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Genomic selection of milk fatty acid composition in Sarda dairy sheep: effect of different 1 

phenotypes and relationship matrices on heritability and breeding values accuracy. by 2 

Cesarani et al. Nowadays consumers are mostly interested in dairy products with improved 3 

quality. Sheep breeders may achieve this objective thanks to recent availability of genomic 4 

tools. This paper investigates the combined use of genomic selection and mid infrared milk 5 

spectra to selective purpose for improving milk fatty acid profile. 6 
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ABSTRACT 18 

Fatty acid (FA) composition is one of the most important aspects of milk nutritional 19 

quality. However, the inclusion of this trait as breeding goal for dairy species is hampered by 20 

the logistics and high costs of phenotype recording. Fourier transform Infrared Spectroscopy 21 

(FTIR) is a valid and cheap alternative to laboratory gas chromatography (GC) for predicting 22 

milk FA composition. Moreover, as for other novel phenotypes, the efficiency of selection for 23 

these traits can be enhanced by using genomic data. Objective of this research was to compare 24 

traditional versus genomic selection approaches for estimating genetic parameters and 25 

breeding values of milk fatty acid composition in dairy sheep using either GC measured or 26 

FTIR predicted FA as phenotypes. Milk FA profiles were available for a total of 923 Sarda 27 

breed ewes. The youngest 100 had their own phenotype masked to mimic selection 28 

candidates. Pedigree relationship information and genotypes were available for 923 and 769 29 

ewes, respectively. Three statistical approaches were used: the classical pedigree based 30 

BLUP; the GBLUP that considers the genomic relationship matrix G; the single step GBLUP 31 

(ssGBLUP) where pedigree and genomic relationship matrices are blended into a single H 32 

matrix. Heritability estimates using pedigree were lower than ssGBLUP, and very similar 33 

between GC and FTIR regarding the statistical approach used. For some FA, mostly 34 

associated with animal diet (i.e. C18:2ω6, C18:3ω3), random effect of combination of flock 35 

and test date (FTD) explained a relevant quota of total variance, reducing accordingly h2 36 

estimates. Genomic approaches (GBLUP and ssGBLUP) outperformed the traditional 37 

pedigree method both for GC and FTIR FA. Prediction accuracies in older cohort were larger 38 

than young cohort. Genomic prediction accuracy (obtained using either G or H relationship 39 

matrix) in young cohort of animals, where their own phenotype were masked, were similar for 40 

GC and FTIR. Multiple trait analysis slightly affected GEBV accuracies. These results 41 



suggest that FTIR predicted milk FA composition could represent a valid option for the 42 

inclusion of this trait in breeding programs. 43 

Keywords: Mid infrared spectra, REML, FTIR, genomic selection  44 

 45 

INTRODUCTION 46 

Dairy sheep breeding programs have been historically aimed at improving total milk 47 

yield per lactation (Carta et al., 2009). Although sheep milk is almost totally destined to 48 

cheese making (Pulina et al., 2018), selection for milk composition is carried out only in few 49 

breeds (Macciotta et al., 2005; Astruc et al., 2008). This is mostly because of the high 50 

recording costs compared to the income per ewe (Carta et al., 2009; Rupp et al., 2016). On the 51 

other hand, the increasing consumer interest on dairy product nutritional quality pushes 52 

toward the inclusion of fine milk composition traits among breeding goals of dairy species. 53 

An example is represented by the conjugated linoleic acid (CLA), known for its relationships 54 

with human health (Banni et al., 2003; Bhattacharya et al., 2006; Mele et al., 2011). Ruminant 55 

dairy products are among the most important sources of CLA in human diets (Nudda et al., 56 

2014). Although animal feeding is considered the most important factor affecting milk fatty 57 

acid (FA) composition (Cabiddu et al., 2005; Sanchez et al., 2010), genetic variation for these 58 

traits has been reported in cattle (Stoop et al., 2008; Pegolo et al., 2016) and sheep (Sanchez et 59 

al. 2010; Correddu et al. 2018) suggesting the possibility for a genetic improvement. 60 

The inclusion of milk FA composition as breeding goal for dairy sheep programs is 61 

constrained by logistics and costs of phenotype recording. The standard method for measuring 62 

milk FA composition is the gas chromatography (GC) analysis, that is expensive and time 63 

consuming. A population-scale recording of milk FA appears therefore rather unfeasible for 64 

species where also the routine phenotyping of milk components is economically unbearable. 65 

A valid alternative to GC is represented by Fourier transform Infrared (FTIR) spectroscopy. 66 



This technique, implemented in milk lab equipment currently used for routine milk 67 

composition analysis, produces a spectrum of approximately one thousand variables that 68 

could be used for large scale prediction of novel phenotypes, including FA (e.g. Cecchinato et 69 

al., 2009; De Marchi et al 2011; McParland et al., 2011; Dehareng et al., 2012; Fleming et al., 70 

2016). Good prediction accuracies of milk FA based on FTIR spectrum have been reported 71 

for dairy cattle (Arnould and Soyeurt, 2009; De Marchi et al., 2011). Similar results, even 72 

though with a certain degree of variability and in a limited number of studies, have been 73 

reported for dairy sheep (Ferrand-Calmels et al., 2014; Caredda et al. 2016; Correddu et al., 74 

2018). Fatty acid predicted by FTIR exhibited genetic variation both in dairy cattle (e.g. 75 

Soyeurt et al., 2006; Bastin et al., 2013; Narayana et al., 2017) and sheep (Sanchez et al., 76 

2010; Boichard et al., 2014). Moreover, genetic correlations ranging from 60% to 99% 77 

between FTIR predicted and GC measured milk FA have been reported both in cattle 78 

(Bonfatti et al., 2017) and sheep (Correddu et al., 2018).  79 

Dairy sheep breeding programs are based on the classical quantitative genetic 80 

approach, with a pyramidal organization of the population, large scale registration of 81 

phenotypes and pedigree, and genetic evaluations of AI rams based on progeny testing (Carta 82 

et al., 2009; Baloche et al., 2014). The availability of high throughput SNP panel for sheep 83 

has opened the perspective of genomic selection (GS) also for this species. Researches have 84 

been carried out on dairy (Duchemin et al., 2012; Baloche et al., 2014), meat, and wool sheep 85 

(Daetwyler et al., 2012). An improvement of genomic breeding value (GEBV) accuracies 86 

over the traditional pedigree index has generally been observed, even though to a lesser extent 87 

compared to dairy cattle (Legarra et al., 2014).  88 

Genomic studies on milk FA in cattle have focused mostly on the study of their 89 

genetic determinism (Stoop et al., 2009; Bouwman et al. 2011; Buitenhuis et al., 2014). In 90 

dairy sheep, the molecular basis of FA have been investigated by candidate gene (Crisà et al, 91 



2010; Moioli et al., 2012), and QTL detection (Carta et al., 2008) approaches. Genomic 92 

selection  studies for FA compositions are limited to beef cattle (Uemoto et al., 2011; Chen et 93 

al., 2015; Zhu et al. 2017) and meat sheep (Rovadoscki et al., 2018). One of the main 94 

advantange of GS over traditional selection is that, once a reference population with both 95 

phenotypic and genotypic records has been settled, breeding values of animals without their 96 

own phenotypes can be predicted with a reasonable accuracy (Meuwissen et al., 2001; Hayes 97 

et al., 2009). Therefore, GS seems to be an appealing option for novel traits that are difficult 98 

to measure routinely as milk FA composition (Boichard and Brochard, 2012; Daetwyler et al., 99 

2012). 100 

Aim of the present work is to explore the feasibility of breeding for milk FA 101 

composition in a dairy sheep breed by combining the use of FTIR predicted phenotypes and 102 

the genomic selection technology. At this purpose breeding values prediction were carried out 103 

running a pedigree based and two genomic models, using either FTIR predicted and GC 104 

measured FA as phenotypes. Moreover, the effect of the different phenotypes used and of the 105 

estimation methods on heritability was tested. 106 

 107 

MATERIALS AND METHODS 108 

Data 109 

A sample of 923 Sarda breed dairy ewes farmed in 47 flocks located in the island of 110 

Sardinia (Italy) were considered. Milk samples, one per animal, were collected from February 111 

to June 2015 (Table 1). In this study 13 individuals FA (C4:0, C6:0, C8:0, C10:0, C12:0, 112 

C14:0, C16:0, C18:0, C18:1t11, C18:1c9, C18:2ω6, C18:3ω3, CLAc9t11), 5 groups of FA  113 

and a ratio between groups of FA were analyzed. Groups of FA were calculated as follow 114 

(Appendix, Table A1): SFA, sum of individual saturated fatty acids; MUFA, sum of 115 

individual monounsaturated fatty acids; PUFA, sum of individual polyunsaturated fatty acids; 116 



TFA-VA, sum of individual trans FA with the exclusion of C18:1t11 (vaccenic acid); 117 

Denovo, sum of individual FA that are de novo synthesized in the mammary gland; PUFA n-118 

6:PUFA n-3, ratio between the sum of individual PUFA n6 and the sum of all individual 119 

PUFA n3. Milk FA (g FA/100 g total FA) composition was both measured by gas 120 

chromatography (FA_GC) and predicted by partial least square regression (PLS) using the 121 

FTIR spectra (FA_FTIR) generated by milk analysis performed with Milkoscan FT6000 122 

instrument (Foss, Hillerød, Denmark). PLS was carried out by extracting 18 latent factors. 123 

Prediction accuracies were tested by using a calibration data set of 700 ewes and a validation 124 

data set of 223 ewes, respectively. One-hundred replicates randomly assigning animals to the 125 

two data sets were performed. Details for GC analysis are reported in the work of Correddu et 126 

al., (2018). 127 

Genotypes obtained with the Infinium Ovine SNP50 v1 BeadChip (Illumina Inc., San 128 

Diego, California) were available for 769 ewes out of 923. Quality control of SNP genotypes 129 

was carried out with PLINK software (Purcell et al., 2007). All genotyped ewes had a call rate 130 

greater than 0.95. A SNP was discharged if: the call rate was lower than 0.975 (867 markers 131 

removed), the minor allele frequency (MAF) was lower than 0.01 (1,309 markers removed), it 132 

deviated significantly from the Hardy Weinberg Equilibrium (P < 0.01, 1,264 markers 133 

removed), or it did not map to the OAR_v3.1 assembly (6,182 markers removed). After 134 

quality control, all genotyped ewes and 44,619 SNPs across 27 chromosomes were retained 135 

for the analysis. A pedigree with 633,317 animals was also available. 136 

Variance component estimation  137 

Variance components for FA_GC and FA_FTIR traits were estimated by restricted 138 

maximum likelihood (REML) using three mixed linear models that differed in the relationship 139 

matrix used.  140 

The following mixed linear model was implemented: 141 



y = Xb + Qf + Za + e  [1] 142 

where y is the vector of investigated FA; X is the incidence matrix linking records to fixed 143 

effects and b the related vector; Q is the incidence matrix for random flock test-date 144 

combination (FTD) effect and f the related vector (71 classes) distributed as N(0, Iσ2
FTD) 145 

where I is an identity matrix and σ2
FTD is the associated variance component; Z is the 146 

incidence matrix for random genetic effects, relating records to animals and a is the vector of 147 

breeding values (a distributed according to the relationship matrix used); e is the vector of 148 

random residuals distributed as N(0, Iσ2
e) where σ2

e is the residual variance. The fixed effects 149 

(Table 1) considered in the model were: parity (8 classes), days in milk (5 classes), lambing 150 

month (4 classes), altitude of farm (3 classes).  151 

The additive genetic effect was modelled using three genetic (co)variance structures. 152 

In the first model (ABLUP), the pedigree relationship matrix (A) was used and the animal 153 

effect was distributed as N(0,Aσ2
a) where σ2

a is the additive genetic variance. The other two 154 

genomic models used the genomic relationship matrix (G) (GBLUP)  or  a blend of genomic 155 

and pedigree relationship matrices (H) in a single-step framework (ssGBLUP) with a 156 

distributed as N(0, Gσ2
a) and N(0, Hσ2

a), respectively. From whole pedigree, three 157 

generations were traced back from the phenotyped animals; the composition and number of 158 

animals of the different relationship matrices are reported in Table 2. G and H matrices were 159 

computed according to VanRaden (2008) and Aguilar et al. (2010), respectively. AIREML 160 

algorithm implemented in blupf90 family software was used for estimating variance 161 

components (Mistzal et al., 2015). Heritability (h2) and intra-flock heritability (h2
IF) were 162 

computed respectively as: 163 

ℎ2 = 𝜎𝑎
2 (𝜎𝑎

2 + 𝜎𝐹𝑇𝐷
2 + 𝜎𝑒

2)⁄  164 

ℎ𝐼𝐹
2 = 𝜎𝑎

2 (𝜎𝑎
2 + 𝜎𝑒

2)⁄ ; 165 



moreover, variance explained by FTD (r2
FTD) was computed as:  166 

𝑟𝐹𝑇𝐷
2 = 𝜎𝐹𝑇𝐷

2 (𝜎𝑎
2 + 𝜎𝐹𝑇𝐷

2 + 𝜎𝑒
2)⁄  167 

Breeding Value Predictions  168 

Breeding values were predicted using model [1] with the traditional (ABLUP) and the 169 

two GS (GBLUP and ssGBLUP) approaches, respectively. From the 769 animals with 170 

genotypes and own phenotypes, records of the 100 youngest ewes (born after November 171 

2012) were masked in order to mimic the condition of candidate animals.  172 

Accuracy of breeding values animals were estimated as: 173 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = √1 − 𝑆𝐸𝑃2/𝜎𝑎
2 174 

where SEP is the standard error of prediction, derived from the diagonal element of the LHS 175 

inverse of the mixed model equations. In order to ensure a fair comparison among accuracies 176 

obtained in the three different methods, the same variance components (the ones estimated 177 

with ABLUP) were used in the three approaches for breeding values predictions and 178 

computation of accuracy. 179 

Moreover, in order to reduce GEBV bias in the ssGBLUP, a weighing factor omega 180 

(ω) equal to 0.95 was applied in construction of the inverse of the H matrix (Tsuruta et al., 181 

2013): 182 

𝐇−1 =  𝐀−1 +  [
0 0
0 𝐆−1 −  ω 𝐀22

−1] 183 

where A22 is the pedigree-based relationship matrix for genotyped animals  184 

Being FA genetically correlated traits (Carta et al. 2008; Sanchez et al., 2010), GEBV 185 

accuracy may be modified if a multiple trait approach is used. However, considering the large 186 

number of FA analyzed in the present study, the effect of genetic correlations among FA on 187 

GEBV accuracy was investigated by a series of bivariate analyses using the ssGBLUP 188 

approach. Thus for each single FA, two accuracies were available: one obtained with the 189 



univariate approach and another obtained as the mean accuracy of the 17 bivariate analyses 190 

involving that specific FA.  191 

 192 

RESULTS 193 

 Basic statistics (Table 3) of the milk FA_GC and FA_FTIR, and coefficients of 194 

determination of the regression between FA_GC and FA_FTIR (R2
GC-FTIR) essentially confirm 195 

previous reports on dairy sheep (Ferrand-Calmels et al., 2014; Caredda et al., 2016; Correddu 196 

et al., 2018).  197 

Genetic Parameters of Milk Fatty Acid profile 198 

Heritability estimates showed relevant variations across different FA, phenotyping 199 

methods (GC vs FTIR), and models (Table 4). Overall, low to moderate values were 200 

obtained, apart from C4:0 and C16:0. Largest heritabilities were observed for the C4:0 201 

FA_FTIR in the GBLUP (0.56), and for the C16:0 FA_GC in the ABLUP (0.46) (Table 4), 202 

respectively. A similar pattern was detected for intra-flock heritabilities (Table 5), that 203 

exhibited larger values compared to h2, especially for FA characterized by a larger flock-test 204 

date variance (Table 6)  (e.g. C18:0, C18:1t11, C18:1c9, C18:2ω6, C18:3ω3, CLAc9,t11 and 205 

ω6:ω3). Lowest estimates (nearly zero) were obtained for SFA and MUFA in the ABLUP, 206 

and for C18:2ω6 in all the three prediction models for FA_FTIR. 207 

The considered phenotype, FA_GC or FA_FTIR, affected the h2 results, even though 208 

no defined patterns were observed. For example, FA_GC estimates were markedly larger than 209 

FA_FTIR for C16:0 in all models (Table 4). On the contrary, FA_GC estimates were smaller 210 

for C4:0, especially for the two genomic models. It should be also noticed that the h2 211 

estimated with ABLUP were close to zero for SFA and MUFA using FA_FTIR phenotypes. 212 

In order to highlight recurrent pattern in the additive genetic component, 
a for FA_GC was 213 

regressed onto 
a for FA_FTIR (Figure 1) for the three models used. Additive genetic 214 



variances estimated using FA_GC and FA_FTIR were from moderately to strongly correlated 215 

depending on (co)variance matrix used. 216 

The h2 and h2
IF estimated with ABLUP were generally lower than those obtained with 217 

the two genomic approaches, both for FA_GC and FA_FTIR (Tables 4 and 5). Exceptions 218 

were the C16:0 and C18:0, that showed an opposite behavior. In particular, largest differences 219 

were found for C4:0 and C16:0 as individual FA, and for SFA and MUFA as groups, 220 

respectively. GBLUP and ssGBLUP estimates were very similar (Table 4, and 5). 221 

Differences among h2 estimates were mainly due to changes in the additive genetic 222 

components as shown in Appendix (Table A2). In particular, for most of the FA analyzed no 223 

differences in 2
a were observed with genomic methods. In our study, largest values of R2 of 224 

the regression between 2
a FA_GC and 2

a FA_FTIR were observed using genomic models 225 

(0.84 and 0.91) in comparison to the traditional pedigree models (0.45, Figure 1). Finally, 2
a 226 

estimates of C16:0, C18:0, C18:1c9, SFA and MUFA were always higher for FA_GC than 227 

FA_FTIR. 228 

The FTD contribution to total phenotypic variance was moderate to large. It was on 229 

average >0.5 across all different prediction models and phenotypes (Table 6), ranging from 230 

0.17 to 0.88. The variance components for FTD were nearly the same in the three different 231 

models, while differences (up to 15%) were highlighted between FA_GC and FA_FTIR (e.g. 232 

C4:0, C14:0, C18:1t11, C18:26, C18:33, CLA, PUFA, 3: 6 and TFAnoVA ).  233 

Accuracy of EBV and GEBV predictions 234 

Accuracies of breeding values were low to moderate, ranging from 0.05 to 0.84, and 235 

from 0.02 to 0.45 in the oldest and youngest cohort, respectively (Table 7). The palmitic acid 236 

(C16:0) showed the largest accuracy for FA_GC across the different prediction models, both 237 

for oldest (0.84) and youngest animals (0.45). The largest GEBV accuracy for FA_FTIR was 238 



observed for the butyric acid (C4:0). The linoleic acid (C18:2ω6) showed the lowest accuracy 239 

in most of the scenarios considered. Accuracies of FA groups reflected their composition, 240 

with  saturated FA showing the lowest and PUFA and TFAnoVA the highest accuracies, 241 

respectively.  242 

The cohort of animals with own phenotypes exhibited larger prediction accuracies 243 

compared to young animals without phenotype (overall average difference +0.24) in all 244 

scenarios (Table 7). The largest difference (+0.30) was observed for the stearic acid (C18:0), 245 

whereas the smallest for the saturated FA group (+0.09).  246 

Differences were also observed between the phenotype (FA_GC vs FA_FTIR) for all 247 

the three models and for the two cohorts of animals (Table 7), even though without a defined 248 

pattern. The major difference between FA_GC and FA_FTIR were observed in the older 249 

cohort (from -0.23 up to 0.48 for C6:0 and C16:0, respectively). Accuracies differed mainly in 250 

the ABLUP approach for both young and older cohorts. The difference between FA_GC and 251 

FA_FTIR tended to reduce in genomic methods applied to young animals (Table 7). 252 

Regardless of the statistical model used, the largest difference between FA_GC and FA_FTIR 253 

was observed for the C16:0 (on average difference of 0.45 ad 0.18 for old and young animals, 254 

respectively). Relevant differences (at least >15%) between FA_CG and FA_FTIR were 255 

observed also for C18:0, C18:26, SFA and MUFA both in older and younger animals. 256 

As far as the three models are concerned, genomic prediction accuracies were 257 

constantly higher than in ABLUP (Table 7). In particular, differences between ABLUP and 258 

genomic methods were larger in young animals. In this cohort, positive changes up to +0.12 259 

(+0.17) and +0.10 (+0.21) were observed in the comparison GBLUP-ABLUP (ssGBLUP-260 

ABLUP) for FA_GC and FA_FTIR, respectively. Among the two genomic approaches, the 261 

ssGBLUP accuracies were always larger than GBLUP ones both in young and old animal 262 

cohorts. 263 



Bivariate GEBV accuracies for the young animals were generally of the same 264 

magnitude of those obtained using the univariate approach (Table 8). Differences were 265 

exhibited by some FA_FTIR: in particular the GEBV accuracy for linoleic, SFA and MUFA 266 

showed an increase (>0.03) moving from univariate to multivariate approach.  267 

 268 

DISCUSSION 269 

Fatty acid composition is a key feature in defining sheep milk nutritional quality. Its 270 

genetic improvement is an appealing option for enhancing market value of dairy sheep 271 

products. However, breeding for milk FA composition in sheep is hampered by difficulties in 272 

phenotyping and in implementing appropriate selection strategies. Use of equations for 273 

predicting FA from milk FTIR spectra is widely recognized as a cost-effective solution for 274 

obtaining FA profiles in milk of different ruminant species (Ferrand-Calmels et al. 2014). At 275 

the same time, early experiences of genomic selection on meat, wool (Daetwyler et al., 2012) 276 

and dairy sheep (e.g Duchemin et al., 2012; Legarra et al. 2014; Baloche et al. 2014) have 277 

reported an increase of breeding value accuracy and selection response compared to the 278 

traditional pedigree-based method. 279 

Results of the present study, although referred to a sample of limited size, showed an 280 

effect of both investigated phenotypes (i.e. FA_GC or FA_FTIR) and of the information used 281 

to structure the genetic covariance among animals (pedigree, genomic, or both) on genetic 282 

parameter estimates and breeding value prediction accuracies.  283 

Genetic Parameters of Milk Fatty Acid profile 284 

Heritability estimates based on pedigree models were consistent with a previous work 285 

carried out on a similar data set (Correddu et al., 2018), whereas genomic based h2 resulted 286 

higher and lower than pedigree based for saturated (<C14) and unsaturated FA, respectively. 287 

A large variation among different FA was observed, regardless the considered approach or the 288 



phenotype used, in agreement with previous studies (Sanchez et al., 2010; Boichard et al., 289 

2014). Differences among FA are mainly related to their metabolic pathway. Some FA are 290 

synthetized de novo in the mammary gland, others are mostly related to the animal diet, and 291 

others came from of body reserve mobilization. Thus, larger heritability is expected for FA 292 

whose milk concentration is under enzymatic control (i.e. de novo FA) compared to FA that 293 

are related to the animal diet (Arnould and Soyeurt, 2009). The higher value of heritability 294 

observed for Denovo FA compared to those coming from diet or body fat reserve (e.g.: C18 295 

FA) seemed to confirm the stronger genetic regulation for the former group of FA (e.g. Bastin 296 

et al., 2011; Narayana et al., 2017). Morever, lowest h2 values were highlighted for C18:2ω6 297 

and C18:3ω3 (Table  4 and 5), regardless the model used. It is well known that these two FA 298 

are strongly dependent on their concentration in animals’ diet (e.g. Fleming et al., 2016; 299 

Pegolo et al. 2017). 300 

Differences between h2 estimated using FA_GC and FA_FTIR were in most of cases 301 

low to moderate. FA_FTIR produced larger h2 estimates for short chain FA (Figures 1), 302 

whereas an opposite trend can be observed for medium and long-chain FA. A similar pattern 303 

was also observed in cattle using GC (Stoop et al., 2008; Duchemin et al., 2013). The largest 304 

differences were found for FA (e.g.C16:0 and C4:0) that exhibited lowest FTIR prediction 305 

accuracies. In dairy cattle, larger heritabilities for FA_GC compared to FA_FTIR have been 306 

reported (Rutten et al., 2010; Bonfatti et al., 2017). In particular, Bonfatti et al (2017) pointed 307 

out that the differences were due to a reduction of the 2
a in FA_FTIR (-0.52%) compared to 308 

FA_GC. In the present work, the use of FA_FTIR phenotypes resulted in most of cases (short 309 

chain FAs) in smaller estimates for all the three variance components (Table A2).  310 

Apart from the values obtained for palmitic and stearic acids, pedigree based h2 were 311 

in most of cases lower than those obtained using genomic information. In particular, most of 312 

FA showed an increase of 2
a and a reduction of 2

e (especially for FA_FTIR) when moving 313 



from traditional pedigree to genomic methods, respectively (Table A2). Veerkamp et al. 314 

(2011) working on a dairy cattle sample of comparable size, found larger heritabilities for 315 

milk yield, dry matter intake and body weight, when A instead of G was used. This result, due 316 

to a reduction of 2
a when genomic information was used, was explained with the different 317 

structure of the two relationship matrices, especially as far as the base population is 318 

considered.  319 

The higher heritability observed in the present work for genomic models can be 320 

ascribed to a series of reasons. The first are the considered traits. Milk FA content is 321 

characterized by a relevant sensitivity to environmental conditions. This peculiarity is 322 

enhanced in the typical farming system of the Sarda sheep, where natural pastures represent 323 

the main feeding source (Carta et al., 2009; Nudda et al. 2014). Moreover, it should be 324 

remembered that only one record per animal was available. This condition, that undoubtedly 325 

reduces the reliability of the measure, is rather frequent in studies on FA genetic parameter 326 

estimation using FA_GC also in cattle (e.g. Stoop et al., 2008; Mele et al., 2009; Pegolo et al., 327 

2016). On the other hand, the recording of a single measure per animal is more representative 328 

of the practical situation of a breeding scheme where innovative phenotypes are considered 329 

among the selection goals. A second reason is represented by the structure of the considered 330 

dairy sheep population, quite different from usual dairy cattle populations of genomic studies. 331 

It consisted of only females, sired by 445 rams (2.07±1.7 with a maximum of 15 daughter per 332 

ram). Such a structure can be considered representative of the Sarda breed, in which natural 333 

mating is the main reproductive technique (Carta et al., 2009). A third reason can be found in 334 

the genetic structure of dairy sheep populations. Contrarily to what observed in the present 335 

study, larger heritabilities were found when A was fitted in comparison with G on dairy cattle 336 

(Veerkamp et al., 2010; Haile-Mariam et al., 2013; Loberg et al., 2015). The authors 337 

explained these results with the imperfect linkage disequilibrium (LD) existing between SNP 338 



and causative mutations that makes G unable for capturing all the genetic variance of the trait 339 

in comparison with A. Such a limitation of G is likely to be more pronounced in sheep 340 

populations that, in comparison to cattle, are characterized by a lower LD at relatively short 341 

distance (Kijas et al., 2014). However, the reliability of pedigrees in sheep is often 342 

questionable due to the uncorrected parentage assignment or the high number of unknown 343 

parents. Thus, the use of genomic relationship matrices could allow to estimate more 344 

accurately relationship among animals because the realized fraction of allele shared between 345 

individual is directly computed (Hayes and Goddard, 2008; Legarra et al., 2014), with 346 

subsequent large heritability estimates.  347 

Accuracy of EBV and GEBV predictions 348 

In our study breeding value accuracies for FA milk profile were low to moderate.  349 

Considering the sample size, the genetic architecture of milk FA composition, and the number 350 

of records per ewe our results are in accordance to genomic selection theory (Goddard and 351 

Hayes, 2009). Animals with their own phenotypes exhibited larger accuracies compared to 352 

young animals. However, the addition of genotype information to the breeding value 353 

prediction resulted in an improvement of accuracy, also in latter group. Other studies in sheep 354 

underlined the higher accuracy of genomic methods compared to the pedigree-based approach 355 

for milk and meat production traits (Daetwyler et al., 2012; Legarra et al., 2014; Baloche et 356 

al., 2014). Moreover, GS studies carried out in beef cattle on muscle FA composition reported 357 

for some of FA investigated also in this study a similar pattern of GEBV accuracy (Chang et 358 

al., 2015; Chiaia et al., 2017; Zhu et al., 2017).  359 

The similar magnitude of GEBV accuracy for FA_FTIR and FA_GC is an interesting 360 

for a possible implementation breeding program for milk FA composition in dairy sheep, due 361 

to the considerable reduction of phenotyping cost. The predictive ability of FTIR spectra 362 

(R2
GC-FTIR, see Table 3) might have affected the accuracy of genomic predictions: a moderate 363 



correlations between R2
GC-FTIR and (G)EBV accuracy were observed (0.46 and 0.45 in 364 

ssGBLUP for old and young cohort, respectively). 365 

Regarding the prediction model, the slightly higher accuracies found using ssGBLUP 366 

could be ascribable to the blended (co)variance structure that can takes benefits from the 367 

inclusion of all relatives of non-genotyped and genotypes ewes with recorded traits (Aguilar 368 

et al., 2010; Legarra et al., 2014). Finally, when the selection intensity is not so high (as in 369 

Sarda sheep), the use of genomic selection with genotyped females may help to improve milk 370 

composition traits even of un-phenotyped animals (young cohort) as already suggested in a 371 

simulation study by Gorjanc et al. (2015).  372 

However, the complex genetic correlation pattern that exist among the different FA 373 

should be carefully taken into account (Carta et al. 2008; Sanchez et al. 2010) when 374 

implementing a coherent selection goal aimed at improving the milk FA composition. 375 

Actually, the use of a bivariate approach resulted in negligible differences of GEBV 376 

accuracies compared to the univariate models (in many cases of 0.01), and only in few cases a 377 

slight improvement (0.03-0.07) was observed. Apart from a sampling effect, other possible 378 

explanations can be found in the relevant literature. Previous studies using either simulated 379 

(Calus and Veerkamp, 2011; Guo et al., 2014) or real type traits (Tsuruta et al. 2011) data 380 

reported from zero to low advantages for multiple trait GEBV accuracy over single trait 381 

evaluations. According to these authors, superiority of multiple over single trait accuracies 382 

depends on the amount of unphenotyped animals (i.e., missing data), and on the heritability 383 

and genetic relationship among considered traits. In the present work, the number of 384 

unphenotyped animals was equal for both traits considered in the bivariate analysis, i.e., the 385 

scenario that according to previous simulation studies (Calus and Veerkamp, 2011; Guo et al., 386 

2014) did not result in any improvement of accuracy. Moreover, accuracy gains here observed 387 



(Table 8) were for traits with low heritability. This result is also in agreement to what 388 

previously reported (Jia and Jannink, 2012; Guo et al., 2014). 389 

 390 

CONCLUSIONS 391 

The Fourier Transform Infrared spectrography is commonly used in dairy industry for 392 

milk composition recordings, as well as genomic selection is an effective tool to rank the best 393 

candidates for breeding purpose.  The results presented in the current investigation, confirmed 394 

that in dairy sheep FTIR predicted FA are heritable traits, exhibiting from low to moderate 395 

heritabilities. These figures are comparable to those estimated from more expensive and time 396 

consuming GC measured phenotypes. Moreover, breeding value accuracies obtained with 397 

genomic selection methods were always higher than those estimated with traditional pedigree 398 

based approach, and ssGBLUP outperformed the GBLUP method. The use of a bivariate 399 

model result in a slight improvement of GEBV accuracy for only few traits. Results of the 400 

present study, although referred to a sample of limited size, suggest that the combination of 401 

FTIR predictions and genomic selection technology could represent an interesting option for 402 

the genetic improvement of milk FA composition in dairy sheep.  403 

 404 

ACKNOWLEDGEMENTS 405 

This research was funded by Regional Government (Grant no. CRP 61608 “Il latte Ovino 406 

della Sardegna” and by G) and Italian Research Project “GenHome”. The authors would like 407 

to acknowledge  the Provincial Breeders Associations (AIPA) of Cagliari, Nuoro, Sassari, and 408 

Oristano (Italy); the laboratory of Sardinian Breeders Association (ARA, Oristano, Italy) for 409 

providing milk spectra; the Italian Associations of Animal Breeders (AIA). Authors are 410 

grateful to Daniela Lourenco (University of Georgia, Athens, GA, USA) for her useful 411 

suggestion on implementing genomic models.   412 



Table 1. Flock statistics and distribution of records for fixed effects considered in the analysis 413 

Observations n % 

Flocks 47  

Ewes/flock 19.6±7.2  

Parity   

1 186 20 

2 123 13 

3 151 16 

4 164 18 

5 116 13 

6 95 10 

7 68 7 

>7 20 2 

Lambing Month   

Jan 142 15 

Feb-Mar 130 14 

Oct-Nov 377 41 

Dec 274 30 

Altitude   

Mountain (>500 m) 135 15 

Hill (200-500 m) 480 52 

Plain (<200 m) 308 33 

Total 923 100 

  414 



Table 2. Type of  relationship matrices used and number of animals for the three (co)variance 415 

structures 416 

  Matrix  

Animals A G H 

With genotypes and own phenotypes 769 769 769 

Without genotypes and with own phenotypes  154 - 154 

Other relatives without phenotype 3,924 - 3,924 

Total number of animals 4,847 769 4,847 

  417 



Table 3. Descriptive statistics of fatty acids measured using gas chromatography (FA_GC) or 418 

predicted using Fourier Transformed Infrared spectrum (FA_FTIR) and coefficients of 419 

determination (R2
CG- FTIR). 420 

  FA_GC FA_FTIR  

Fatty Acid Trait Mean SD Mean SD R2
CG- FTIR 

Butyric acid C4:0 2.68 0.37 2.67 0.34 0.79 

Caproic acid C6:0 1.76 0.36 1.76 0.34 0.87 

Caprylic acid C8:0 1.61 0.45 1.60 0.43 0.89 

Capric acid C10:0 5.55 1.73 5.53 1.67 0.91 

Lauric acid C12:0 3.50 0.99 3.49 0.94 0.87 

Myristic acid C14:0 10.85 1.52 10.83 1.39 0.79 

Palmitic acid C16:0 25.97 2.95 25.97 2.58 0.69 

Stearic acid C18:0 10.24 2.49 10.25 2.20 0.72 

Vaccenic acid (VA) C18:1t11 2.06 1.04 2.05 0.92 0.75 

Oleic acid C18:1c9 17.14 3.58 17.20 3.34 0.85 

Linoleic acid C18:2ω6 2.09 0.50 2.09 0.40 0.51 

α-Linolenic acid C18:3ω3 0.89 0.50 0.89 0.43 0.68 

Conjugated linoleic acid CLAc9,t11 1.03 0.47 1.03 0.41 0.72 

Saturated fatty acids SFA 67.72 3.88 67.67 3.60 0.82 

Monounsaturated fatty acids MUFA 25.83 3.58 25.88 3.29 0.81 

Polyunsaturated fatty acids PUFA 6.44 1.45 6.44 1.32 0.79 

PUFA n-6:PUFA n-3 ω6:ω3 2.47 1.15 2.48 1.01 0.70 

Trans Fatty Acid (TFA) – VA TFAnoVA 4.56 1.52 4.55 1.35 0.77 

de novo synthesized FA1 Denovo1 23.56 4.62 23.74 4.30 0.90 

1 Denovo = C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized 421 

in the mammary gland. 422 

  423 



Table 4. Heritability (h2) for milk fatty acid composition measured by gas chromatography 424 

(FA_GC) or predicted by Fourier Transform Infrared Spectra (FA_FTIR) using pedigree 425 

relationship matrix (ABLUP), genomic relationship matrix (GBLUP), blended genomic-426 

pedigree matrix (ssGBLUP), respectively. SE of heritability were reported in brackets. 427 

 Ablup Gblup ssGblup 

Trait FA_GC FA_FTIR FA_GC FA_FTIR FA_GC FA_FTIR 

C4:0 0.22 (.10) 0.27 (.11) 0.36 (.09) 0.56 (.10) 0.34 (.09) 0.49 (.10) 

C6:0 0.04 (.06) 0.12 (.07) 0.16 (.06) 0.23 (.06) 0.17 (.06) 0.25 (.06) 

C8:0 0.10 (.06) 0.12 (.06) 0.16 (.06) 0.20 (.06) 0.17 (.06) 0.22 (.06) 

C10:0 0.13 (.06) 0.14 (.06) 0.16 (.07) 0.18 (.06) 0.17 (.06) 0.19 (.06) 

C12:0 0.15 (.07) 0.15 (.07) 0.16 (.07) 0.16 (.06) 0.17 (.06) 0.17 (.06) 

C14:0 0.12 (.09) 0.07 (.08) 0.15 (.08) 0.10 (.07) 0.19 (.08) 0.12 (.07) 

C16:0 0.46 (.11) 0.07 (.07) 0.26 (.08) 0.12 (.07) 0.35 (.09) 0.11 (.07) 

C18:0 0.29 (.10) 0.14 (.08) 0.23 (.08) 0.19 (.07) 0.26 (.08) 0.16 (.07) 

C18:1t11 0.14 (.06) 0.09 (.05) 0.09 (.05) 0.08 (.00) 0.07 (.05) 0.09 (.04) 

C18:1c9 0.17 (.07) 0.10 (.06) 0.17 (.06) 0.12 (.07) 0.18 (.06) 0.14 (.05) 

C18:2ω6 0.07 (.06) 0.00 (.00) 0.08 (.06) 0.00 (.00)  0.12 (.06) 0.00 (.00) 

C18:3ω3 0.03 (.02) 0.03 (.04) 0.01 (.01) 0.07 (.04) 0.02 (.02) 0.08 (.04) 

CLAc9,t11 0.12 (.06) 0.13 (.06) 0.10 (.06) 0.09 (.05) 0.08 (.06) 0.10 (.05) 

SFA1 0.07 (.09) 0.01 (.08) 0.20 (.08) 0.18 (.08) 0.22 (.08) 0.20 (.08) 

MUFA2 0.08 (.07) 0.01 (.07) 0.18 (.07) 0.15 (.07) 0.19 (.07) 0.17 (.07) 

PUFA3 0.09 (.05) 0.11 (.07) 0.08 (.05) 0.15 (.06) 0.10 (.05) 0.14 (.06) 

ω6:ω34 0.05 (.02) 0.05 (.03) 0.04 (.02) 0.08 (.03) 0.04 (.02) 0.08 (.03) 

TFAnoVA5 0.14 (.07) 0.06 (.06) 0.15 (.06) 0.18 (.06) 0.16 (.06) 0.17 (.06) 

Denovo6 0.11 (.07) 0.11 (.07) 0.15 (.06) 0.15 (.06) 0.16 (.06) 0.16 (.06) 

 428 
1Sum of the individual saturated fatty acids. 429 
2Sum of the individual monounsaturated fatty acids. 430 
3Sum of the individual polyunsaturated fatty acids; odd- and branched-chain fatty acids. 431 
4Ratio between the sum of individual PUFA ω6 fatty acids and the sum of individual PUFA 432 

ω3 fatty acids. 433 
5Trans Fatty Acid (TFA) without Vaccenic acid (VA). 434 
6Sum of C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized in 435 

the mammary gland.  436 
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Table 5. Intra-Flock heritability (h2
IF) for milk fatty acid composition measured by gas 437 

chromatography (FA_GC) or predicted by Fourier Transform Infrared Spectra (FA_FTIR) 438 

using pedigree relationship matrix (ABLUP), genomic relationship matrix (GBLUP), blended 439 

genomic-pedigree matrix (ssGBLUP), respectively. SE of h2
IF were reported in brackets. 440 

 Ablup Gblup ssGblup 

Trait FA_GC FA_FTIR FA_GC FA_FTIR FA_GC FA_FTIR 

C4:0 0.28 (.12) 0.34 (.13) 0.45 (.11) 0.68 (.11) 0.42 (.11) 0.59 (.11) 

C6:0 0.09 (.14) 0.29 (.15) 0.38 (.13) 0.55 (.12) 0.40 (.12) 0.58 (.11) 

C8:0 0.25 (.15) 0.30 (.15) 0.41 (.13) 0.52 (.12) 0.43 (.12) 0.55 (.12) 

C10:0 0.31 (.14) 0.34 (.15) 0.38 (.13) 0.45 (.12) 0.41 (.12) 0.48 (.12) 

C12:0 0.29 (.14) 0.32 (.14) 0.33 (.12) 0.35 (.12) 0.33 (.12) 0.36 (.12) 

C14:0 0.19 (.14) 0.11 (.13) 0.23 (.13) 0.16 (.12) 0.28 (.12) 0.20 (.12) 

C16:0 0.76 (.15) 0.13 (.13) 0.47 (.13) 0.23 (.12) 0.59 (.12) 0.20 (.12) 

C18:0 0.50 (.15) 0.24 (.14) 0.40 (.14) 0.33 (.13) 0.44 (.13) 0.29 (.12) 

C18:1t11 0.38 (.14) 0.31 (.15) 0.24 (.12) 0.27 (.14) 0.19 (.12) 0.30 (.13) 

C18:1c9 0.44 (.16) 0.30 (.15) 0.45 (.13) 0.34 (.12) 0.47 (.12) 0.39 (.12) 

C18:2ω6 0.17 (.14) 0.00 (.00) 0.18 (.14) 0.00 (.00) 0.28 (.13) 0.00 (.00) 

C18:3ω3 0.22 (.13) 0.10 (.13) 0.06 (.09) 0.23 (.13) 0.13 (.10) 0.27 (.13) 

CLAc9,t11 0.28 (.14) 0.35 (.15) 0.24 (.13) 0.24 (.14) 0.19 (.13) 0.27 (.13) 

SFA1 0.12 (.14) 0.01 (.13) 0.33 (.13) 0.29 (.13) 0.35 (.12) 0.33 (.12) 

MUFA2 0.16 (.15) 0.01 (.13) 0.36 (.13) 0.29 (.12) 0.38 (.10) 0.33 (.12) 

PUFA3 0.26 (.15) 0.26 (.15) 0.25 (.13) 0.38 (.14) 0.30 (.13) 0.35 (.14) 

ω6:ω34 0.42 (.16) 0.23 (.14) 0.30 (.13) 0.37 (.13) 0.30 (.12) 0.36 (.13) 

TFAnoVA5 0.30 (.16) 0.16 (.15) 0.33 (.13) 0.44 (.14) 0.35 (.13) 0.40 (.14) 

Denovo6 0.23 (.14) 0.23 (.14) 0.32 (.13) 0.32 (.13) 0.35 (.12) 0.35 (.12) 

1Sum of the individual saturated fatty acids. 441 
2Sum of the individual monounsaturated fatty acids. 442 
3Sum of the individual polyunsaturated fatty acids; odd- and branched-chain fatty acids. 443 
4Ratio between the sum of individual PUFA ω6 fatty acids and the sum of individual PUFA 444 

ω3 fatty acids. 445 
5Trans Fatty Acid (TFA) without Vaccenic acid (VA). 446 
6Sum of C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized in 447 

the mammary gland.  448 

  449 
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Table 6. Proportion of phenotypic variance1 explained by FTD (𝑟𝐹𝑇𝐷
2 ) estimated in the three 450 

approaches 451 

 Ablup Gblup ssGblup 

Trait FA_GC FA_FTIR FA_GC FA_FTIR FA_GC FA_FTIR 

C4:0 0.22 0.20 0.22 0.18 0.20 0.17 

C6:0 0.59 0.58 0.59 0.59 0.58 0.58 

C8:0 0.61 0.62 0.62 0.62 0.61 0.61 

C10:0 0.59 0.60 0.60 0.61 0.59 0.60 

C12:0 0.50 0.55 0.51 0.55 0.50 0.55 

C14:0 0.35 0.41 0.36 0.41 0.35 0.41 

C16:0 0.40 0.47 0.44 0.48 0.41 0.47 

C18:0 0.42 0.43 0.43 0.44 0.42 0.43 

C18:1t11 0.63 0.71 0.64 0.71 0.64 0.71 

C18:1c9 0.63 0.67 0.62 0.66 0.62 0.66 

C18:2ω6 0.59 0.47 0.58 0.47 0.58 0.47 

C18:3ω3 0.86 0.72 0.86 0.71 0.86 0.71 

CLAc9,t11 0.58 0.64 0.59 0.64 0.58 0.64 

SFA2 0.40 0.40 0.40 0.39 0.39 0.39 

MUFA3 0.52 0.50 0.51 0.49 0.51 0.49 

PUFA4 0.68 0.60 0.68 0.60 0.67 0.59 

ω6:ω35 0.88 0.79 0.88 0.79 0.88 0.78 

TFAnoVA6 0.56 0.61 0.56 0.60 0.55 0.60 

Denovo7 0.54 0.54 0.55 0.55 0.54 0.54 

       

Mean±sd 0.55±0.16 0.55±0.14 0.56±0.16 0.55±0.14 0.55±0.16 0.55±0.14 

1SE between 0.02 and 0.06 for FA_GC and ranging from 0.04 to 0.04 for FA_FTIR.  452 
2Sum of the individual saturated fatty acids. 453 
3Sum of the individual monounsaturated fatty acids. 454 
4Sum of the individual polyunsaturated fatty acids; odd- and branched-chain fatty acids; 455 
5Ratio between the sum of individual PUFA ω6 fatty acids and the sum of individual PUFA 456 

ω3 fatty acids. 457 
6Trans Fatty Acid (TFA) without Vaccenic acid (VA). 458 
7Sum of C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized in 459 

the mammary gland 460 

 461 
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Table 7. EBV and GEBV accuracy of prediction for milk fatty acids obtained with gas chromatography (FA_GC) or predicted by Fourier 462 

Transform Infrared spectra (FA_FTIR) using the three relationship matrices: pedigree (A, Ablup), genomic (G, Gblup) or pedigree and SNP 463 

blended using a single-step genomic approach (H, ssGblup). 464 

  Oldest animals1   Youngest aninals2 

 FA_GC  FA_FTIR  FA_GC  FA_FTIR 

Trait Ablup Gblup ssGblup  Ablup Gblup ssGblup  Ablup Gblup ssGblup  Ablup Gblup ssGblup 

                

C4:0 0.52 0.54 0.56  0.57 0.59 0.60  0.19 0.28 0.35  0.21 0.31 0.37 

C6:0 0.29 0.32 0.36  0.52 0.54 0.55  0.10 0.18 0.27  0.18 0.28 0.34 

C8:0 0.48 0.50 0.52  0.53 0.55 0.56  0.17 0.26 0.33  0.18 0.28 0.34 

C10:0 0.54 0.56 0.57  0.56 0.58 0.59  0.19 0.29 0.35  0.20 0.30 0.35 

C12:0 0.52 0.54 0.56  0.55 0.56 0.58  0.18 0.28 0.34  0.19 0.29 0.35 

C14:0 0.43 0.45 0.48  0.32 0.35 0.39  0.15 0.24 0.32  0.11 0.20 0.28 

C16:0 0.83 0.84 0.83  0.35 0.38 0.41  0.29 0.41 0.45  0.12 0.21 0.29 

C18:0 0.68 0.69 0.70  0.48 0.50 0.52  0.24 0.35 0.40  0.17 0.26 0.33 

C18:1t11 0.59 0.60 0.61  0.54 0.56 0.57  0.20 0.31 0.36  0.19 0.29 0.34 

C18:1c9 0.63 0.65 0.65  0.53 0.55 0.56  0.22 0.32 0.38  0.18 0.28 0.34 

C18:2ω6 0.39 0.42 0.45  0.05 0.09 0.21  0.14 0.23 0.30  0.02 0.10 0.23 

C18:3ω3 0.45 0.47 0.50  0.30 0.33 0.37  0.16 0.25 0.32  0.10 0.19 0.28 

CLAc9,t11 0.51 0.53 0.55  0.57 0.58 0.60  0.18 0.28 0.34  0.20 0.30 0.35 

SFA3 0.33 0.36 0.40  0.09 0.12 0.23  0.12 0.20 0.29  0.03 0.11 0.23 

MUFA4 0.38 0.41 0.44  0.11 0.14 0.24  0.13 0.22 0.30  0.04 0.11 0.24 

PUFA5 0.49 0.52 0.53  0.49 0.51 0.53  0.17 0.27 0.33  0.17 0.27 0.33 

ω6:ω36 0.61 0.63 0.64  0.46 0.48 0.50  0.21 0.32 0.37  0.16 0.25 0.32 

TFAnoVA7 0.53 0.55 0.56  0.38 0.41 0.44  0.18 0.28 0.34  0.13 0.22 0.30 

Denovo8 0.46 0.48 0.50  0.49 0.51 0.53  0.16 0.25 0.32  0.17 0.27 0.33 
                

Mean 0.51 0.53 0.55  0.42 0.44 0.47  0.18 0.27 0.34  0.14 0.24 0.31 

SD 0.13 0.12 0.11  0.17 0.16 0.13  0.04 0.05 0.04  0.06 0.06 0.04 
1Cohort of sheep born before December 2012 with SNP genotypes and own milk FA records available. 465 
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2Cohort of sheep born after November 2012 with SNP genotypes available and own milk FA records masked to mimic a candidate set of 466 

younger sheep. 467 
3Sum of the individual saturated fatty acids. 468 
4Sum of the individual monounsaturated fatty acids. 469 
5Sum of the individual polyunsaturated fatty acids; odd- and branched-chain fatty acids. 470 
6Ratio between the sum of individual PUFA ω6 fatty acids and the sum of individual PUFA ω3 fatty acids. 471 
7Trans Fatty Acid (TFA) without Vaccenic acid (VA). 472 
8Sum of C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized in the mammary gland.  473 

 474 
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Table 8. Average accuracies and s.d. of GEBV predicted in young animal (n=100) by 475 

ssGBLUP using a series of bi-traits analysis both for gas chromatography measured (FA_GC) 476 

and Fourier transform IR predicted fatty acids (FA_FTIR). 477 

 478 

 FA_GC  FA_FTIR 

Trait Mean s.d. Diff.1  Mean s.d. Diff.1 

C4_0 0.35 0.01 0.00  0.35 0.01 -0.02 

C6_0 0.28 0.02 0.01  0.32 0.02 -0.02 

C8_0 0.33 0.02 0.00  0.33 0.01 -0.01 

C10_0 0.34 0.01 -0.01  0.34 0.01 -0.01 

C12_0 0.34 0.01 0.00  0.34 0.01 -0.01 

C14_0 0.32 0.02 0.00  0.29 0.02 0.01 

C16_0 0.43 0.01 -0.02  0.31 0.02 0.02 

C18_0 0.38 0.01 -0.02  0.33 0.01 0.00 

C18_1c9 0.36 0.01 -0.01  0.36 0.01 0.02 

C18_1t11 0.38 0.01 0.00  0.35 0.02 0.01 

C18_2n6 0.31 0.01 0.01  0.27 0.02 0.04 

C18_3n3 0.32 0.01 0.00  0.31 0.02 0.03 

CLAc9t11 0.34 0.01 0.00  0.34 0.01 -0.01 

SFA2 0.31 0.02 0.02  0.30 0.03 0.07 

MUFA3 0.32 0.01 0.02  0.31 0.02 0.07 

PUFA4 0.32 0.01 -0.01  0.33 0.02 0.00 

n6_n35 0.37 0.01 0.00  0.33 0.01 0.01 

TFA_no_VA6 0.34 0.01 0.00  0.32 0.02 0.02 

De novo7 0.32 0.01 0.00  0.33 0.01 0.00 

1for each FA diff = (average accuracy of 17 bi-traits models – single trait accuracy) 479 
2Sum of the individual saturated fatty acids. 480 
3Sum of the individual monounsaturated fatty acids. 481 
4Sum of the individual polyunsaturated fatty acids; odd- and branched-chain fatty acids. 482 
5Ratio between the sum of individual PUFA ω6 fatty acids and the sum of individual PUFA 483 

ω3 fatty acids. 484 
6Trans Fatty Acid (TFA) without Vaccenic acid (VA). 485 
7Sum of C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized in 486 

the mammary gland.  487 

  488 
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FIGURE CAPTION 489 

  490 

Figure 1. Regressions of additive genetic variance estimated using fatty acids measured 491 

through gas chromatography (FA_FC) and fatty acids predicted by Fourier Transform 492 

Infrared Spectra (FA_FTIR) within each investigated method: pedigree relationship matrix 493 

(ABLUP), genomic relationship matrix (GBLUP), blended genomic-pedigree matrix 494 

(ssGBLUP). Dashed line represent the equivalent line (y=x). 495 

 496 

 497 
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Cesarani. Figure 1. 498 

 499 
 500 
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APPENDIX 501 

 502 

Table A1. Single FA used to define groups of FA analyzed.  503 

 504 

Group of FA Single fatty acid 

SFA: sum of 

individual saturated 

fatty acids 

C4:0, C6:0, C0, C8:0, C9:0, C10:0, C11:0, C12:0, isoC13:0, anteisoC13:0, isoC14:0, C14:0, isoC15:0, 

anteisoC15:0, C15:0, isoC16:0, C16:0, isoC17:0, anteisoC17:0, C17:0, isoC18:0, C18:0, C19:0, C20:0, C22:0, 

C23:0, C24:0, C25:0, C26:0 

 

MUFA: sum of 

individual 

monounsaturated fatty 

acids  

C10:1, C14:1c9, C15:1, C16:1t4, C16:1t5, C16:1t6+t7, C16:1t9, C16:1t10, C16:1t11+t12, C16:1c7, C16:1c9, 

C16:1c10, C16:1c11, C17:1c6+c7, C17:1c8, C17:1c9, C18:1t4, C18:1t5, C18:1t6+t8, C18:1t9, C18:1t10, 

C18:1t11, C18:1t12, C18:1t13+t14, C18:1c9, C18:1t15+c10, C18:1c11, C18:1c12, C18:1c13, C18:1t16+c14, 

C18:1c15, C18:1c16, C20:1c5, C20:1c9, C20:1c11, C20:1c15, C22:19, C24:1c15 

 

PUFA: sum of 

individual 

polyunsaturated fatty 

acids  

C18:2t10t14, C18:2t11t15, C18:2t9t12, C18:2c9t13, C18:2t8c13, C18:2c9t12, C18:2t9c12, C18:2t11c15, C18:2ω6, 

C18:2t12c15, C18:2c12c15, CLAc9t11, CLAt9c11, CLAt10c12, CLAt11c13, CLAt12t14, CLAt11t13, CLAt9t11, 

C20:2ω9, C20:2ω6, C22:2ω6, C18:36, C18:33, C20:39, C20:36, C20:3, C20:33, C22:36, C18:43, 

C20:46, C20:43, C22:46, C20:53, C22:53, C22:63 

 

TFA-VA  sum of individual trans FA excluding C18:1t11 (Vaccenic acid) 

 

PUFA n-6:PUFA n-3  ratio between the sum of individual PUFA 6 and the sum of all individual PUFA 3 

 

Denovo de novo 

synthesized in the 

mammary gland. 

C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0  
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Table A2. Variance components estimation (animal, flock test date and residual) for measured and predicted fatty acids across the three 505 

methods 506 

1Sum of the individual saturated fatty acids 507 
2Sum of the individual monounsaturated fatty acids. 508 
3Sum of the individual polyunsaturated fatty acids; odd- and branched-chain fatty acids. 509 
4Ratio between the sum of individual PUFA ω6 fatty acids and the sum of individual PUFA ω3 fatty acids. 510 
5Trans Fatty Acid (TFA) without Vaccenic acid (VA). 511 
6Sum of C6:0, C8:0, C10:0, C11:0, C12:0, iso-C13:0, C14:0 that are de novo synthesized in the mammary gland.  512 

 ABLUP  GBLUP  ssGBLUP 

 FA_GC FA_FTIR  FA_GC FA_FTIR  FA_GC FA_FTIR 

 𝜎𝑎
2 𝜎𝑓

2 𝜎𝑒
2 𝜎𝑎

2 𝜎𝑓
2 𝜎𝑒

2  𝜎𝑎
2 𝜎𝑓

2 𝜎𝑒
2 𝜎𝑎

2 𝜎𝑓
2 𝜎𝑒

2  𝜎𝑎
2 𝜎𝑓

2 𝜎𝑒
2 𝜎𝑎

2 𝜎𝑓
2 𝜎𝑒

2 

C4:0 0.02 0.02 0.06 0.02 0.02 0.05  0.04 0.02 0.04 0.05 0.02 0.02  0.04 0.02 0.05 0.04 0.02 0.03 

C6:0 0.00 0.07 0.05 0.01 0.06 0.03  0.02 0.07 0.03 0.02 0.06 0.02  0.02 0.07 0.03 0.03 0.06 0.02 

C8:0 0.02 0.12 0.06 0.02 0.11 0.05  0.03 0.12 0.04 0.04 0.11 0.03  0.03 0.12 0.04 0.04 0.11 0.03 

C10:0 0.38 1.70 0.81 0.37 1.62 0.70  0.46 1.75 0.73 0.48 1.65 0.59  0.50 1.74 0.71 0.53 1.65 0.57 

C12:0 0.14 0.46 0.33 0.12 0.45 0.25  0.15 0.48 0.31 0.13 0.46 0.24  0.16 0.47 0.31 0.14 0.46 0.24 

C14:0 0.26 0.73 1.07 0.12 0.73 0.93  0.32 0.74 1.02 0.17 0.74 0.88  0.39 0.72 0.97 0.22 0.73 0.84 

C16:0 3.64 3.19 1.10 0.44 2.90 2.79  2.17 3.68 2.44 0.75 2.96 2.50  2.87 3.42 1.98 0.68 2.93 2.61 

C18:0 1.61 2.28 1.56 0.61 1.82 1.83  1.26 2.41 1.89 0.81 1.90 1.64  1.47 2.32 1.79 0.72 1.86 1.77 

C18:1t11 0.13 0.59 0.21 0.07 0.56 0.16  0.08 0.60 0.26 0.06 0.58 0.17  0.07 0.60 0.28 0.07 0.57 0.16 

C18:1c9 2.18 8.22 2.73 1.19 7.80 2.72  2.22 8.10 2.69 1.34 7.72 2.58  2.38 8.22 2.67 1.60 7.81 2.42 

C18:2ω6 0.02 0.13 0.08 0.00 0.07 0.08  0.02 0.13 0.07 0.00 0.07 0.08  0.03 0.13 0.07 0.00 0.07 0.08 

C18:3ω3 0.01 0.21 0.03 0.01 0.13 0.05  0.00 0.21 0.03 0.01 0.13 0.04  0.00 0.21 0.03 0.01 0.13 0.04 

CLAc9t11 0.02 0.12 0.06 0.02 0.10 0.04  0.02 0.12 0.06 0.01 0.11 0.04  0.02 0.12 0.07 0.02 0.10 0.04 

SFA1 1.11 6.17 8.00 0.10 5.31 7.97  3.12 6.16 6.14 2.44 5.36 5.77  3.39 6.12 6.08 2.80 5.40 5.59 

MUFA2 1.01 6.68 5.26 0.10 5.46 5.39  2.34 6.63 4.03 1.65 5.46 3.93  2.49 6.65 4.03 1.88 5.52 3.82 

PUFA3 0.18 1.41 0.49 0.19 1.06 0.52  0.17 1.44 0.50 0.27 1.08 0.44  0.21 1.42 0.47 0.26 1.07 0.47 

ω6:ω34 0.06 1.11 0.09 0.05 0.72 0.15  0.04 1.12 0.10 0.07 0.73 0.12  0.05 1.11 0.10 0.08 0.72 0.13 

TFAnoVA5 0.30 1.25 0.69 0.12 1.13 0.60  0.33 1.26 0.67 0.33 1.12 0.41  0.37 1.24 0.66 0.31 1.12 0.45 

Denovo6 2.21 11.18 7.29 1.92 9.68 6.31  3.13 11.47 6.43 2.71 9.94 5.57  3.41 11.38 6.34 2.96 9.86 5.50 
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