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A correlation between the secondary cosmic ray flux and the near-earth electric field intensity,

measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment,

a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l.,

Tibet, China). The counting rates of showers with different particle multiplicities (m = 1, 2, 3 and ≥ 4),

have been found to be strongly dependent upon the intensity and polarity of the electric field measured

during the course of 15 thunderstorms. In negative electric fields (i.e. accelerating negative charges

downwards), the counting rates increase with increasing electric field strength. In positive fields, the

rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the

event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we

found that this peculiar behavior can be well described by the presence of an electric field in a layer of

thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates

the secondary shower particles of opposite charge, modifying the number of particles with energy

exceeding the detector threshold. These results, for the first time, give a consistent explanation for the

origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray

detectors during thunderstorms.

I. Introduction

During thunderstorms, strong atmospheric electric fields acting on secondary charged particles of

extensive air showers (EAS) can cause variations of the flux of cosmic rays measured at the ground

level. For decades, several high altitude experiments, such as the Baksan Carpet array [1], EAS-TOP

[2], Tibet AS-γ [3], ASEC [4-6], ARGO-YBJ [7, 8], SEVAN at Lomnický štít [9], a network of thermal

neutron detectors [10] and detectors on Mount Norikura [11, 12] and Mount Fuji [13] have reported

cosmic ray flux variations associated to thunderstorm episodes, concerning different components of

extensive air showers (electrons, gamma rays, muons, neutrons). So far, a coherent interpretation of all

observations and a real understanding of the phenomena have not yet been achieved.

Since the first suggestions of “runaway” electrons by Wilson [14], the high-energy phenomena

originating in the terrestrial atmosphere during thunderstorms have been a hot topic in atmospheric

physics. To explain the observed flux enhancements, Gurevich et al. [15] introduced the concept of

“runaway electrons”, i.e. secondary EAS electrons accelerated by the electric field that gain an energy

greater than the energy lost in ionization and bremsstrahlung. These electrons are continuously

accelerated, producing new electrons by ionization of the air molecules. Newborn free electrons are in

turn accelerated by the electric field, giving rise to an exponentially growing avalanche (upwards or
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downwards directed, depending on the polarity of the electric field in the thundercloud). This process

is known as runaway breakdown, now commonly referred to as relativistic runaway electron

avalanche (RREA) [16, 17]. The RREA process is thought to be responsible for Terrestrial Gamma-ray

Flashes (TGFs), sub-millisecond gamma-ray bursts observed by satellite instruments, due to

bremsstrahlung emission by RREA electrons [18]. The RREA mechanism could also be the source of

the largest among the Thunderstorms Ground Enhancements (TGEs), where the particle flux measured

at the ground level can increase by several times [4].

Dwyer [19] and Symbalisty et al. [20] have studied the threshold field strength for the

development of the RREA process. According to their evaluations, the threshold E0 at sea level is

2800 V/cm. At higher altitude, the threshold Eth decreases proportionally with atmospheric pressure

[19], so Eth = E0 e (−Z/8.4), where Z is the height above sea level (in km). At Z = 6.0 km, Eth =1350 V/cm;

at Z = 4.3 km, Eth = 1650 V/cm. This means that, to trigger the RREA process, a very large field is

necessary. Actually, smaller TGEs (of intensity < 10%) have been observed also in presence of less

intense fields. Moreover, flux decreases have been observed in several cases, and these events cannot

be explained with the electron avalanche process.

To interpret the large amount of data and understand the underlying mechanisms, the effects of

electric fields on the development of the extensive air showers have been simulated in several works

[21-24]. In particular, Zhou et al. [24] simulated the opposite effect of the field on electrons and

positrons of EAS and found that differences in number and energy between electrons and positrons can

produce increases or decreases in the total number of particles with energy above the detector

threshold, depending on the electric field intensity and polarity, producing corresponding increases or

decreases in the measured event rates.

Though much progress has been achieved from the experiments and theoretical efforts, the

acceleration mechanisms of secondary charged particles caused by atmospheric electric fields still

need a deep understanding. The strength of electric field fluctuates abruptly and the polarity can

change multiple times during thunderstorms. Hence, simultaneous measurements of the thunderstorm

electric field at different altitudes in the atmosphere are difficult to perform. Simulation studies still

need realistic electric field descriptions. Recent measurements have shown that atmospheric electric

fields at different altitudes can be probed by detecting radio signals from air showers during

thunderstorms [25, 26].

In this work, the variations of the secondary cosmic ray intensity measured by the ARGO-YBJ
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detector during thunderstorms in summer 2012 have been analyzed and correlated to the intensity of

the electric field measured at the detector level. Using the results of simulations, obtained with a

simple model of the electric field, a possible acceleration mechanism of EAS particles responsible of

the observed phenomena is presented and discussed.

II. The ARGO-YBJ detector

The ARGO-YBJ experiment was located at the Yangbajing Cosmic Ray Laboratory in Tibet, China, at

an altitude of 4300 m above the sea level and was fully operational from 2007 November to 2013

February. The detector is composed of a single layer of resistive plate chambers (RPCs), operated in

streamer mode and grouped into 153 units named “clusters” of size 5.7 × 7.6 m2. The clusters are

disposed in a central full-coverage carpet (130 clusters) surrounded by 23 additional clusters (“guard

ring”) [27]. Each cluster is composed of 12 RPCs and each RPC is read out by 10 pads. Each pad (of

area 55.6 × 61.8 cm2) can be considered the space-time “pixel” of the detector. Two independent data

acquisition systems, corresponding to the shower and scaler operation modes, are connected to the

detector. In shower mode, the showers with a number of fired pads ≥ 20 hitting the central carpet

(inside a time window of 400 ns) trigger the detector. The shower’s arrival direction and core position

are reconstructed in order to use the events in gamma ray astronomy [28-30] and cosmic ray [31, 32]

studies at primary energies above 300 GeV. In scaler mode [33], the event rates of showers having a

number of fired pads per cluster ≥ 1, ≥ 2, ≥ 3 and ≥ 4 (in a time coincidence of 150 ns) are recorded

every 0.5 s. For each cluster, four independent scalers record the counting rates (i.e. the signal coming

from the corresponding 120 pads) for the 4 multiplicities. The average rates of the four scalers are ~40

kHz, ~2 kHz, ~300 Hz, ~120 Hz. These small showers are not reconstructed. The scaler data are used

to check the stability and the correct operation of the detector and in the search for transient events like

GRBs in the GeV energy range [34]. From the measured counting rates N≥i the counting rates Ni are

obtained with the relation:    1  iii NNN (i = 1, 2, 3). The corresponding mean primary energies

are 100 GeV, 140 GeV, 170 GeV and 250 GeV [35], respectively. It is important to note that while the

particle multiplicity m = 2, 3 and 4 are almost completely due to cosmic ray secondary particles, the

local radioactivity contributes for about 37% to the counting rate of particle multiplicity m =1 [34]. In

addition to counting rates, meteorological data (atmospheric pressure, humidity, temperature, wind

speed, precipitations) were also recorded every 20 s by the detector control system (DCS).

In order to study the effects of atmospheric electric fields on cosmic rays, two electric field mills
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(Boltek EFM-100) were installed on the roof of the ARGO-YBJ building. The output of the mills was

corrected to take into account the electric field enhancement that occurs by virtue of their location on

the roof. The correction factors were calculated numerically with the finite element method, using a 3D

model of the building. Full details of the methodology have been presented previously [36]. After the

correction factors were applied, the measurements of the two mills were found to be consistent within

10%, with a saturation value of ±175 V/cm. In this work, we use the mean value of the two

measurements.

III. Data selection and observation results

The thunderstorm episodes used in this analysis have been selected according to the measured

near-earth electric field (EF) disturbances. To get more clear correlations between the electric field and

the measured rates, we only considered thunderstorms in which the field strength exceeded 175 V/cm

for at least 4 minutes, or 90 V/cm for at least 8 minutes. To avoid too many complex scenarios, we

limited our analysis to episodes in which the EF polarity changes not more than 3 times.

The selected data were carefully checked and cleaned. The Poissonian behavior of the counting

rates of all clusters before the thunderstorms were verified and rate corrections for meteorological

effects performed [33]. After the selections and cleaning procedures, the percent variations of the

counting rates for 15 thunderstorm events (with respect to the rate measured in a period of one hour

before the thunderstorm) were evaluated and compared to the corresponding variations of the

measured electric field.

In this work, we define a positive electric field as one that accelerates downwards (i.e. in the

direction of the earth) positively charged particles. During thunderstorms, the strength and polarity of

the fields can change abruptly. In general, thunderstorm events can be classified into three types:

negative-based field, positive-based field, and successions of positive and negative field. As an

example, Fig. 1 shows the EF value and the scalers counting rates (in percent variations) as a function

of time (in one minute bins) during a negative-based thunderstorm. The EF disturbance lasts 27

minutes, from 19:05 to 19:32 UT on 2012 May 28. During this interval, the absolute value of EF is

higher than the saturation value for 5 minutes. A clear increase is observed in N1 and N2 counting rates,

a smaller increase in N3 rate and no statistically significant effect for N≥4.

A more complex situation is shown in Fig. 2, which represents a thunderstorm episode

characterized by a succession of positive and negative EFs. It occurred between 16:38 and 17:04 UT
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on 2012 April 29. The positive field lasts for 13 minutes and saturates the instrument for 8 minutes.

The negative field also lasts for 13 minutes, with a maximum strength of 155 V/cm. In a positive

field, N1 and N2 rates first show a decrease, reach a minimum, then increase, while N3 and N≥4 rates

decrease for every EF intensity. In a negative field, clear increases are found for scalers N1 and N2,

while scalers N3 and N≥4 do not change significantly.

Figure 1. Percent variations of counting rates (red circles) and EF intensity (blue dots) as a function of
time (1 min/bin) for the 4 scaler channels during the thunderstorm event occurred on 2012 May 28.

Figure 2. Percent variations of counting rates (red circles) and EF intensity (blue dots) as a function of
time (1 min/bin) for the 4 scaler channels during the thunderstorm event occurred on 2012 April 29.

.



7

To understand this complex scenario, it is instructive to plot the counting rate variations as a

function of the electric field intensity, for all the thunderstorm episodes selected in the analysis. Fig. 3

shows the percent variation of the four scaler counting rates for the 15 selected thunderstorms. Besides

the fluctuations that characterize the individual episodes, for each scaler a clear common behavior is

evident. Fig. 4 reports the average rate variations across 15 events as a function of EF. It shows that

positive fields mostly produce rate decreases, whilst negative fields produce rate increases. The

amplitudes depend on the pad multiplicity, noting that in this figure the field ±185 V/cm includes all

the |EF| ≥ 175 V/cm data. A more detailed inspection of the figure reveals that in negative fields all

rates increase with the field intensity except the N≥4 rate (which does not show any significant

variation). Positive fields produce a more complex behavior. For small EF intensities, there is a clear

rate decrease (larger for higher multiplicities). Then, as EF increases, the rate decrease slows down and

reaches a minimum, after which it begins increasing. The EF intensity EFmin where this inversion

occurs increases with the multiplicity, ranging from 50 V/cm to more than 175 V/cm.

Figure 3. Percent variation of counting rates for different multiplicities, as a function of the electric
field intensity, for 15 thunderstorms episodes.
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IV. Simulation results and discussion

According to the simulation study [24], rate variations could be due to the acceleration and

deceleration of the secondary electrons and positrons when they cross layers of electric field. The

acceleration/deceleration of particles will increase/decrease the number of particles with energy above

the detector threshold. To verify this idea, we simulated the detector event rate, assuming an

atmospheric electric field of different intensity extending above the detector, and we compared it with

the rate without electric field.

The development of extensive air showers in the atmosphere has been simulated using the

CORSIKA7.5700 code [21, 37], inserting as input parameters the intensity and spatial coordinates of

the electromagnetic field. In the code, only the transport of electrons and positrons takes into account

the electric field. The energy threshold of electrons and positrons (i.e. the ECUT parameter in Corsika)

has been set to the lowest possible value, 50 keV. The hadronic interaction models used are

QGSJETII-04 for high energy particles and GHEISHA in the low energy range. We assume proton

primaries with arrival direction uniformly distributed in the sky, with a zenith angle in the interval

from 0o to 40o. The values of the geomagnetic field components used in simulations are BX = 34.1 T

and BZ = 36.2 T, for the horizontal and vertical intensity, respectively. The total number of simulated

events is 2×108.

To study the EF effects, we use a simple model, with a vertical and uniform EF in a layer of

atmosphere extending from the detector level (4300 m) up to 4600 m, i.e. we assume the bottom of

thunderclouds at a distance of 300 m above the ground, that is the typical height of thunderclouds at

Figure 4. Percent counting rate variations of the four multiplicity channels as a function of the electric field
(averaged over 15 thunderstorm episodes). The error bars represent the standard deviation.
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the Yangbajing site.

Since the variation of the secondary particle flux is determined by the opposite effect of the EF on

the main charged components of the showers, i.e. electrons and positrons, it is instructive to describe

some features of these components in the absence of an electric field. The first important point is the

number of electrons and positrons. It is well known that the number of electrons exceeds the number of

positrons due to the asymmetry of production and absorption mechanisms, including Compton

scattering, positron annihilation and photoelectric effects. Fig. 5 shows the ratio of electrons to

positrons (Ne-/Ne+) with energy above 50 keV, as a function of the proton energy, at the altitude of 4600

m, where particles, travelling downwards in the atmosphere, start to be affected by the EF in our

simulations. The Ne-/Ne+ ratio ranges from 1.81 to 1.85 for proton energies from 10 GeV to 1 TeV. A

further difference between electrons and positrons is their average energy. Fig. 6, reporting the mean

energy of e+ and e- at 4600 m as a function of the proton energy, shows that the average energy of

positrons is about 1.5 times larger than that of electrons, for all the primary energies considered here.

These differences cause a significant asymmetry in the behavior of the secondary particle flux in

presence of positive and negative electric field.

Figure 5. Electrons to positrons ratio at 4600 m, as a function of the primary energy.

Figure 6. Mean energy of positrons and electrons at 4600 m, as a function of the primary energy.
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To study the effects of the EF on the shower components, and the consequent effects on the rate of

detected particles, we simulated a primary proton flux with power law spectrum = -2.7 and energy

ranging from 14 GeV (the vertical geomagnetic cutoff energy for protons at the detector site [38]) to 1

TeV. Fig. 7 shows the percent variation of the number of electrons, positrons and their sum (with

energy larger than the detector threshold 2 MeV) at the detector level as a function of the electric field

intensity.

This rate behavior can be easily understood as the effect of the electric field on positrons and

electrons. According to the Bethe theory, if the positron/electron energy is larger than ~1 MeV, the drag

force increases with the energy [39, 40]. This means that the electric field has more effect on particles

with smaller energies, i.e. on electrons. Negative fields (accelerating electrons) produce an increase of

the number of electrons and a (smaller, by a factor 2) decrease of the number of positrons. Due to the

excess number of electrons in showers, and since the increase of electrons under the EF effect is larger

than the decrease of positrons, the resulting total number of particles (sum of electrons and positrons)

increases.

On the contrary, in positive electric fields, positrons are accelerated. However, since positrons

have a larger energy than electrons and are in smaller number, the increase of positrons cannot

compensate for the decrease of electrons. Hence the total number of electrons and positrons will

decrease. However, if the positive field intensity becomes larger and larger, the positron spectrum

becomes softer, due to an increase of low energy positrons by pair production. When the field is above

a given value EFmin, the increase in positrons compensates for the decrease of electrons and the total

Figure 7. Simulations: percent variations of the number of electrons, positrons and their sum, at the
detector level, as a function of the electric field intensity.
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number starts increasing. This mechanism, explained in detail in [24], produces the asymmetric

behavior shown in Fig. 7.

Variations of the number of electrons and positrons at the detector level affect the rate of events

recorded by the detector. To understand the rate variations observed in our data, we simulated events

with different multiplicities, i.e. with m = 1, 2, 3 and ≥ 4 particles falling in the area of one cluster (5.7

× 7.6 m2). The important point here is that events with larger multiplicities correspond to

electrons/positrons with larger energies, as shown in Fig. 8, since larger multiplicities correspond to

primary protons of larger energies, and hence, according to Fig. 6, to larger electron/positron energies.

Fig. 9 shows the percentage variations of the number of events with different multiplicities as a

function of the electric field, according to simulations. In negative fields, an increase occurs for all

multiplicity channels, being larger for lower multiplicities, where the particle energy is smaller and the

EF effect is higher. On the contrary, in positive fields, the decrease is larger for higher multiplicities,

where positrons have larger energies, and are less affected by the EF. The values of the positive field

intensity EFmin, where the rate inversion occurs, increases with the multiplicity, being 50 V/cm for m

= 1 and more than 175 V/cm for m ≥ 4.

The comparison of simulations with experimental data is shown in Fig.10. The points represent the

average counting rate variations observed during the 15 thunderstorms considered. The counting rate

variation corresponding to multiplicity m = 1 has been corrected to take into account the contribution

of radioactivity. The level of radioactivity is expected not to change during thunderstorms. It

contributes 37% to the N1 rate [34], so the observed variation has been lowered by the same amount.

Figure 8. Mean energy of positrons and electrons at 4600 m, as a function of the multiplicity.
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The agreement between data and simulations for all event multiplicities shows that the observed

rate variations are likely due to the acceleration/deceleration process of electrons and positrons during

the shower development.

Figure 9 Simulations: percent variations of the total number of events with different multiplicities, as a function
of the electric field intensity, assuming an electric field layer of thickness 300 m.

Figure 10. Percent counting rate variations obtained by simulating a layer of 300 m above the detector, with a uniform
electric field, as a function of the field strength, compared to experimental data, for different event multiplicities.
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It has to be noted that in our simulations we have not taken into account the EF effect on muons,

since the CORSIKA code does not include this possibility. However, according to simulations, we

know that in normal conditions, the percentage of muons (with respect to the total shower charged

particles) is ~23.1%, ~6.4%, ~3.6% and ~1.2%, for events with multiplicities m = 1, 2, 3 and ≥ 4,

respectively. The muon/electron ratio is larger in events with multiplicity m = 1 because muons have a

larger lateral distribution than electrons and can be detected even if the shower core falls far from the

detector. The asymmetry in muon charge distribution (the ratio of positive to negative muons is larger

than 1) and the combination of acceleration/deceleration of muons of opposite charge, with the

consequent muon lifetime increase or decrease, can produce variations in muon flux, whose amplitude

depend on the EF configuration, not only in a few hundred meters above the detector, but also at very

high altitudes, up to the muon generation level of around 10-15 km. Actually, muon rate variations

(mostly decreases) during thunderstorms have been observed at the Baksan Observatory [1] and by the

ASEC collaboration on Mount Aragats [23, 41], while a theoretical approach to the subject has been

developed in [42]. To evaluate the muon contribution to the ARGO counting rate variations, a realistic

simulation of the EF configuration in the atmosphere would be necessary, including also other

variables that influence the muon flux, such as temperature and pressure. Our results however indicate

that the observed rate variations can be explained by the effect of the EF on the electrons and positrons

alone, hence the muon contribution should be negligible in our case.

The results shown here have been obtained by assuming the thickness of the electric field layer is

300 m. This assumption is based on the empirical observation that, at Yangbajing, the bottom of

thunder clouds is generally located at a few hundred meters above the ground.

We investigated the dependence of the simulation result on the thickness of the layer where the

field is active. Fig. 11 shows the amplitude of the rate variations of events with different multiplicities,

as a function of the layer thickness, assuming an EF intensity of -150 V/cm. The rate rapidly increases

at small thickness, then the curves flatten, indicating that most of the EF effect occurs in the ~500

meters of atmosphere above the detector. The EF at higher altitudes has a small influence on the

counting rate at ground level. Hence, our data are consistent with an average EF layer thickness of 300

m. Considering the fluctuations in the rate variation observed in different thunderstorms (Fig.2), the

real thickness can change by a few hundred meters around this value.
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V. Summary and conclusions

The flux of secondary cosmic rays during 15 strong thunderstorm episodes in the summer of 2012

has been studied with the high altitude ARGO-YBJ detector, working in scaler mode. Significant rate

variations (both increases and decreases) have been observed for events of different particle

multiplicities (m = 1, 2, 3 and ≥ 4), in coincidence with the onset of electric fields of large intensity

measured at the detector level. The amplitudes of the rate variations are strongly correlated with the

strength and polarity of the electric field, with a different behavior according to the event multiplicity.

Typically, in negative fields (i.e. ones that accelerate negative charges downwards) the observed

counting rates increase with the field intensity. On the other hand, in positive fields, the rates decrease

with field intensity, reach a minimum, and then start to increase. The field intensity EFmin where this

inversion occurs depends on the event multiplicity, ranging from 50 V/cm to more than 175 V/cm

(the latter being the value of the field that saturated our electric field mills).

We interpret this complex scenario as due to the combined effects of acceleration and deceleration

of particles of opposite charge during their passage across an electric field in air, that modifies the

number of particles with energy exceeding the detector threshold. To test this hypothesis, we modeled

the electric field as a uniform vertical field extending upwards in the atmosphere to different altitudes

above the detector level and we studied the effects of this field on the shower development.

According to our simulations, due to the asymmetry in number and energy of electrons and

positrons in showers, the electric field produces rate variations whose amplitudes have a peculiar

dependence on the field intensity, with a characteristic minimum associated to a positive value of the

Figure 11. Simulations: percent variation of the events with different multiplicities for an EF intensity of
-150 V/cm, as a function of the vertical length of the field in the atmosphere above the detector.
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field intensity, depending on the event multiplicity. The observation of this distinctive feature in rate

variations suggests that the effect is actually due to the presence of an intense electric field between the

clouds and the ground.

Changing the electric field layer thickness in simulations, we found that most of the effect occurs

in a layer of  500 m of air above the detector, with a further smaller contribution when the layer

extends above 500 m. We found that an electric field of thickness 300 m explains very well both the

shape and the normalization of the average rate variations across the whole range of EF values in our

measurements (±175 V/cm). This thickness is consistent with the typical height of clouds at

Yangbajing during thunderstorms. The presence of a field of opposite polarity inside the cloud itself

has a small effect, due to the larger distance from the detector.

These results are the first clear evidence of the mechanism at the base of rate variations observed

by air shower detectors during thunderstorms.
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