are almost not distinguishable from the corresponding SM corrections for all
considered benchmark points. Finally, we presented distributions for the production of heavy
Higgs bosons. Here, interesting shape-distortion effects for the electroweak corrections at the
level of several percent are observed in the 2HDM.
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Appendices

A Colour-flow vertices

In RECOLA2 the colour flow is constructed recursively. For a given off-shell current the outgoing
colour configuration is determined from the incoming ones and the possible colour flows associated
to the interaction vertex. As the UFO format does not incorporate the colour flow, we need to
translate between the two representations. We implemented a dynamical system for computing
the colour flow from the generators and structure constants, rather than substituting for known
results. In the conventions of Ref. [10] the colour flow associated to a given colour structure

Ca1,...,
i1,...
j1,...

(A.1)

is obtained by multiplying (A.1) with the normalized generator (∆ap)
ip
jp

for each index ap
corresponding to an open index in adjoint representation. The indices ip and jp refer to the
colour and anti-colour indices, respectively. The generators (∆a)

i
j and structure constants fabc

define the SU(3) Lie algebra26

[∆a,∆b] = i
√

2fabc∆c, Tr {∆a∆b} = δab, ∆a =
λa√

2
, (A.2)

with λa being the Gell-Mann matrices. The computation then consists of eliminating the struc-
ture constants and the generators by solving (A.2) for the structure constants and using the
(Fierz) completeness relation for the generators as follows

fabc = − 1√
2

iTr {∆a [∆b,∆c]} ,
∑

a

(∆a)
i1
j1

(∆a)
i2
j2

= δi1j2δ
i2
j1
− 1

3
δi1j1δ

i2
j2
. (A.3)

Performing all contractions yields a sum of Kronecker deltas which represent the individual colour
flows. For instance, the quartic gluon vertex of the SM reads

g2
s

∑

k

(fka1a2fka3a4L
µ1µ2µ3µ4
1 + fka1a3fka2a4L

µ1µ2µ3µ4
2 + fka1a4fka2a3L

µ1µ2µ3µ4
3 ) , (A.4)

with L1, L2, L3 being Lorentz structures which, for the following discussion, are left unspecified.
Focusing on the colour structure δi1j2δ

i2
j3
δi3j4δ

i4
j1

, we obtain for the two relevant contributions

∑

k,a1,a2,a3,a4

(∆a1)i1j1(∆a2)i2j2(∆a3)i3j3(∆a4)i4j4fka1a2fka3a4 =
1

2

(
−δi1j2δ

i2
j3
δi3j4δ

i4
j1

+ . . .
)
,

∑

k,a1,a2,a3,a4

(∆a1)i1j1(∆a2)i2j2(∆a3)i3j3(∆a4)i4j4fka1a4fka2a3 =
1

2

(
+δi1j2δ

i2
j3
δi3j4δ

i4
j1

+ . . .
)
. (A.5)

26The ∆a generators are related to the conventional ones Ta, as used e.g. in Feynrules, via (∆a)ij =
√

2(Ta)ij
with Tr {TaTb} = δab/2 and [Ta, Tb] = ifabcTc. Note that the structure constants f̃abc in Ref. [10] are related to
the ones in this paper via f̃abc =

√
2fabc.
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Combining this result with (A.4), results in the contribution

δi1j2δ
i2
j3
δi3j4δ

i4
j1
× g2

s

2
(L3 − L1) . (A.6)

Thus, diagonalizing the vertex in colour-flow basis requires, in general, to redefine Lorentz struc-
tures and couplings.

B Off-shell currents

For a given Lorentz structure and a definite colour-flow state the BGR is derived from the
Feynman rules by selecting one of the particles as the outgoing one, multiplying with the cor-
responding propagator and the incoming currents of the other particles. Since the structure of
currents depends on the outgoing particle, one needs to derive the BGR for all distinct outgoing
particles. Consider for instance the QED vertex e+e−γ. REPT1L constructs three different
recursion relations

wα = ie
∑

β,δ,µ

De−
αβ (γµ)βδ × wµ × wδ,

w̄β = ie
∑

α,δ,µ

De+

αβ (γµ)δα × wµ × w̄δ,

wµ = ie
∑

α,β,ν

Dγ
µν (γν)αβ × w̄α × wβ, (B.1)

with wi, w̄j , wµ being either incoming or outgoing off-shell currents, depending on whether they
are on the right- or left-hand side of (B.1). For many Feynman rules, the underlying BGR are
formally the same if the couplings or masses of the particles are not further specified. Assuming
that the colour flow has been factorized as explained in App. A, all fermion–fermion–vector rules,
e.g. Ze → e or γe → e, can be mapped onto the same structures realizing that γµω+ and γµω−

form a suitable basis,

wα =
∑

β,δ,µ

Df
αβ

(
c1γ

µω+ + c2γ
µω−

)
βδ
× wµ × wδ,

w̄β =
∑

α,δ,µ

Df̄
αβ

(
c1γ

µω+ + c2γ
µω−

)
δα
× wµ × w̄δ,

wµ =
∑

α,β,ν

DV
µν

(
c1γ

νω+ + c2γ
νω−

)
αβ
× w̄α × wβ, (B.2)

with Df
αβ, D

f̄
αβ, D

V
µν denoting generic propagators for fermions, anti-fermions and vector bosons,

respectively. REPT1L has the ability to derive a minimal basis, dynamically, i.e. depending on
the operators of the theory, without relying on the Lorentz basis in the UFO format. This is
done in two steps. In the first step, all distinct BGR in the underlying theory are registered.
In the next step the BGR are merged recursively until a minimal basis is obtained. The size of
the BGR can be controlled by a parameter for the maximal number of allowed distinct generic
couplings, and it is possible to allow for vanishing couplings to improve the merging. If a merge
yields a BGR size larger than allowed, the merging is not accepted. Finally, all vertices are
mapped to the minimal basis.
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C Translation of δα to other tadpole schemes

In this section we discuss the translation of on-shell renormalization conditions from one tadpole
counterterm scheme to others using the example of δα renormalized in the p∗ scheme (6.8). Once,
we treat the tadpole counterterms in the FJ Tadpole Scheme, with the tadpole renormalization
(5.24). As an alternative tadpole counterterm scheme, we consider the one of Ref. [51], denoted
as scheme S1, which is commonly used in the SM.27 In S1 the tadpole counterterm to the neutral
scalar mixing energy is zero. Then, δαS1 in the p∗ scheme is consistently defined by absorbing
all tadpole contributions as

δαS1 = δα− tHlHh

M2
Hh
−M2

Hl

(C.1)

with δα and tHlHh
being evaluated in the FJ Tadpole Scheme together with the tadpole renor-

malization (5.24). Note that (C.1) holds in any gauge, but only the tadpole tHlHh
is affected by

the gauge choice, as δα is defined as gauge-parameter independent. For the ’t Hooft–Feynman
gauge (C.1) reduces to

δαS1 =

Σ1PI,BFM
HhHl

(
M2
Hh

+M2
Hl

2

)

M2
Hh
−M2

Hl

. (C.2)

In order to verify the gauge independence of the S-matrix one has to use the gauge depen-
dence originating exclusively from the absorbed tadpoles. Equation (C.1) implies for the gauge-
parameter dependence of δαS1

∂δαS1

∂ξ
= − 1

M2
Hh
−M2

Hl

∂tHlHh

∂ξ
, (C.3)

with ξ generically denoting a parametrization of a gauge choice, not necessarily Rξ gauge. We
stress that the gauge dependence of (C.3) is not equivalent to the gauge dependence of the
mixing energy (C.2). Finally, when studying the gauge dependence of S-matrix elements, the
gauge dependence (C.3) necessarily cancels against the tadpole counterterm gauge dependence
absorbed in other on-shell renormalized counterterms, e.g. mass counterterms and δtβ (and δM2

sb

in the 2HDM).
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