
26 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Hierarchical scheduling of real-time tasks over Linux-based virtual machines

Published version:

DOI:10.1016/j.jss.2018.12.008

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1694689 since 2019-03-12T11:31:19Z

Hierarchical Scheduling of Real-Time Tasks over

Linux-based Virtual Machines

Luca Abenia, Alessandro Biondia, Enrico Binib

aScuola Superiore S. Anna, Pisa, Italy
bUniversità di Torino, Torino, Italy

Abstract

Virtualization has made feasible the full isolation of virtual machines (VMs)

among each other. When applications running within VMs have real-time con-

straints, threads implementing the virtual cores must be scheduled in a pre-

dictable manner over the physical cores. In this paper, we propose a possible

implementation of such a predictable VM scheduling based on Linux and kvm

(a hosted hypervisor). The proposed implementation is based on vanilla Linux

kernels and standard qemu/kvm, and does not require to apply any patch or to

use custom software. We also show that previous work makes some assumptions

that are unrealistic in practical situations. Motivated by these considerations,

we finally propose a principled methodology to practically implement hierarchi-

cal scheduling with Linux. Finally, an extensive set of experiments based on

Linux and kvm illustrates how the VMs and host scheduler can be set-up to

match theoretical results with experiments.

Keywords: real-time; virtual machines; hierarchical scheduling; Linux; kvm

1. Introduction

In the last decade, there has been an increasing interest in Operating Sys-

tems (OSs) that are capable of scheduling groups of tasks by means of hi-

erarchical scheduling. Under two-level hierarchical scheduling, a scheduler at

Email addresses: luca.abeni@santannapisa.it (Luca Abeni),
alessandro.biondi@santannapisa.it (Alessandro Biondi), bini@di.unito.it (Enrico Bini)

Preprint submitted to Elsevier December 9, 2018

the lower level (called host or root scheduler) selects which group of tasks to

execute, while another scheduler at the higher level (called guest or local sched-

uler) selects the tasks within the group. Nowadays, some popular OSs provide

out-of-the-box features to support such a scheduling scheme: for instance, the

Linux kernel provides control groups (also known as the cgroups mechanism,

which is originally inspired by resource containers [1]) that allow implementing

hierarchical scheduling for processes and threads under the SCHED OTHER and

SCHED FIFO/SCHED RR scheduling classes.

The increasing interest in hierarchical scheduling is mostly driven by two

main motivations. First, with the advent of cloud computing, various services

or entire OSs can be remotely executed in virtualized environments. In this

case, hierarchical scheduling is needed to control the Quality of Service expe-

rienced by the virtualized services or the guest OSs. Second, when adopting

component-based design, if the software components to be integrated are com-

posed of multiple tasks, then hierarchical scheduling is the natural solution to

support their execution on the same physical machine.

As a consequence, building scheduling hierarchies is common across many

different systems, ranging from large-scale servers (used in data centers) to small

embedded systems, for which the composition of software developed by different

vendors is a standard software engineering practice.

When some of the tasks are characterized by temporal constraints (such as

deadlines to be respected), special care is needed to ensure that the schedula-

bility of the hierarchy can be analyzed. In particular, it must be possible to

provide a priori guarantees on respecting the temporal constraints for the tasks

of a group/component, independently of the other groups of tasks running on

the physical machine. In other words, when composing real-time systems, it is

necessary that the real-time properties of the components are preserved during

the integration phase. This can be achieved by adopting reservation servers [2],

which allow reserving a periodically-recharged execution budget to processes.

2

Contribution. This paper presents a possible implementation of a two-level real-

time scheduling hierarchy based on unmodified Linux-based OSs and kvm-based

Virtual Machines. The proposal relies on stock software components, namely

kvm, and the SCHED DEADLINE scheduling policy of Linux: no custom patches

for the Linux kernel are required. Components are executed inside kvm-based

VMs, and the tasks of each component are scheduled by a local scheduler (also

called the guest scheduler to indicate that it is the CPU scheduler of the guest

kernel — this is a common terminology in the area of resource virtualization).

Each VM represents a virtual execution platform that offers only a fraction of

the computing capacity of the physical one. VMs are scheduled by the host

scheduler and protected by reservation servers offered by SCHED DEADLINE.

While implementing our hierarchical scheduling solution, we realized that

most of the theoretical analysis techniques in the literature overlooked some

practical details that become apparent when realizing a real system:

• To guarantee the component schedulability, most of the previous works

either assume a local scheduler that has some knowledge on the status of

the underlying virtual machine (and such knowledge is often not available

if para-virtualized scheduling is not used), or are excessively pessimistic.

This aspect is discussed in Section 3.

• Some previous works optimized the amount of resources allocated to the

various components by only considering the real-time tasks running into

them. Unfortunately, as discussed in Section 5.1 and experimentally veri-

fied in Section 6.2, this leads to quite optimistic assumptions.

• Previous works often did not consider the host system software (host ker-

nel, virtual machine monitor, hypervisor, etc.) and only focused on guar-

anteeing the schedulability of the guest tasks. Unfortunately, the host

system might have some important tasks (even non-real-time tasks) that

should not be starved by the guests (for example, think about the Linux

kworker or ksoftirqd kernel threads, or similar: if the VMs running on a

CPU core starve these kernel threads, the host system can malfunction).

3

Hence, it might be necessary to limit the amount of CPU time consumed

by the VMs on the physical cores. As it is shown in Section 3, this might

be quite difficult with state-of-the-art techniques.

We addressed these issues by developing a new approach based on hierarchi-

cal partitioned scheduling (based on previous work) that is described in Sec-

tion 4. Our implementation leverages previous theoretical research on hierar-

chical uniprocessor real-time scheduling: experimental results are finally pre-

sented to show that our implementation matches the corresponding theoretical

results.

2. System model and Background

The overall system is composed of a set of real-time components {C1, . . . , Cℓ}

that run concurrently onto a multiprocessor that comprises M physical CPUs1.

To enable composability and isolation, each component Cj is executed onto a

dedicated virtual machine Πj . The workload generated by component Cj is

scheduled by a local scheduler (or guest scheduler) Sj over the machine Πj .

The most important definitions used in this paper are summarized in Table 1,

which is reported at the end of this section. Since we mostly focus on each

component in isolation, to lighten the notation, from now on we drop the index

“j” of the component. Hence, we denote the component by just C, the virtual

machine by Π, and the guest scheduler by S.

A component C is a set of n independent real-time tasks {τ1, . . . , τn}
2. Each

task τi releases an infinite sequence of jobs Ji,1, Ji,2, Ji,3, The h-th job Ji,h

belonging to task τi is released at time ri,h, finishes at time fi,h, and executes

for ci,h time units. We assume the sporadic tasks model, i.e., the release instants

1The terms “CPU”, “core” and “processor” are used interchangeably to mean a hardware

component capable to perform computation.
2Interactions between different components are not considered as well; see Section 7 for a

discussion about interactions between tasks and/or components.

4

. . .

. . .

. . .

component C

τ1 τ2 τ3 τ4 τn

guest scheduler S

host scheduler

π1 π2 πm
virtual

machine Π

physical
machine

Figure 1: Architecture overview.

of two consecutive jobs of task τi are separated by at least the minimum inter-

arrival time Ti, i.e., ∀h = 1, 2, . . . , ri,h+1 − ri,h ≥ Ti. The execution time of

each job Ji,h is bounded by the worst-case execution time (WCET) Ci, that is

∀h = 1, 2, . . . , ci,h ≤ Ci. Each job Ji,h must be completed not later than its

absolute deadline, that is fi,h ≤ di,h. The deadline di,h of job Ji,h is given by

di,h = ri,h +Di, where Di is the relative deadline of task τi. Finally, we assume

a constrained-deadline model, that is Di ≤ Ti for all tasks τi.

A virtual machine Π is composed of a set of m virtual CPUs (vCPUs)

{π1, . . . , πm} on which the tasks of the served component can execute. The

resulting system is characterized by a two-level scheduling hierarchy: a root

scheduler — or host scheduler — selects a component to be executed, and

then the component’s guest scheduler S selects one or more of the component’s

tasks. The overall architecture is illustrated in Figure 1. Some of the most

important virtualization technologies (with focus on Linux-based OSs and real-

time performance) will be described in Section 5.

In real-time components, it is of key importance to guarantee that no dead-

line will be missed. This is enforced by a schedulability test, which is a boolean

predicate that is true if the component is guaranteed not to miss any deadline.

5

The schedulability analysis over virtual machines has been investigated by

many authors [3, 4, 5, 6, 7, 8]. Leontyev and Anderson [3] proposed to use only

the overall bandwidth requirement provided by Π to check the schedulability of a

set of tasks. Bini et al. [4] introduced the richer notion of parallel supply function

(PSF) to model the amount of computation provided by Π over intervals of any

length. Easwaran et al. [5] defined the multiprocessor resource model (MPR)

to characterize the resource provided by periodic and synchronized servers. Li-

pari and Bini [6] showed that if the synchronization among virtual CPUs is not

feasible, then the worst-case resource supply of MPR can be worse than what

assumed in [5]. It was then proposed the bounded-delay multi-partition (BDM)

that fixes this issue at the price of some pessimism. Bini et al. [9] and Khalizad

et al. [7] independently proposed a method to adapt the amount of resource al-

located by a set of virtual CPUs. Burmyakov et al. [8] proposed the generalized

multi-processor resource model (GMPR) showing that uneven budget distribu-

tion among the virtual CPUs is more favorable to the task set to be scheduled.

Such an intuition was later proved by Yang and Anderson [10].

These methods only offer a theoretical analysis of hierarchical systems over

virtual machines. A notable exception is RT-Xen [11], that relies on the widely-

used Xen hypervisor and has been partly merged in the mainline version of

Xen. Since Xen is a so-called bare-metal hypervisor, a natural question to be

asked is if a predictable real-time scheduling hierarchy can be implemented using

different virtualization technologies; for example, a hosted hypervisor such as

kvm.

2.1. Reservation-based scheduling of virtual machines

A reservation-based scheduler is based on the idea of scheduling work for an

amount of time Q every period P . When applying reservation-based scheduling

to virtual machines, the time provided by the host scheduler to a virtual CPU

πk (and to the component’s tasks selected to execute over πk by S) can be

modeled by:

• a budget Qk of time provided by the k-th virtual CPU πk, and

6

• a period Pk of the allocation of the budget Qk over time.

In this model, a virtual CPU πk is viewed by the host scheduler as a task

requiring a budget Qk every period Pk.

A common method to analyze the component C over a virtual machine Π

is to determine the minimum amount of computation provided by Π over any

interval of length t. The notion of supply function fully captures this quantity

for one single virtual CPU π, (or for virtual machines with composed by only

one virtual CPU, m = 1) [12, 13, 14, 15, 16].

The supply bound function sbfk(t) associated to the k-th virtual CPU πk is

a function such that [12, 14, 15]

∀(a, b), sbfk(b− a) ≤

∫ b

a

ξk(t) dt (1)

with ξk(t) being the indicator function of the schedule of the k-th virtual CPU

by the host scheduler, that is

ξk(t) =











1 if πk is scheduled by the host scheduler at time t

0 otherwise.

(2)

The property of (1) implies that sbfk(t) is a lower bound for the amount of

resource made available by the virtual CPU πk in any interval of length t. Such

a lower bound can be computed by considering all the possible time intervals of

size t, and all the possible schedules generated by the host scheduler.

For a reservation-based host scheduler (with budget Qk and period Pk), the

worst-case resource allocation for a real-time task τ (which leads to the supply

bound function sbf(t)) happens when the root scheduler provides an amount of

budget Qk to lower priority tasks at the beginning of a reservation period and τ

arrives Qk time units after the beginning of the reservation period, immediately

after the budget has been consumed [15]. Hence, the task cannot be scheduled

on a physical CPU until the next reservation period (after a time interval equal

to Pk − Qk). If in the next reservation period the root scheduler provides the

budget Qk at the end of the period, then the total delay τ has to wait to be

7

P−QQ2(P−Q)

2(P−Q) 2P−Q 3P−2Q 3P−Q 4P−2Q 4P−Q

2(P − Q) P − Q

t

sbf(t)

P

Q

P P

t 0

Figure 2: Supply bound function for a CPU reservation (upper part of the figure) and scenario

leading to it (lower part of the figure).

scheduled is 2(Pk −Qk). This scenario is shown in the lower part of Figure 2,

where t0 indicates the arrival time of τ (hence, the interval of size t considered

by sbfk(t) starts at time t0). The upper part of the figure shows the shape of the

resulting sbfk(t): the function is equal to 0 for an amount of time 2(Pk −Qk),

then it increases with slope 1 for an amount of time Qk (hence, it reaches value

Qk at time 2Pk −Qk, then it is flat for an amount of time Pk −Qk, it increases

with slope 1 for an amount of time Qk, and so on. More formally, sbfk(t) can

be computed according to the following expression:

sbfk(t) =



















0 if t < 2(Pk −Qk)

(n− 1)Qk if nPk −Qk ≤ t < (n+ 1)Pk − 2Qk

t− (n+ 1)(Pk −Qk) if (n+ 1)Pk − 2Qk ≤ t < (n+ 1)Pk −Qk

(3)

As highlighted by many authors [12, 13, 14, 15], the supply function sbfk(t)

can be lower bounded by a line with equation αk(t−∆k), with:

• αk = Qk

Pk
, bandwidth of the virtual CPU πk, and

• ∆k = 2(Pk −Qk), called delay, represents the longest interval in which no

resource is made available by the host scheduler to the virtual CPU.

8

In multi-processor systems (assuming the presence of M physical CPUs),

multiple virtual CPUs are generally assigned to each component Π; hence, Π

is served by m reservations {(Q0, P0), (Q1, P1), ...(Qm−1, Pm−1)}, and both the

host scheduler and the guest scheduler must schedule tasks on multiple CPUs

(specifically, M CPUs for the host scheduler and m virtual CPUs for the guest

scheduler of Π). A multiprocessor real-time scheduler can be implemented as a

global scheduler or as a partitioned scheduler:

• a global scheduler is free to migrate tasks between different cores in ac-

cordance with the desired scheduling policy. Hence, conceptually, the

scheduler uses one single global ready queue that contains all the tasks

ready for execution,

• when a partitioned scheduler is used, tasks are statically assigned to cores

by the system designer (or the application programmer), and the OS kernel

is not allowed to migrate the tasks. As a consequence, the problem of

scheduling tasks on m CPUs is reduced to m scheduling problems on

a single CPU, and single-processor scheduling algorithms can be reused.

Here, the main challenge is how to partition the tasks among the available

cores.

3. Issues with global guest schedulers

The adoption of global scheduling algorithms for the guest scheduler was pre-

viously analyzed by several papers [4, 5, 6, 7, 8]. Some of these works, however,

implicitly assumed some form of interaction between the guest scheduler and

the host scheduler, which is not easily implementable with most of the state-of-

the-art virtualization mechanisms. Specifically, popular global schedulers such

as Global Earliest Deadline First (G-EDF) and Global Fixed-Priorities (G-FP)

are characterized by the key invariant stating that, at each time, the x highest-

priority ready tasks (with x ≤ M) are scheduled on the M physical CPUs.

9

Symbol Meaning

C Component (set of real-time tasks)

Π Virtual machine (set of virtual CPUs on which a component executes)

πk k-th virtual CPU of the virtual machine

S Guest scheduler (CPU scheduler used to schedule tasks in the component)

τi i-th task of the component

Ji,h h-th job (activation) of task τi

ri,h arrival time of job Ji,h

ci,h execution time of job Ji,h

fi,h finishing time of job Ji,h

di,h absolute deadline of job Ji,h (respected if fi,h ≤ di,h)

Ti minimum inter-arrival time of task τi (ri,h+1 − ri,h ≥ Ti)

Ci worst-case execution time (WCET) of task τi (ri,h+1 − ri,h ≥ Ti)

Di relative deadline of task τi (di,h = ri,h +Di)

Qk maximum budget for virtual CPU πk

Pk reservation period for virtual CPU πk

ξk(t) indicator function for πk (ξk(t) = 1 if πk is scheduled on a physical CPU at time t)

sbfk(t) supply bound function for virtual CPU πk (minimum amount of time that πk is

guaranteed to receive in a time interval of size t)

αk bandwidth Qk

Pk
of virtual CPU πk (fraction of the physical CPU time reserved to πk)

∆k maximum allocation delay for virtual CPU πk (size of the longest time interval in

which πk is not scheduled on physical CPUs)

Γk set of component’s tasks allocated to virtual CPU πk in partitioned scheduling

Table 1: Definitions of the symbols used in the paper.

This assumption is also made by any job-level fixed-priority work-conserving

scheduler.

When using a global scheduling algorithm as a guest scheduler, this invari-

ant has to be extended to consider the combination of guest and host scheduler.

In particular, a stronger invariant is needed to avoid priority inversion. Virtual

10

CPUs have to be considered in place of physical CPUs, paying attention at the

fact that a virtual CPU may not always be able to provide service (e.g., when

the budget of the corresponding reservation server is depleted). The resulting

invariant should hence state that, at each time t, the x highest-priority ready

tasks are scheduled on m′ physical CPUs (with x ≤ m′), wherem′ is the number

of virtual CPUs that are scheduled on physical CPUs at time t. This means

that the x highest-priority ready tasks must not be scheduled in m′ random

virtual CPUs, but must be scheduled exactly in the m′ virtual CPUs that are

currently scheduled on physical CPUs. Without this assumption, the hierarchi-

cal schedulability analysis has to be much more pessimistic; hence, most of the

previous schedulability analysis of hierarchical scheduling systems with a global

guest scheduler relies (more or less implicitly) on this assumption, even if it has

not been explicitly mentioned.

The extended invariant mentioned above has an important implication: the

guest scheduler may be a sound global scheduler only if it is aware of the state

of each virtual CPU at each time. This poses considerable issues when there

is strong isolation between the guest scheduler and the host scheduler, as in

virtualized systems, where a guest operating system may totally be unaware of

the fact that is running upon virtual CPUs. As a result, despite their intrin-

sic pessimism [17], most schedulability tests for global schedulers result to be

incompatible with hierarchical scheduling if no proper strategies are adopted.

In other words, to use a terminology much closer to virtualization techniques,

a para-virtualized guest scheduler is often required to safely implement global

scheduling. These claims can be verified with the following counterexamples.

3.1. Counterexamples

To better understand this issue, consider as an example a component C

composed of two tasks: τ1 with C1 = 60 and T1 = D1 = 100 and τ2 with

C2 = 10 and T2 = D2 = 200. τ1 has higher priority than τ2. The component

C is scheduled over a virtual machine Π composed of two virtual CPUs π1

and π2, associated to two reservations with budget and period Q1 = 90, P1 =

11

100, and Q2 = 40, P2 = 100, respectively. Task τ1 (the highest-priority task)

is intuitively schedulable without missing any deadline if the guest scheduler

always schedules it on π1 (scheduling τ2 on π2). This can be confirmed by using

the PSF analysis [4]. According to Theorem 1 in [6], task τi is schedulable if

∃k ∈ {1, 2, . . . ,m} : kCi +Wi ≤ psfk(Di) (4)

whereWi is the interfering workload from higher-priority tasks and psfk(t) is the

level-k PSF for the component. Notice that since the guest scheduler is based

on fixed priorities and τ1 is the highest-priority task in the component, it holds

that W1 = 0. According to Lemma 1 (reported in Appendix A), the psf1(t) for a

component served by m periodic servers is psf1(t) = maxk{sbfk(t)}. Hence, for

component C, psf1(t) is the maximum between sbf1(t) and sbf2(t). Let us now

check the schedulability of task τ1 onto Π = {π1, π2} when scheduled by G-FP.

From Equation (3), we have that sbf1(100) = 80 (since Q1 = 90 and P1 = 100),

hence psf1(100) ≥ 80. Then, by applying the schedulability condition in (4), it

holds that

C1 +W1 ≤ psf1(D1) ⇔ 60 + 0 ≤ psf1(100) = 80,

from which it follows that τ1 is schedulable according to PSF analysis. However,

if the guest scheduler has no information about the available budgets for the

two virtual CPUs, it can schedule τ1 on π2 and not migrate the task when the

budget of π2 is exhausted, with the result that τ1 will miss its deadline. More

specifically, consider the simple case in which π2 is idle and is able to provide

service as soon as τ1 is released: in this case, the task will execute for 40 time

units and then stopped, the server budget is recharged after 100 time units, and

hence τ1 will miss its deadline.

To avoid this issue, the guest scheduler should be informed about the amount

of budget that is currently available to each virtual CPU, so that a high-priority

task scheduled on a virtual CPU with a depleted budget can be migrated to

another virtual CPU with a positive budget. This example has also been tested

by means of an implementation on a real Linux-based system, which will be

12

later described in Section 5: not surprisingly, the experiments confirmed that

the issue can really happen in practice. Please refer to Section 6.4 for further

details.

The MPR analysis is more pessimistic than the PSF analysis. Indeed, if

the previous component C = {(60, 100), (10, 200)} is assumed to be executed

upon a MPR interface {(90, 100), (40, 100)} (i.e., with two virtual processors),

the corresponding MPR schedulability test [5] for G-EDF scheduling deems the

component unschedulable. Nevertheless, note that the MPR explicitly assumes

that the component disposes of all the computing supply offered by the inter-

face [5]. In fact, with the following counterexample it can be shown that also

MPR is affected by this issue when the interface is implemented with reservation

servers configured with asymmetric parameters. Consider a component C com-

posed of two tasks: τ1 with C1 = 50 and T1 = D1 = 100 and τ2 with C2 = 2 and

T2 = D2 = 100000. According to the MPR analysis for G-EDF, this component

results schedulable upon a MPR interface with budget 151, period 100, and two

virtual CPUs, namely π1 and π2. This interface can be implemented with two

reservation servers (Q1 = 51, P1 = 100) and (Q2 = 100, P2 = 100). If τ1 is

scheduled on π1, it can suffer a worst-case service delay ∆1 = 2(P1 −Q1) = 98.

The task will then miss its deadline after two time units. Note that, if the

guest scheduler would be informed about the state of π1, it can avoid assigning

τ1 to π1 when its budget is exhausted, hence guaranteeing its schedulability.

Indeed, the two tasks would also be schedulable if the guest scheduler only uses

π2, but this is an information the scheduler cannot know if it is not informed

of the state of the virtual CPUs. Note that this task set is also schedulable

with G-EDF upon a MPR interface with budget 125, period 80, and two virtual

processors, which can be implemented with two servers (Q1 = 45, P1 = 80) and

(Q2 = 80, P2 = 80): in this case, τ1 can miss its deadline even if it incurs a

worst-case service delay P1 −Q1.

13

3.2. Other issues

Despite the problem described above, global scheduling in the guest car-

ries other issues because of its pessimistic analysis, as it is highlighted by the

schedulability analysis of MPR interfaces. For instance, consider a component

C = {(21, 23), (2, 23), (2, 27), (24, 367), (31, 419)}3. The total utilization of the

taskset is about
∑

i
Ci

Ti
= 1.21, but the taskset requires an MPR interface with

utilization at least 4.9 (5 CPUs) to be scheduled. If some copies of the last

task (having C = 31, T = 419 and a utilization 31/419 = 0.07) are added

to the component, the MPR interface requires one additional CPU for every

added task. These results have been confirmed by using the CARTS tool for

compositional scheduling analysis [18] (https://rtg.cis.upenn.edu/carts).

Section 6.5 presents a more detailed investigation of this issue.

This issue is particularly relevant in practice when the host system needs to

leave some spare CPU time on each core. An intuitive way to achieve this result

can be to increase the number of virtual CPUs used in the virtual platform.

Unfortunately, this approach does not work well with global guest scheduling,

because increasing the number of virtual CPUs also increases the amount of

CPU time needed to correctly schedule the component. For instance, this can

be shown with the following example. Consider a physical platform (host) com-

posed of M = 4 physical CPU cores, and a component C = {(2, 73), (21, 118),

(11, 53), (12, 132), (9, 48), (23, 86), (26, 229), (81, 278)}4. According to the the-

oretical analysis in [5], the minimal MPR interface needed to schedule this

component with period 10 has utilization 1.7 on m = 2 virtual CPUs.

Now, assume that the host system needs 30% of the CPU time on every

core for its own tasks: in this case, the MPR interface cannot be allocated

3This is a simplification of one of the tasksets randomly generated for the experiments of

Section 6.5.
4While the example has been simplified for making it more understandable, a large number

of experiments with randomly generated tasksets have been performed, changing the taskset

utilization, the number of tasks, and the number of physical and virtual CPUs. All the

experiments generated results consistent with the ones reported here

14

https://rtg.cis.upenn.edu/carts

on the physical CPUs. A system designer can try to increase the number of

virtual CPUs, hoping to decrease the per-core CPU load, but unfortunately, an

MPR interface with 4 virtual CPUs requires a utilization 2.9 to schedule the

component. Again, at least one of the periodic servers used to implement the

MPR interface must consume more than 70% of the physical core, making the

MPR interface not possible to allocate to physical cores.

Conversely, if adopting a partitioned scheduling approach in the guest, it is

possible to allocate tasks {(9, 48), (21, 118)} on virtual CPU 0, tasks {(23, 86), (26, 229)}

on virtual CPU 1, tasks {(11, 53), (12, 132)} on virtual CPU 2, and tasks {(2, 73), (81, 278)}

on virtual CPU 3. This allocation can be scheduled with CPUs configures with

budgets and periods (8, 18) (utilization 0.44), (8, 18), (5, 14) (utilization 0.36)

and (9, 26) (utilization 0.34), hence leaving available the desired spare band-

width on each physical CPU.

Because of the issues discussed in this section, and to dispose of proper

theoretical foundations for the analysis of guest schedulers, this paper adopts

a solution based on partitioned guest schedulers, discussed in the next section

(which provides a way to automatically partition the tasks as in the previous

example).

4. The proposed scheduling approach

Motivated by the issues identified in the previous section, this paper adopts

partitioned fixed-priority (P-FP) scheduling for the guest scheduler. Under P-

FP, each task is assigned a unique static priority and we denote by hp(i) ⊆ C

the subset of tasks with higher priority than the one of τi. Also, each task is

statically allocated to a single virtual processor πk and we denote by Γk the set

of tasks allocated to virtual processor πk.

In partitioned scheduling, the schedulability of the component can be checked

by applying single-processor analysis to each subset Γk allocated to the virtual

processor πk. According to several results from the literature [12, 13, 14, 15, 16,

15

19], the tasks allocated to virtual processor πk are schedulable if

∀τi ∈ Γk, ∃t ∈ tSeti, Ci +
∑

τj∈hp(i)∩Γk

⌈

t

Tj

⌉

Cj ≤ sbfk(t), (5)

where tSeti denotes the set of schedulability points at which the schedulability

condition is tested.

Several definitions of tSeti were proposed, ranging from proposals that en-

able an exact (i.e., necessary and sufficient) schedulability test, such as those

presented by Lehoczky et al. [20] later refined by Bini and Buttazzo [21], up

to proposals that allow performing an efficient polynomial-time schedulability

test with near-optimal empirical performance, such as the ones presented by

Park and Park [22]. It is worth observing that the approaches proposed in this

paper are compatible with any definition of tSeti. Nevertheless, to make the

paper self-consistent, the original definition proposed by Lehoczky et al. [20] is

reported: tSeti = {zTj | τj ∈ hp(i) ∪ τi ∧ z = 1, . . . , ⌊Ti/Tj⌋}.

4.1. Task partitioning and virtual processor design

Designing a partitioned guest scheduling algorithm requires two steps:

1. deciding which virtual processor each task must be allocated to (parti-

tioning); and

2. designing the reservation parameters (i.e., budget and period) for each

virtual processor such that the served tasks are schedulable.

Furthermore, it is necessary to specify the design objectives to select a solution

among all the feasible ones.

The joint consideration of these aspects, to develop a holistic methodology,

requires solving complex non-linear optimization problems that are possibly in-

tractable for practical scenarios. To overcome these limitations, this work adopts

a two-stage approach inspired by the methodology presented in [23], which is

based on decoupling the task partitioning from the design of the reservation

servers. This methodology is individually applied to each component C in isola-

tion, i.e., it is independent of the tasks and the server parameters of the other

16

components. First, given a design objective, the tasks in C are optimally par-

titioned upon a set of “fluid” virtual processors, which are abstracted by the

only bandwidth αk. Later, given the partitioning obtained at the first stage,

the server parameters (budget Qk and period Pk) of each virtual processor are

designed such that the server bandwidth is minimized while the served tasks

are guaranteed to be schedulable.

4.2. Task partitioning

The first stage is performed by setting up a mixed-integer linear program

(MILP). The MILP formulation uses the following optimization variables:

• xi,k ∈ {0, 1}, a binary variable such that xi,k = 1 if and only if task τi is

allocated to virtual processor πk;

• αk ∈ [0, 1], a real variable that expresses the bandwidth of virtual proces-

sor πk;

• pi,q ∈ {0, 1}, a binary variable such that pi,q = 1 if the schedulability

condition of task τi is verified at the q-th scheduling point of the set tSeti.

Variables xi,k are constrained as follows to ensure that each task is allocated

to exactly one virtual processor.

Constraint 1.

∀τi ∈ C,

m
∑

k=1

xi,k = 1.

The component schedulability is enforced with the following constraint,

which is based on Equation (5) assuming a fluid supply bound function, i.e.,

sbfk(t) = αk t.

Constraint 2. ∀k = 1, . . . ,m, ∀τi ∈ C, ∀q = 1, . . . , |tSeti|,

Ci +
∑

τj∈hp(i)

⌈

tSeti[q]

Tj

⌉

(Cj · xj,k) ≤ αk · tSeti[q] +M · (2− pi,q − xi,k), (6)

where tSeti[q] denotes the q-th scheduling point in set tSeti and M is a large

constant always larger than any LHS of the inequality.

17

Please refer to Appendix B for a proof of the above constraint.

Finally, to ensure that the schedulability condition provided by Equation (5)

is verified in at least one of the scheduling points in tSeti, the following constraint

is enforced.

Constraint 3.

∀τi ∈ C,

|tSeti|
∑

q=1

pi,q ≥ 1.

To solve this MILP formulation, two design objectives are considered:

A) to minimize the overall bandwidth required by the virtual processors of

the component, i.e., minimize
∑m

k=1 αk. This strategy tends to allocate

the tasks on a small set of virtual processors with high bandwidth.

B) to minimize the maximum bandwidth required by the virtual processor

of a component, i.e., minimize maxk=1,...,m αk. This strategy facilitates

the packing of vCPUs since it is minimized the size of the largest needed

vCPU.

The complete MILP formulation is summarized in Equation (7).

minimize

m
∑

k=1

αk (objective A) or max
k=1,...,m

αk (objective B)

subject to

∀τi ∈ C,

m
∑

k=1

xi,k = 1

∀k = 1, . . . ,m, ∀τi ∈ C, ∀q = 1, . . . , |tSeti|,

Ci +
∑

τj∈hp(i)

⌈

tSeti[q]

Tj

⌉

(Cj · xj,k) ≤ αk · tSeti[q] +M· (2− pi,q − xi,k)

∀τi ∈ C,

|tSeti|
∑

q=1

pi,q ≥ 1 (7)

Note that strategy B tends to reduce the per-physical-CPU utilization, hence

solving one of the issues pointed out in Section 3.2 by leaving some spare CPU

18

bandwidth on each core to execute host threads. A more explicit control of

this issue can be achieved by introducing additional constraints to the MILP

formulation that enforce the server bandwidths to be lower than some given

thresholds.

4.3. Server design

Given the task partitioning resulting from the first stage, the server param-

eters for each virtual processor are designed. This step is performed by means

of a branch-and-bound optimization algorithm that relies on the schedulability

test of Equation (5), but this time adopting the exact supply bound function of

Equation (3). To the end of minimizing the server bandwidth while still guar-

anteeing the schedulability of the served task set, the design algorithm explores

the space of feasible budgets Qk and periods Pk with given granularities and

minimum values for the two parameters. Since given the same server band-

width larger server periods are preferable (e.g., to reduce the intervention of

the scheduler when enforcing the budgeting mechanism), the design algorithm

considers (Qk+σ)/Pk as objective function to minimize, with σ being a tunable

parameter that models the scheduling overhead. The design algorithm exploits

that such an objective function decreases as the server period increases, thus

limiting the number of branches to be explored.

Algorithm 1 reports the pseudo-code of the proposed design strategy. The

algorithm takes as input the partition Γk ⊆ C of the task set C that has been

allocated to virtual processor πk by the solving the MILP formulation reported

in the previous section. Furthermore, the algorithm returns the pair (Qk, Pk)

representing the budget and the period of the designed reservation server. When

the algorithm is not able to produce a suitable design (e.g., due to a task set

with very large utilization), unschedulable is returned. With the two loops at

lines 6 and 7, the algorithm explores the space of parameters α and ∆ for the

server with given granularities αstep and ∆step, respectively. Parameter α (the

server bandwidth) must clearly be larger than the task set utilization U and

lower or equal to the whole processor supply (α = 1). Parameter ∆ is explored

19

Algorithm 1 Server design algorithm.

Input: subset Γk ⊆ C including tasks allocated to πk

Output: budget and period (Qk, Pk) of the server, or unschedulable.

1: procedure designServer(Γk)

2: (Qk, Pk)← (2, 1)

3: α∗ ← 2

4: U =
∑

τi∈Γk
Ci/Ti

5: ∆UB = maxτi∈Γk
{Di}

6: for α = U to α = 1 with step αstep do

7: for ∆ = ∆UB to ∆ = ∆step with step ∆step do

8: P ← ∆/(2(1− α))

9: Q← αP

10: (Q,P)← round values(Q,P)

11: if is schedulable(Γk, Q, P) then

12: if (Q+ σ)/P < α∗ then

13: α∗ ← (Q+ σ)/P

14: (Qk, Pk)← (Q,P)

15: break

16: end if

17: end if

18: end for

19: end for

20: if (Qk, Pk) == (2,1) then

21: return unschedulable

22: else

23: return (Qk, Pk)

24: end if

25: end procedure

up to its minimum granularity ∆step by starting from an upper bound ∆UB. By

looking at Equation (5) and by recalling that the definitions of sets tSeti do not

include values larger than the maximum relative deadlines of the tasks into Ck,

it follows that maxτi∈Γk
{Di} yields a safe upper bound for ∆.

20

The algorithm proceeds by computing the budget and the period corre-

sponding to the analyzed pair (α,∆), having care of rounding their values as

discussed above (line 10). If the task set Γk is schedulable with a reservation

server configured with the current pair of values (Equation (5) is used at this

stage), then the algorithm verifies whether the minimum server bandwidth α∗

can be reduced with the current parameters. If yes, the current parameters are

stored in the pair (Qk, Pk). In addition, since fixed a value of α the objective

function (Q + σ)/P cannot improve with lower values of ∆, the inner loop is

stopped as soon as the algorithm finds a pair of parameters that allows deeming

the task set schedulable, hence pruning unnecessary branches.

4.4. Putting the pieces together

For the sake of completeness, Algorithm 2 reports the pseudo-code of the

main algorithm that shows how to integrate the MILP formulation of Equa-

tion (7) with Algorithm 1. The algorithm takes as input the task set C and

first solves the MILP formulation summarized in Equation (7). This step allows

assigning tasks to virtual processor πk, with k = 1, . . . ,m, hence defining the

subsets Γk. Then, for each subset Γk, a corresponding server is designed by

means of Algorithm 1. If all the server designs succeed, the resulting budgets

and periods of each virtual processor are returned. Otherwise, unschedulable

is returned.

4.5. Example

This section reports a simple example to concisely illustrate the results of

the steps described in the previous sections. Consider the task set reported in

Table 2 to be partitioned upon a virtual machine composed of m = 2 virtual

processors π1 and π2.

After solving the MILP formulation of Equation (7), the following partition-

ing are obtained:

• In the case objective A is selected, τ1, τ2, and τ4 are allocated to π1, while

τ3 is allocated to π2. The corresponding values of variables αk are 0.62

21

Algorithm 2 Task partitioning and server design.

Input: task set C

Output: m pairs of budget and period (Qk, Pk), or unschedulable.

1: procedure partitioningAndDesign(C)

2: Solve the MILP formulation of Equation (7) for C

3: for k = 1 . . . ,m do

4: Γk ← {τi ∈ C | xi,k = 1}

5: (Qk, Pk)← designServer(Γk)

6: if (Qk, Pk) == unschedulable then

7: return unschedulable

8: end if

9: end for

10: return {(Q1, P1), . . . , (Qm, Pm)}

11: end procedure

Table 2: Example task set.

Task Ci Ti Di

τ1 2 10 10

τ2 3 25 25

τ3 14 35 35

τ4 15 50 50

and 0.4, respectively.

• In the case objective B is selected, τ1 and τ4 are allocated to π1, while τ2

and τ3 are allocated to π2. The corresponding values of variables αk are

both 0.57.

Then, the server design strategy presented in Section 4.3 can be applied.

For the objective A, the approach produces two reservation servers with budget

and period (7, 10) and (7.5, 14), respectively. Conversely, for the objective B

the approach produces two servers with budget and period (6, 10) and (7.5, 11),

respectively. Note that the total bandwidth consumed by the servers is 1.24 in

22

the first case, and 1.28 in the second case.

5. Hierarchical Scheduling on Linux

A scheduling hierarchy such as the one described in the previous sections can

be implemented in many different ways. One of the simplest and most effective

approaches is based on Virtual Machines (VMs), and consists in implementing

a two-level hierarchical scheduling system by executing each component C over

a dedicated VM. The various VMs can be scheduled by a hypervisor (such as

Xen [24]) or a host OS (if solutions similar to kvm [25] are used), and the OSs

running inside the VMs are referred to as guests. The root scheduler is then

responsible for selecting a VM for execution, and the local scheduler (responsible

for selecting the actual task to be executed) is implemented by the scheduler in

the guest OS kernel.

Today, several kinds of virtualization techniques are available for different

architectures. A first distinction can be made between full hardware virtualiza-

tion and container-based virtualization (also known as OS-level virtualization).

In the case of full hardware virtualization, the VM implements all the hardware

details of a real machine (including all the needed I/O devices). In this way, a

guest OS, including its own kernel, can execute in it as if it would execute on

real hardware; if commonly available I/O devices are emulated, any unmodified

OS can run in the VM without being aware of the fact that it is not running on

real hardware. Conversely, if some “special” virtual devices are provided, the

guest OS needs to be aware that it is running inside a VM (and must know how

to handle the virtual devices), but can achieve better performance. The term

para-virtualization is used to indicate when a guest OS is aware of running in

a VM (and its kernel is modified to improve the virtualization performance, to

exploit some features of the VM, or similar).

OS-level virtualization, instead, virtualizes only the OS kernel, and not the

whole hardware on which it is running. In this case, there is one single OS kernel

(the host kernel) that virtualizes the offered services to provide some form of

23

isolation and security between different guests. Hence, host OS and guest OS

share the kernel, and must run on the same hardware architecture (note that

it is not possible to execute Windows guests on Linux hosts or to run ARM-

based guest OSs on an Intel-based host). For example, it is possible to use the

same hardware to run multiple distributions based on the same Linux kernel (or

multiple Linux applications/containers) on the same server. Every container or

OS distribution will be isolated from the others, having the impression to be

the only one running on the kernel. On Linux-based systems, this kind of

OS-level virtualization can be implemented by using containers, control groups,

and namespaces to isolate various kernel resources (other OSs provide different

mechanisms; for example, BSD-based OSs provide jails). A user-space tool such

as lxc or docker is responsible for setting up the kernel containers, control

groups and namespaces, and executing the guest OS inside them.

In this paper, we focus on full hardware virtualization. Whenever possible,

the performance of full hardware virtualization can be improved by allowing

the guest machine language instructions to execute on the host CPUs [26] di-

rectly. The software component that is responsible for controlling the execution

of guests is named hypervisor. A hypervisor can directly execute on the hard-

ware (bare-metal hypervisor, like Xen [24]) or can rely on an OS kernel (hosted

hypervisor, such as kvm). While a bare-metal hypervisor must also contain a

VM scheduler (the host scheduler in our hierarchy), a hosted hypervisor relies

on the host kernel scheduler for scheduling the VMs, which are seen by the host

kernel as processes or threads.

Some of the previous work in the literature focused on implementing hierar-

chical real-time scheduling based on bare-metal hypervisors. For example, RT-

Xen [11] modified the Xen VM scheduler to implement deferrable servers [27, 28]

or polling servers (based on fixed priorities or on EDF), that can provide CPU

reservations. Hence, the various virtual CPUs can be assigned budgets and pe-

riods as done in this work. Based on this scheduler, RT-Xen allows providing

real-time guarantees to real-time tasks scheduled in the guests using partitioned

or global strategies [29]. However, it is not clear how the problem mentioned

24

in Section 2 is addressed: when using global scheduling in the guest, real-time

guarantees are provided using the MPR interface [5], which also requires some

form of para-virtualized scheduling (like our previous example). The deferrable

server mechanism implemented in RT-Xen has been integrated in the vanilla Xen

hypervisor, hence no additional patches are needed to use it. In the context of

large-scale cloud systems the overhead introduced by the hypervisor scheduler

might be too high, hence has also been proposed to use a static, table-driven,

approach in the Xen scheduler [30].

Other works [31] focused on using a µkernel, such as Fiasco [32] as a bare-

metal hypervisor, and a para-virtualized version of Linux (named l4linux [33])

as a guest kernel. The schedulability analysis for these hierarchical schedulers

has been limited to only one single virtual CPU.

In the context of hosted hypervisors, some previous works used a modified

Linux scheduler to schedule qemu/kvm [19, 34], but again focused on VMs with

one single virtual CPU.

5.1. Proposed architecture

In this work, we are interested in using a vanilla Linux scheduler (without

any additional patches) for scheduling the VMs, focusing on multi-processor

issues.

The most commonly-used hosted hypervisor on Linux is based on the kvm

(kernel-based virtual machine) module, that allows using some specific hardware

features to virtualize the CPU. For example, it is well known that the Intel ISA

was traditionally not virtualizable (in the sense of [26]), but the “Intel VT-x”

extensions (vmx in the CPU flags) introduce a virtualizable ISA to allow for a safe

and controlled execution of all the guest code. Kvm allows using this technology.

This possibility is then used by some user-space code (generally qemu [35]), that

is in charge of setting up the VM and emulating the I/O devices.

When using kvm to execute guest code, qemu creates a thread for each

virtual CPU πk of the VM (named vCPU thread). As a result, each virtual CPU

corresponds to a thread in the host system, which can be scheduled by using

25

one of the scheduling policies provided by Linux. As discussed in Section 4.3,

we need to schedule each virtual CPU πk with a reservation-based scheduler,

assigning a budget Qk and a period Pk to it. By default, a vanilla Linux kernel

(without any additional patch) provides the SCHED DEADLINE [36] scheduling

class that implements a reservation-based scheduler [2], which allows assigning

the desired scheduling parameters (Qk, Pk) to each scheduled task. Hence, it can

be used as a host scheduler to implement the approach described in Section 4.

Wrapping up, the hierarchical scheduling solution proposing in this paper is

based on:

• running each component C in a dedicated kvm-based VM (using the qemu

program) with m virtual CPUs;

• using the SCHED FIFO scheduling policy in the guest Linux kernel to sched-

ule the component’s real-time tasks with fixed priorities;

• partitioning the real-time tasks of the components between the m virtual

CPUs as explained in Section 4.2, which means that each task is assigned

to a virtual CPU by setting its affinity to a single CPU; and

• scheduling each one of the m vCPU threads πk of the VM with the host’s

SCHED DEADLINE policy and the scheduling parameters (Qk, Pk) computed

by Algorithm 1.

The SCHED DEADLINE policy in the host kernel can schedule the vCPU threads

on multiple physical CPUs by using a partitioned or a global approach. If global

scheduling is used, then a global admission test [37, 38] must be used; otherwise,

the vCPU threads can be partitioned between the physical CPUs by using some

bin-packing algorithm, and by enforcing that the sum of the utilizations
∑

k
Qk

Pk

on each physical CPU is smaller than 15.

5Actually, a threshold smaller than 1 has to be chosen - the default is 0.95 - to leave some

unused execution time for SCHED OTHER tasks on the host OS.

26

5.2. Taking non-real-time tasks into account

Notice that the previously-described design is based on the “potentially pes-

simistic” worst-case supply bound function sbf(t) from Equation (3), which

comes with an allocation delay ∆k = 2(Pk − Qk). This expression of sbf(t)

results from the assumption that the worst-case task arrival pattern shown in

Figure 2 can really happen. However, some authors showed that this assump-

tion might be too pessimistic [39, 40]. Basically, previous work showed that,

for some sets of tasks, the mentioned worst-case arrival pattern cannot happen,

with the result that a value of ∆k smaller than 2(Pk −Qk) could be computed

and used to obtain a less-pessimistic analysis. However, this result is based

on the assumption that the VM contains only real-time tasks (in other words,

real-time tasks are the only tasks that can consume the budget reserved for

the virtual CPU). In a real kvm-based VM, the reservation budget can be con-

sumed by both the real-time (fixed priority) and non-real-time (SCHED OTHER)

tasks. Hence, a job of a real-time task can arrive immediately after the budget

of a reservation has been fully discharged by non-real-time tasks (as shown in

Figure 2), even if this situation does not look possible by looking at real-time

tasks only. As a result, considering ∆k = 2(Pk − Qk) is not too pessimistic.

This is something that has not been explicitly considered in previous theoreti-

cal research about hierarchical real-time scheduling but can happen in practical

implementations as it will be shown in Section 6.2.

To use a more optimistic sbf(t) (as described in the papers mentioned above),

the budget of a reservation used to schedule a vCPU thread must be decreased

only when a real-time task is scheduled on the corresponding virtual CPU.

Similarly to the usage of global scheduling in the guest, this requires to use some

para-virtualized scheduling [41] or to use some OS-level virtualization [40].

6. Experiments

The effectiveness of the hierarchical scheduling system described in Section 5

has been tested through an extensive set of experiments, as reported in the

27

following.

6.1. Experimental setup

In each experiment, a set of periodic real-time tasks τi ∈ C has been exe-

cuted in a VM (remember that in the proposed approach each component C has

a dedicated VM). The periodic real-time tasks have then been implemented by

using the periodic thread application6, which creates a set of periodic threads

having the desired periods and execution times. The periodic behavior is im-

plemented by using the clock nanosleep() function, and the job body of each

task is implemented as a busy loop that consumes the desired amount of time;

hence, the periodic tasks are mainly CPU-intensive and the execution times of

the jobs of each task are almost constant.

The set of real-time tasks τi running in component C has been randomly

generated using the Randfixedsum algorithm [42] and the tasks have been as-

sumed to have relative deadlines equal to the periods (implicit deadlines); this

means that to respect the component’s temporal constraints, each job must be

completed before the time at which the next job of the task is released. The

set of programs and scripts used for the experiments can be downloaded from

http://retis.santannapisa.it/~luca/RTVM.

Each periodic thread application is executed inside a VM, i.e., it is a

thread executed by a guest. The SCHED FIFO scheduling policy is adopted

within guests to schedule the various threads with fixed priorities, which are

assigned according to Rate Monotonic [43]. In order to check that the temporal

constraints are not violated, the lateness fi,h − di,h of all the jobs of all the

tasks have been measured7. To aggregate the results from different real-time

tasks executing in the same VM, the lateness value can be normalized to the

task period, so obtaining the value
fi,h−di,h

Pi
that will be referred to as normal-

6See https://gitlab.retis.santannapisa.it/l.abeni/PeriodicTask
7this measure is useful in order to check if the temporal constraints have been respected,

because a positive value of the lateness indicates that the finishing time of the job is larger

than the absolute deadline and hence corresponds to a deadline miss.

28

http://retis.santannapisa.it/~luca/RTVM
https://gitlab.retis.santannapisa.it/l.abeni/PeriodicTask

ized lateness in the following. Hence, the real-time performance of the tasks

τi ∈ C can then be expressed by the Cumulative Distribution Function (CDF)

cdf(l) = Pr
{

(fi,h−di,h)
Pi

≤ l
}

for the normalized lateness of their jobs. For ex-

ample, cdf(0) indicates the probability to have no deadline misses. Another

metric that is used to evaluate the following experimental results is introduced:

the reservation cost of a component is defined as the difference between the sum

of all the utilizations of the m reservation servers that are used to implement

the virtual CPUs of the component, and the corresponding task set utilization.

This cost is formally defined as
∑m

k=1 Qk/Pk −
∑

τi∈C Ci/Ti and models the

extra CPU bandwidth required by the component interface.

The set of experiments reported in this section shows how the measured

response times match with theoretical analysis results. These experiments have

been performed by using various versions of the Linux kernel (4.4.0-112 from

Ubuntu, 4.13.8-100.fc25 from Fedora, 4.13.0-16 from Ubuntu, 4.13.16 compiled

from source) and different Linux distributions (Ubuntu 18.04 LTS, Ubuntu

17.10, Fedora 25, Ubuntu 16.04.3 LTS, and Linux Mint 18.3). Multiple CPU

models (including Intel(R) Core(TM) i5-5200U, Intel(R) Core(TM) i7-4790K,

Intel(R) Xeon(R) CPU E5-2640 and AMD Ryzen Threadripper 1950X) have

been tested obtaining consistent results, with the only exception of a few runs

on the Core i5 that showed some unexpected overhead; see Section 7 for more

details. As previously explained, qemu/kvm has been used for the VMs and the

vCPU threads have been scheduled by the host scheduler using the SCHED DEADLINE

policy. For CPUs having more than four cores, the vCPU threads have been

scheduled on four cores only (using both the global EDF algorithm provided

by SCHED DEADLINE and the partitioned EDF obtained by explicitly setting the

vCPU threads affinities), using the isolated cpusets mechanism.

To obtain repeatable results and to impose a more precise execution time,

the CPU frequency has been fixed by setting a constant power state of the Intel

pstate driver.

29

6.2. Reservation design in the presence of non-real-time tasks

A first set of experiments has been carried out to investigate the design of the

reservation parameters for VMs with a single virtual CPU by using Algorithm 1.

Note that the algorithm assumes an allocation delay ∆ = 2(P − Q) that, as

previously explained in Section 5, is a tight bound on the service delay suffered

by real-time tasks when non-real-time tasks (SCHED OTHER) can consume the

server budget. To experimentally confirm this observation, a periodic task τ

with period 50ms and execution time 25ms has been executed inside a single-

CPU kvm-based VM. The corresponding vCPU thread has been scheduled by

SCHED DEADLINE using budget Q = 30ms and period P = 50ms. Since τ is

the only real-time task inside the VM, there are no other real-time tasks that

can consume the server budget before the release of τ ’s jobs (in theory, this

is not even an example of hierarchical scheduling). The schedulability of tasks

running upon reservation servers offered by SCHED DEADLINE can be checked

with Lemma 1 of [2], which states that a periodic real-time task (C, T) does

not miss any deadline when scheduled by a reservation (Q,P) if Q ≥ C and

P ≤ T . In this case, τ results schedulable. Since τ is the only task running

upon the server (also denoted as a “bound task” according to [39]), it incurs in

a worst-case service delay equal to P −Q < ∆.

This analysis seems to be confirmed by a first experiment, in which the

task is scheduled by the SCHED FIFO policy in the guest without a significant

non real-time workload, and no deadline miss has been observed. However,

when the task has been scheduled as SCHED FIFO in the guest together with

some CPU-consuming tasks scheduled by the SCHED OTHER policy, i.e., non-

real-time tasks, about 30% of its jobs miss their deadline. This happens because

the SCHED OTHER tasks can consume the budget reserved to the vCPU thread,

leading to the worst-case situation of Figure 2, which is not considered in Lemma

1 of [2].

Repeating the experiment with a CPU reservation designed with Algorithm 1

(that is, assuming a worst-case delay ∆ = 2(P −Q), which leads to reserving a

budget Q = 37.5 when P = 50), all the jobs respected their deadlines even in

30

Task Ci Ti

τ1 7.284ms 55ms

τ2 4.799ms 66ms

τ3 23.150ms 213ms

τ4 24.938ms 451ms

τ5 5.898ms 191ms

Table 3: Example of task set generated by Randfixedsum, with five tasks and
∑

τi∈C

Ci

Ti
= 0.4

the presence of several CPU-consuming SCHED OTHER tasks in the guest.

6.3. Single-CPU VMs — Design of the reservation parameters

Another set of experiments has been carried out by randomly-generating

(with the Randfixedsum algorithm) various task sets with utilization ranging

from 0.3 to 0.85, periods in the range [20ms, 500ms] (with uniform distribution),

and composed of N ∈ [4, 10] tasks. Each of the generated task sets has been

used to populate a component executed in a kvm-based VM with a single virtual

CPU. The corresponding vCPU thread has been scheduled by SCHED DEADLINE.

The experiments have been performed by running a single VM or multiple VMs

(multiple concurrent components) upon the same host system.

The server design has been performed by adding two additional constraints:

the budget Q must be larger or equal than 1ms, and the reservation period

P must be in the interval [10ms, 500ms]. As an example, Table 3 shows one

of the generated task sets, for which the design algorithm produced a (Q =

7ms, P = 16ms) reservation. Note that the utilization of this task sets is U =
∑

τi∈C
Ci

Ti
= 0.4, while the fraction of CPU-time reserved to the vCPU thread is

Q/P = 7/16 = 0.4375; hence, the reservation cost for scheduling the container

in a VM is 0.0375 = 3.75%.

For each pair (U,N), 100 different sets of tasks have been generated and

the normalized lateness of every job of every task has been measured and used

to estimate a CDF. As an example, Figure 3 shows the experimental CDF of

31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

P
(f

 -
 d

)
/ P

 <
=

 l

l

No non real-time load
Multiple VMs with gEDF
CPU Hog in background

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 0 5 10 15 20 25 30 35

P
(f

 -
 d

)
/ P

 <
=

 l

l

Smaller runtime
Larger period

(b)

Figure 3: CDF of the normalized lateness (Pr
{

(fi,h−di,h)

Pi
≤ l

}

). The figure on the left (a)

refers to the case of a component scheduled upon a single virtual CPU served by a correctly-

designed reservation (Qk and Pk computed as discussed in Section 4.3). Notice that the

probability of missing a deadline (
(fi,h−di,h)

Pi
> 0) is 0. On the right (b), the results for a

component scheduled on one single virtual CPU served by badly-designed reservations. Notice

that in this case there is a non-null probability of missing a deadline (Pr
{

(fi,h−di,h)

Pi
> 0

}

>

0).

the normalized lateness measured with N = 5 tasks per component C, and an

utilization U =
∑

τi∈C
Ci

Ti
= 0.4 for each component8. The results presented

in this figure have been measured both when there is only one VM running on

the host (i.e., the case in which all the 100 generated components for the pair

(U = 0.4, N = 5) have been sequentially executed) and when multiple VMs have

been concurrently executed on the host by means of global EDF scheduling (in

general, 5 or 6 different components were admitted to run concurrently on the 4

CPU cores). Each experiment has been performed two times: first by running

only the real-time tasks in an otherwise idle VM, and then by running a heavy

CPU load in background (as SCHED OTHER non-real-time tasks). The second

setup makes it more likely to have a job for a real-time task arriving when the

budget is exhausted.

Figure 3(a) shows some results obtained when the VM is scheduled with

8Experiments with a different number of tasks per component and different utilizations

have been performed, leading to similar results.

32

parameters designed with Algorithm 1. Since the CDF of the normalized late-

ness arrives at 1 before the normalized lateness arrives to 0 (in other words,

Pr
{

(fi,h−di,h)
Pi

≤ 0
}

= 1), all the deadlines are respected, thus consistently

matching the theory.

To double-check the correctness of the analysis, the experiments have been

repeated by using a smaller budget (1ms smaller than the “correct budget” used

in Fig. 3(a)) or a larger period (1ms larger than the “correct period” used in

Fig. 3(a)); the results are reported in Figure 3(b) and show that, in this case, a

noticeable number of deadlines are missed—i.e., there is a significant probability

of measuring a normalized lateness larger than 0.

The experiments have been then repeated by running multiple VMs in paral-

lel on the same host. When running multiple VMs to serve a set of components

{Cj}, it is crucial to guarantee that the host scheduler is able to respect the

(Qj , Pj) interface provided to each vCPU. This can be done by running an

appropriate admission test. If the host scheduler is partitioned, then, after

statically assigning virtual CPUs to physical CPUs, a standard single-processor

admission test can be used. Otherwise, if global scheduling is used in the host,

then a more advanced (and pessimistic [17]) admission test must be used [37, 38].

The experiments have been performed by using M = 4 cores in the host sys-

tem, and the VMs have been scheduled by using a global EDF scheduler (and

running the admission test [37, 38] in user space) or a partitioned scheduler

(explicitly setting the affinity of each vCPU thread to one single CPU) in the

host. The admission test and the number of admitted VMs changed depending

on the usage of a global or partitioned scheduler, but the normalized lateness

results were similar.

In all the cases, when the reservations were properly designed with Algo-

rithm 1, no missed deadline has been detected, thus confirming that the pro-

posed approach allows to properly serve real-time tasks in VM guests, even when

multiple VMs are executed simultaneously. This also indicates that both parti-

tioned or global scheduling can be used at the host level without compromising

the tasks schedulability. As already discussed (and as it will be confirmed by

33

the next experiments), this is not true for the guest scheduler.

6.4. Verifying the issues with global guest scheduling

As shown in Section 3, VMs with multiple virtual CPUs present some issues

that have not generally been considered in the literature. To experimentally ver-

ify these issues, the tasks set Γ = {τ1 = (60ms, 100ms), τ2 = (10ms, 200ms)}

from the example in Section 3 has been executed in a kvm-based VM with 2 vir-

tual CPUs and the 2 vCPU threads scheduled by SCHED DEADLINEwith the bud-

gets and periods mentioned in the example ((90ms, 100ms) and (40ms, 100ms)).

The two tasks τ1 and τ2 are scheduled by the guest kernel using the SCHED FIFO

scheduling policy (which uses global scheduling by default on Linux); remember

that, as previously discussed, from the theoretical analysis the two tasks should

not miss any deadline. However, repeating the experiment 10 times it has been

noticed that in some cases the tasks are correctly scheduled (without missing

any deadlines), while in other cases the response times for τ1 continuously in-

crease and all the absolute deadlines of this task are missed. As previously

explained, this happens because the guest Linux kernel ends up in scheduling

τ1 on the vCPU with a depleted budget, breaking one of the assumptions made

in the theoretical analysis.

This experiment clearly shows that some form of para-virtualized sched-

uler [41] is required to use global scheduling in the guest. The next experiments

will focus on partitioned scheduling in the guest as proposed in this paper.

6.5. Multi-CPU VMs

In the next experiments, we tested several task sets generated by the Rand-

fixedsum algorithm with utilization U ∈ [1.0, 3.0], composed of N ∈ [5, 30] tasks,

and periods in the range [10ms, 500ms] (with uniform distribution). Each task

set (representing a component) has been scheduled in a VM with 4 virtual

CPUs. The tasks have been statically partitioned upon the 4 virtual CPUs by

solving the MILP formulation described in Equation (7), where one the defi-

nitions proposed by Park and Park (specifically, the one of Theorem 5 in [22])

34

Task Ci Ti

τ1 5.022ms 26ms

τ2 13.262ms 93ms

τ3 11.446ms 121ms

τ4 36.846ms 122ms

τ5 10.319ms 145ms

τ6 5.219ms 181ms

τ7 23.142ms 302ms

τ8 96.506ms 354ms

τ9 60.679ms 437ms

τ10 187.492ms 494ms

Table 4: Example of task set generated by Randfixedsum, with 10 tasks and U = 1.7

has been used to build the sets tSeti. Each vCPU thread of the VM has been

scheduled using SCHED DEADLINE with the reservation parameters designed by

means of Algorithm 1, enforcing a minimum budget of 1ms and a minimum

period of 10ms. Furthermore, the budget and the periods have been rounded

to multiples of 500µs and 1ms, respectively.

As an example, consider one of the generated task sets with utilization

U = 1.7 and N = 10 tasks as reported in Table 4. Using the first optimiza-

tion goal from Equation (7) (objective A: minimize
∑

k
Qk

Pk
), the partitioning

algorithm produces the task subsets Γ0 = {τ0, τ9} (tasks τ0 and τ9 assigned to

the first virtual CPU), Γ1 = {τ3, τ4, τ6, τ8}, Γ2 = {τ2, τ10}, and Γ3 = {τ5, τ7}.

The first vCPU thread is scheduled with parameters (6ms, 16ms), the second

vCPU thread is scheduled with parameters (16ms, 22ms), the third vCPU

thread is scheduled with parameters (13.5ms, 24ms), and the fourth vCPU

thread is scheduled with parameters (4ms, 24ms), with a total utilization of

6
16 + 16

22 + 13.5
24 + 4

24 = 1.8314. The corresponding reservation cost is hence

1.8314 − 1.7 = 0.1314. For reference, with MPR the minimum CPU band-

width to schedule component is 2.72, with a reservation cost of about 1, i.e.,

35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3

R
es

er
va

tio
n

C
os

t

Component Utilization

N=10

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 1.5 2 2.5 3

R
es

er
va

tio
n

C
os

t

Component Utilization

N=15

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3

R
es

er
va

tio
n

C
os

t

Component Utilization

N=20

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3

R
es

er
va

tio
n

C
os

t

Component Utilization

N=30

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

Figure 4: Reservation cost for executing components in VMs for MPR and the proposed

partitioning approach, as a function of the component utilization.

the bandwidth of an entire CPU.

Figure 4 compares the reservation cost for executing a component in a VM

when using the proposed partitioned approach (with optimization goals A or B)

and MPR. For MPR, the design has been performed both using the minimum

number of virtual CPUs and distributing the component over 4 virtual CPUs

or more; the second design (4 virtual CPUs or more) has been performed in

order to decrease the CPU bandwidth allocated on each physical CPU (so that

some CPU time can be left for host system software as explained in Section 1).

Unfortunately, as the figures show this approach does not work well since in-

creasing the number of virtual CPUs the allocated bandwidth also increases (as

already noticed in the example at the end of Section 3.2 — these experiments

just confirm that the previous example is not just a pathological case).

The reservation cost has been computed for task sets with different numbers

of tasks (N ∈ {10, 15, 20, 30}) and different utilizations (the plots show the

36

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30

R
es

er
va

tio
n

C
os

t

Number of tasks

U=1.0

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30

R
es

er
va

tio
n

C
os

t

Number of tasks

U=1.5

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5 10 15 20 25 30

R
es

er
va

tio
n

C
os

t

Number of tasks

U=2.0

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30

R
es

er
va

tio
n

C
os

t

Number of tasks

U=3.0

Partitioned, strategy A
Partitioned, strategy B

MPR, minumum number of CPUs
MPR, 4 CPUs

Figure 5: Reservation cost for executing components in VMs for MPR and the proposed

partitioning approach, as a function of the number of tasks.

37

cost as a function of the utilization). For each different configuration (a pair of

number of tasks and utilization), 100 different task sets have been analyzed, and

the figure reports the average of the collected reservation costs. From the figure,

it is possible to see that MPR with the minimum number of virtual CPUs tends

to perform better when the component’s tasks have a small utilization (low

values of the total component’s utilization, and a high number of tasks), while

its cost tends to increase when the component’s utilization increases. With 30

tasks and a utilization smaller than 1.9, MPR with 2 CPUs performs better

than the proposed partitioning approach. This is probably due to the behavior

of global scheduling. On the other hand, MPR on 4 or more virtual CPUs

is always outperformed by the proposed approach. The partitioning approach

shows a cost that does not depend on the component’s utilization, and is almost

independent of the number of tasks.

Figure 5 reports the same results (for utilizations U ∈ {1.0, 1.5, 2.0, 2.5}) as a

function of the number of tasks in the component. The figure basically confirms

the previous observations, but also highlights a strange behavior of MPR for

N = 20 tasks and utilization U = 2.0. Further investigation revealed that this

behavior is due to the fact that one of the 100 task sets generated for N = 20

and U = 2.0 exhibits the issue discussed at the end of Section 3, requiring a CPU

bandwidth equal to 14.9 (much larger than the task set utilization U = 2.0).

Note that all the generated components have also been executed under the

considered kvm-based experimental setup and by following the approach pro-

posed in this paper. Since components with different numbers of tasks and

different utilizations generated similar results, we report, in Figure 6, the ex-

perimental CDF of the normalized lateness only for two representative configura-

tions: components with N = 10 tasks and utilization U = 1.2; and components

with N = 21 tasks and utilization U = 3.0. As in the single-vCPU experiments,

the figure has been generated by collecting data from 100 randomly-generated

task sets for each configuration. Again, it is possible to appreciate how the

normalized lateness is never larger than 0, so no deadline has been missed.

For the case of components with 10 tasks and utilization 1.2, the average of

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

P
(f

 -
 d

)
/ P

 <
=

 l

l

N=10, U=1.2
N=21, U=3.0

Figure 6: CDF of the normalized lateness (Pr
{

(fi,h−di,h)

Pi
≤ l

}

) for a component scheduled

on multiple virtual CPUs, using a partitioned guest scheduler as discussed in Section 4. Notice

that all the deadlines are respected (
(fi,h−di,h)

Pi
> 0).

39

l P{L ≥ l}

without hrtick with hrtick

-0.053294 0.9995 0.9888

-0.053088 0.9996 0.9902

-0.051792 0.9996 0.9998

-0.051745 0.9996 0.9999

-0.051676 0.9996 1.0000

0.004794 0.9997 1.0000

0.004853 0.9998 1.0000

0.005029 0.9999 1.0000

0.005412 1.0000 1.0000

Table 5: Tails of the normalized lateness CDFs (values of the CDFs for l > 0.053) when the

hrtick kernel feature is disabled (without hrtick) or enabled (with hrtick). When hrtick is

not enabled, some deadlines are missed (there is a non null probability to have l > 0).

the sums of the bandwidths reserved to the 4 vCPU threads resulted equal to

1.464. Repeating the design with MPR, it turned out that the average CPU

bandwidth to be reserved to the VM is 1.609 when using 2 vCPUs, and 3.385

when using 4 vCPUs. For the other configuration with 21 tasks and utilization

3.0, the partitioning approach needed to reserve an average CPU bandwidth of

3.26 to the vCPU threads, while MPR would have needed an average bandwidth

of 6.97 (at least 7 physical CPUs).

It is worth noticing that, in these experiments, the partitioning and design

algorithm proposed in this paper splits the tasks on 4 different vCPUs, and

for some sets, the utilization on some vCPUs was quite small. As a result,

the corresponding reservations were designed with a small budget (around 1

or 2 milliseconds). Since the Linux kernel accounts for the budget at every

periodic tick, a vCPU can experience an overrun up to one tick, which is typically

comparable with the budget in the unfortunate cases mentioned above. As a

result, with the default kernel configuration, some task sets were experiencing

sporadic deadline misses: the CDF of the normalized lateness was similar to the

40

one represented in Figure 6, but the maximum normalized tardiness value was

larger than 0, indicating some missed deadline. In more details, the maximum

experienced value for the normalized lateness was 0.005412, and a normalized

lateness larger than 0 was measured with probability 4 · 10−4. This issue has

been fixed by enabling a kernel mechanism called hrtick, that forces the kernel

to perform exact accounting and enforcement of the budget by using additional

one-shot timers instead of the periodic tick timer. After enabling hrtick, no

missed deadline has been experienced, as it is visible in Table 5 that shows the

tails of the normalized lateness CDFs when hrtick is enabled and when it is

not.

7. Additional Considerations

The previous discussion mainly focused on scheduling algorithms, assuming

that the host scheduler and the guest scheduler can precisely implement them.

However, due to implementation issues in the OS kernel9, a real scheduler often

introduces some additional delays with respect to the theoretical CPU alloca-

tion. These delays are generally known as kernel latencies [44].

Due to the Linux kernel latency, some non-real-time workload is able to gen-

erate unexpected deadline misses. For example, threads or processes scheduled

by SCHED OTHER in the host can cause deadline misses in some guests (by trig-

gering high kernel latencies in the host kernel) even if an appropriate amount

of CPU time is reserved for vCPU threads according to the theoretical analysis.

In a standard Linux kernel, the kernel latency can be larger than 10ms (and is

technically equivalent to a blocking time for the CPU reservations).

This issue can be addressed by using a real-time version of the Linux kernel,

such as Preempt-RT [45, 46]. It has been previously shown that using Preempt-

RT, and properly configuring the host and the guest, it is possible to achieve a

20µs worst-case kernel latency [47], achieving a CPU allocation very similar to

9Or in the hypervisor, in case of bare metal hypervisors.

41

the theoretical one. While we plan to perform more tests with real-time features

in the kernel and in the hypervisor, some preliminary experiments seem to show

that using Preempt-RT in the host is of paramount importance, while using it

in the guest is generally less critical.

Another source of unexpected missed deadlines came from some hardware

issues related to the Intel Core i5 CPU we tested. All the other CPUs we

tested allowed to achieve a perfect consistency between experimental results

and theoretical analysis, but some of the experiments performed on the i5 CPU

resulted in response times larger than expected. In particular, some of the

task sets scheduled on VMs with multiple virtual CPUs (Figure 6) sporadically

missed some deadlines. Since this issue only happened with a specific CPU

model and did not depend on the kernel version and configuration, we suspect

that it is due to the hardware design of the CPU (e.g., related to some hardware

resources that are shared between different cores), but some investigation is

still needed. For example, it is possible to check if the issue is due to caches

shared between CPU cores by repeating the experiments with cache coloring

techniques [48, 49].

From a more theoretical point of view, an aspect that deserves to be inves-

tigated in more details is the usage of global scheduling in the host. In our

previous experiments, we used a hard real-time admission test that is quite pes-

simistic [17, 37, 38]. A less pessimistic admission control can be used, but it

does not guarantee the hard respect of every deadline; it only guarantees an

upper bound on the tardiness [50]. Hence, Algorithm 1 (server design) must be

improved to account for such a tardiness. In particular, the worst-case alloca-

tion delay ∆ in the sbf must be accordingly increased so that the reservation

parameters Q and P can be properly computed in order to avoid breaking the

guarantees in the guest. A possible way to do this can be based on the work

by Erickson et al. [51], who proposed a linear programming approach to assign

deadlines to global EDF tasks such that their tardiness is minimized, reducing

∆.

We are also currently analyzing the usage of a global scheduling algorithm

42

in the guest, either using a para-virtualized scheduler or scheduling all the

vCPU threads with the same budget and period. In this regard, an inter-

esting line of research that deserves to be investigated is about OS-level vir-

tualization (container-based virtualization on Linux). In fact, scheduling para-

virtualization can be easily implemented by modifying the so-called “real-time

control group scheduler” in the Linux kernel, which is used in container-based

VMs such as lxc10 or Docker11. At this point, some preliminary work on this di-

rection has been performed using lxc [52], but can be easily extended to Docker

and similar tools.

Finally, all the experiments presented in this paper focused on CPU-intensive

tasks and did not consider system calls, interactions between different com-

ponents (or between tasks in a single component), I/O or access to (virtual)

devices. When the workload running in the guest performs system calls, it

generates some additional latencies that must be accounted for in the schedu-

lability analysis. The usage of different technologies for implementing virtual

devices (and for connecting them with physical devices or other virtual devices)

can have a huge impact on the performance, both in terms of throughput [53]

and latencies [54]. Some investigation has already been performed in liter-

ature, but the results still have to be integrated into schedulability analysis

(and in the reservation design algorithm). Interaction between tasks (belong-

ing to the same component or to different components) introduce additional

blocking times that, again, have to be considered in the analysis; from the

practical point of view, interactions between components can be implemented

by using the ivshmem virtual device [55] provided by qemu, or by using the

vhost-user/virtio-user [56, 57] functionality.

All the blocking times mentioned above (due to latencies or to interactions

between tasks or components) can be considered in the design of the vCPU

reservations by adding some constraints to Equation 7 (and Algorithm 1), sim-

10See https://linuxcontainers.org/.
11See https://www.docker.com/ .

43

https://linuxcontainers.org/
https://www.docker.com/

ilarly to what has been done in [23].

8. Conclusions

This paper presented the implementation of a theoretically-sound two-level

hierarchical scheduling system based on Linux and kvm. First, some implementation-

related issues with previous analysis from literature have been highlighted, and

then a solution based on kvm and SCHED DEADLINE (using partitioned scheduling

in the guest) has been presented.

Experiments on real hardware showed both that (i) the issues discussed in

the paper can really happen in practice, as they can be easily reproduced in

practical configurations; and (ii) that the presented solution is sound, as the

experimental results matched with the theoretical analysis used in this paper.

As a future work, we plan to investigate the points raised in Section 7 (see

that section for details) and to analyze how the proposed technique can be

applied in real-world clouds (considering multiple hosts) and in industrial envi-

ronments.

Acknowledgement

This work has been partially funded by the European Commission through

the RETINA (EUROSTARS E10171) project.

[1] G. Banga, P. Druschel, J. C. Mogul, Resource containers: A new facility

for resource management in server systems, in: OSDI, Vol. 99, 1999, pp.

45–58.

[2] L. Abeni, G. Buttazzo, Integrating multimedia applications in hard real-

time systems, in: Proc. of 19th IEEE Real-Time Systems Symposium, 1998,

pp. 4–13.

[3] H. Leontyev, J. H. Anderson, A hierarchical multiprocessor bandwidth

reservation scheme with timing guarantees, Real-Time Systems 43 (1)

(2009) 60–92.

44

[4] E. Bini, M. Bertogna, S. Baruah, Virtual multiprocessor platforms: Spec-

ification and use, in: Proc. of 30th IEEE Real-Time Systems Symposium,

2009, pp. 437–446.

[5] A. Easwaran, I. Shin, I. Lee, Optimal virtual cluster-based multiprocessor

scheduling, Real-Time Systems 43 (1) (2009) 25–59.

[6] G. Lipari, E. Bini, A framework for hierarchical scheduling on multipro-

cessors: from application requirements to run-time allocation, in: Proc. of

31st IEEE Real-Time Systems Symposium, 2010, pp. 249–258.

[7] N. M. Khalilzad, M. Behnam, T. Nolte, Multi-level adaptive hierarchical

scheduling framework for composing real-time systems, in: Proc. of 19th

IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2013, pp. 320–329.

[8] A. Burmyakov, E. Bini, E. Tovar, Compositional multiprocessor scheduling:

the GMPR interface, Real-Time Systems 50 (3) (2014) 342–376.

[9] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E. Årzén,

V. Romero-Segovia, C. Scordino, Resource management on multicore sys-

tems: The ACTORS approach, IEEE Micro 31 (3) (2011) 72–81.

[10] K. Yang, J. H. Anderson, On the dominance of minimum-parallelism mul-

tiprocessor supply, in: Proc. of 37th IEEE Real-Time Systems Symposium,

2016, pp. 215–226.

[11] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu, O. Sokolsky,

Realizing compositional scheduling through virtualization, in: Proc. of 18th

IEEE Real Time and Embedded Technology and Applications Symposium,

2012, pp. 13–22.

[12] A. K. Mok, X. Feng, D. Chen, Resource partition for real-time systems, in:

Proc. of 7th IEEE Real-Time Technology and Applications Symposium,

2001, pp. 75–84.

45

[13] X. Feng, A. K. Mok, A model of hierarchical real-time virtual resources,

in: Proc. of 23rd IEEE Real-Time Systems Symposium, 2002, pp. 26–35.

[14] G. Lipari, E. Bini, Resource partitioning among real-time applications, in:

Proc. of 15th Euromicro Conference on Real-Time Systems, 2003, pp. 151–

158.

[15] I. Shin, I. Lee, Periodic resource model for compositional real-time guaran-

tees, in: Proceedings of 24th IEEE Real-Time Systems Symposium, 2003,

pp. 2–13.

[16] L. Almeida, P. Pedreiras, Scheduling within temporal partitions: response-

time analysis and server design, in: Proc. of 4th ACM International Con-

ference on Embedded Software, 2004, pp. 95–103.

[17] A. Biondi, Y. Sun, On the ineffectiveness of 1/m-based interference bounds

in the analysis of global edf and fifo scheduling, Real-Time Systems.

[18] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, S. Chen, I. Lee,

O. Sokolsky, CARTS: A tool for compositional analysis of real-time systems,

SIGBED Review 8 (1) (2011) 62–63.

[19] T. Cucinotta, G. Anastasi, L. Abeni, Respecting temporal constraints in

virtualised services, in: Proc. of 33rd IEEE International Computer Soft-

ware and Applications Conference, 2009, pp. 73–78.

[20] J. P. Lehoczky, L. Sha, Y. Ding, The rate-monotonic scheduling algorithm:

Exact characterization and average case behavior, in: Proc. of 10th IEEE

Real-Time Systems Symposium, 1989, pp. 166–171.

[21] E. Bini, G. C. Buttazzo, Schedulability analysis of periodic fixed priority

systems, IEEE Transactions on Computers 53 (11) (2004) 1462–1473.

[22] M. Park, H. Park, An efficient test method for rate monotonic schedulabil-

ity, IEEE Transactions on Computers 63 (5) (2014) 1309–1315.

46

[23] A. Biondi, G. Buttazzo, M. Bertogna, Partitioning and interface synthesis

in hierarchical multiprocessor real-time systems, in: Proc. of 24th Interna-

tional Conference on Real-Time Networks and Systems, 2016, pp. 257–266.

[24] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, A. Warfield, Xen and the art of virtualization, SIGOPS

operating systems review 37 (5) (2003) 164–177.

[25] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, kvm: the linux virtual

machine monitor, in: Proceedings of the Linux symposium, Vol. 1, 2007,

pp. 225–230.

[26] G. J. Popek, R. P. Goldberg, Formal requirements for virtualizable third

generation architectures, Communications of the ACM 17 (7) (1974) 412–

421.

[27] J. K. Strosnider, J. P. Lehoczky, L. Sha, The deferrable server algorithm for

enhanced aperiodic responsiveness in hard real-time environments, IEEE

Transactions on Computers 44 (1) (1995) 73–91.

[28] T. M. Ghazalie, T. P. Baker, Aperiodic servers in a deadline scheduling

environment, Real-Time Systems 9 (1) (1995) 31–67.

[29] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, I. Lee, Real-time

multi-core virtual machine scheduling in Xen, in: Proc. of 2014 Interna-

tional Conference on Embedded Software (EMSOFT), 2014, pp. 1–10.

[30] M. Vanga, A. Gujarati, B. B. Brandenburg, Tableau: A high-throughput

and predictable vm scheduler for high-density workloads, in: Proceedings

of the Thirteenth EuroSys Conference, EuroSys ’18, ACM, New York, NY,

USA, 2018, pp. 28:1–28:16.

[31] J. Yang, H. Kim, S. Park, C. Hong, I. Shin, Implementation of composi-

tional scheduling framework on virtualization, SIGBED Rev. 8 (1) (2011)

30–37.

47

[32] M. Hohmuth, H. Härtig, Pragmatic nonblocking synchronization for real-

time systems, in: Proc. of USENIX Annual Technical Conference, 2001,

pp. 217–230.

[33] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, S. Schönberg, The perfor-

mance of µ-kernel-based systems, in: Proc. of 16th ACM Symposium on

Operating Systems Principles, 1997, pp. 66–77.

[34] T. Cucinotta, D. Giani, D. Faggioli, F. Checconi, Providing performance

guarantees to virtual machines using real-time scheduling, in: European

Conference on Parallel Processing, 2010, pp. 657–664.

[35] F. Bellard, QEMU, a fast and portable dynamic translator, in: USENIX

Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[36] J. Lelli, C. Scordino, L. Abeni, D. Faggioli, Deadline scheduling in the linux

kernel, Software: Practice and Experience 46 (6) (2016) 821–839.

[37] M. Bertogna, M. Cirinei, G. Lipari, Improved schedulability analysis of

EDF on multiprocessor platforms, in: Proc. of 17th Euromicro Conference

on Real-Time Systems, 2005, pp. 209–218.

[38] J. Goossens, S. Funk, S. Baruah, Priority-driven scheduling of periodic task

systems on multiprocessors, Real-Time Systems 25 (2) (2003) 187–205.

[39] R. I. Davis, A. Burns, Hierarchical fixed priority pre-emptive scheduling,

in: Proc. of 26th IEEE Real-Time Systems Symposium, 2005, pp. 389–398.

[40] L. Abeni, T. Cucinotta, Efficient virtualisation of real-time activities, in:

Proceedings of the IEEE International Conference on Service-Oriented

Computing and Applications (SOCA 2011), Irvine, CA, 2011, pp. 1–4.

[41] J. Kiszka, Towards linux as a real-time hypervisor, in: Eleventh Real-Time

Linux Workshop, Dresden, Germany, 2009, p. 205.

[42] P. Emberson, R. Stafford, R. I. Davis, Techniques for the synthesis of multi-

processor tasksets, in: Proceedings 1st International Workshop on Analysis

48

Tools and Methodologies for Embedded and Real-time Systems (WATERS

2010), 2010, pp. 6–11.

[43] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in

a hard real-time environment, Journal of the Association for Computing

Machinery 20 (1) (1973) 46–61.

[44] L. Abeni, A. Goel, C. Krasic, J. Snow, J. Walpole, A measurement-based

analysis of the real-time performance of linux, in: Proc. of 8th IEEE Real-

Time and Embedded Technology and Applications Symposium, 2002, pp.

133–142.

[45] S. Rostedt, Internals of the RT patch, in: Proceedings of the Linux Sym-

posium, Ottawa, Canada, 2007, pp. 161–172.

[46] P. McKenney, A realtime preemption overview,

https://lwn.net/Articles/146861/ (August 2005).

[47] R. V. Riel, Real-time kvm from the ground up, in: KVM Forum 2015,

2015.

[48] P. Modica, A. Biondi, G. Buttazzo, A. Patel, Supporting temporal and spa-

tial isolation in a hypervisor for arm multicore platforms, in: Proceedings

of the 18th IEEE International Conference on Industrial Technology (ICIT

2018), 2018.

[49] H. Kim, R. Rajkumar, Predictable shared cache management for multi-core

real-time virtualization, ACM Transactions on Embededded Computing

Systems 17 (1) (2017) 22:1–22:27.

[50] U. C. Devi, J. H. Anderson, Tardiness bounds under global EDF scheduling

on a multiprocessor, Real-Time Systems 38 (2008) 133–189.

[51] J. P. Erickson, J. H. Anderson, B. C. Ward, Fair lateness scheduling:

Reducing maximum lateness in g-edf-like scheduling, Real-Time Systems

50 (1) (2014) 5–47.

49

https://lwn.net/Articles/146861/

[52] L. Abeni, A. Balsini, T. Cucinotta, Container-based real-time scheduling

in the linux kernel, in: Proceedings of the Embedded Operating System

Workshop 2018 (EWiLi’18), Torino, Italy, 2018.

[53] L. Abeni, C. Kiraly, N. Li, A. Bianco, On the performance of kvm-based

virtual routers, Computer Communications 70 (Supplement C) (2015) 40–

53.

[54] C. Li, S. Xi, C. Lu, C. D. Gill, R. Guerin, Prioritizing soft real-time network

traffic in virtualized hosts based on xen, in: Proc. of 21st IEEE Real-Time

and Embedded Technology and Applications Symposium, 2015, pp. 145–

156.

[55] A. C. Macdonell, Shared-memory optimizations for virtual machines, Ph.D.

thesis, University of Alberta (2011).

[56] J. Tan, C. Liang, H. Xie, Q. Xu, J. Hu, H. Zhu, Y. Liu, Virtio-user: A

new versatile channel for kernel-bypass networks, in: Proceedings of the

Workshop on Kernel-Bypass Networks, KBNets ’17, ACM, New York, NY,

USA, 2017, pp. 13–18.

[57] M. Paolino, N. Nikolaev, J. Fanguede, D. Raho, Snabbswitch user space

virtual switch benchmark and performance optimization for NFV, in: 2015

IEEE Conference on Network Function Virtualization and Software Defined

Network (NFV-SDN), 2015, pp. 86–92.

Appendix A. Computing the Level-1 Parallel Supply Function

To guarantee tasks over virtual machines, the most general abstraction was

proposed by Bini et al. [4], who proposed the parallel supply function (PSF).

This notion extends the concept of supply function of Equation (1) to machines

on which components may use the computing power provided by any of the

available vCPUs. In brief, the PSF abstraction of m vCPUs is a collection of m

function {psf1(t), . . . , psfm(t)}. Each function psfk(t) represents the minimum

50

computing capacity made available by any k vCPUs. Formally (Equations (6)

and (13) of [4]),

psfk(t) = min
[ξ1,...,ξm]

min
t0

∫ t0+t

t0

min
{

k,

m
∑

j=1

ξj(s)
}

ds (A.1)

with [ξ1, . . . , ξm] being all possible schedule functions of the vCPUs. Hence,

the index k of psfk(t) is not linked to the index of the k-th vCPU. Rather, it

represents the parallelism of the computing power offered by Π. The interested

reader may find more details in [4] and [6].

Below, we report an original result linking the set of supply bound functions

from sbf1(t) to sbfm(t) of each vCPU of Π to the parallel supply function psf1(t),

which represents the amount of computing power provided by at most one vCPU

among the m available.

Lemma 1. Given a virtual machine Π composed by m vCPUs, with the k-th

vCPU characterized by the supply function sbfk(t). Then, the parallel supply

function psf1(t) of parallelism 1 of the whole machine Π is such that

∀t ≥ 0, psf1(t) ≥ max
k

{sbfk(t)} (A.2)

Proof. Let [ξ∗1 , . . . , ξ
∗
m] and t∗0 be the indicator functions of the vCPU schedules

and the value of t0 that determine the minimum for psf1(t). Hence from the

definition of Eq. (A.1)

psf1(t) =

∫ t∗
0
+t

t∗
0

min
{

1,

m
∑

j=1

ξ∗j (s)
}

ds.

Now we observe that it must be

∀t, k, min
{

1,

m
∑

j=1

ξ∗j (t)
}

≥ ξ∗k(t).

In fact:

• both the LHS and the RHS are either 0 or 1

51

• if the LHS is 0 then no ξk(t) can be 1.

Hence

∀t, k, psf1(t) =

∫ t∗
0
+t

t∗
0

min
{

1,
m
∑

j=1

ξ∗j (s)
}

ds ≥

∫ t∗
0
+t

t∗
0

ξ∗k(s)ds ≥ sbfk(t)

by definition of worst-case resource supply of the the k-th vCPU.

Hence

∀t, k, psf1(t) ≥ sbfk(t) ⇒ ∀t, psf1(t) ≥ max
k

{sbfk(t)}

as required.

Appendix B. Proof of Constraint 2

Lemma 2. When sbfk(t) = αk · t, Constraint 2 correctly enforces the schedula-

bility test provided in Equation (5).

Proof. Consider an arbitrary task τi ∈ C and an arbitrary virtual processor πk.

First note that, if τi is not allocated to πk, i.e., xi,k = 0, then M · (2 − pi,q −

xi,k) ≥ M idenependently of the value of binary variables pi,q. Consequently,

by definition of M, the constraint has no effect independently of the LHS of

Equation (6). Now, consider the case in which τi is allocated to πk, i.e., xi,k = 1.

By definition of variables xj,k, Equation (6) can be rewritten as

Ci +
∑

τj∈hp(i)∩Γk

⌈

tSeti[q]

Tj

⌉

Cj ≤ αk · tSeti[q] +M· (1− pi,q). (B.1)

By definition of variables pi,q, if pi,q = 1 then the schedulability condition for

τi must be verified at the q-th point of set tSeti. By replacing pi,q = 1 in

Equation (B.1) we get

Ci +
∑

τj∈hp(i)∩Γk

⌈

tSeti[q]

Tj

⌉

Cj ≤ αk · tSeti[q]. (B.2)

Since sbfk(t) = αk · t, note that the above equation matches the inequality

provided by Equation (5), thus correctly enforcing the schedualability condition

at point tSeti[q]. Conversely, if pi,q = 0, the constraint has no effect for the same

reasons discussed above in the case for xi,k = 0. Hence the lemma follows.

52

	Introduction
	System model and Background
	Reservation-based scheduling of virtual machines

	Issues with global guest schedulers
	Counterexamples
	Other issues

	The proposed scheduling approach
	Task partitioning and virtual processor design
	Task partitioning
	Server design
	Putting the pieces together
	Example

	Hierarchical Scheduling on Linux
	Proposed architecture
	Taking non-real-time tasks into account

	Experiments
	Experimental setup
	Reservation design in the presence of non-real-time tasks
	Single-CPU VMs — Design of the reservation parameters
	Verifying the issues with global guest scheduling
	Multi-CPU VMs

	Additional Considerations
	Conclusions
	Computing the Level-1 Parallel Supply Function
	Proof of Constraint 2

