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Cost-effective visual odometry system for vehicle motion control in 24 
agricultural environments 25 

 26 
Abstract 27 

In precision agriculture, innovative cost-effective technologies and new improved solutions, aimed 28 

at making operations and processes more reliable, robust and economically viable, are still needed. 29 

In this context, robotics and automation play a crucial role, with particular reference to unmanned 30 

vehicles for crop monitoring and site-specific operations. However, unstructured and irregular 31 

working environments, such as agricultural scenarios, require specific solutions regarding 32 

positioning and motion control of autonomous vehicles. 33 

In this paper, a reliable and cost-effective monocular visual odometry system, properly calibrated 34 

for the localisation and navigation of tracked vehicles on agricultural terrains, is presented. The 35 

main contribution of this work is the design and implementation of an enhanced image processing 36 

algorithm, based on the cross-correlation approach. It was specifically developed to use a 37 

simplified hardware and a low complexity mechanical system, without compromising 38 

performance. By providing sub-pixel results, the presented algorithm allows to exploit low 39 

resolution images, thus obtaining high accuracy in motion estimation with short computing time. 40 

The results, in terms of odometry accuracy and processing time, achieved during the in-field 41 

experimentation campaign on several terrains, proved the effectiveness of the proposed method 42 

and its fitness for automatic control solutions in precision agriculture applications. 43 

 44 

Keywords: Precision agriculture; Visual odometry; Unmanned ground vehicle (UGV); Real- time 45 

image processing; Agricultural field robots 46 
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Nomenclature 48 

CEP!!  Circular error probable of translation assessment errors [mm] 
𝑑!,# Digital number of pixel located at i$% row and j$% column of image 𝐼 
𝑑̅",$ Average values of digital numbers within a portion of image 𝐼 
$𝑓&, 𝑓'' 𝑥 and 𝑦 component of image focal length [pixel] 
𝑔& Image pixels spatial resolution [mm/pixel]  
𝑔' Image pixels spatial resolution [mm/pixel]  
ℎ( Camera height from the ground [mm] 
𝐼) Acquired grey scale image at time instant 𝑡) 
ℓ!,# Digital number of pixel located at i$% row and j$% column of image 𝐿 
ℓ( Average values of digital numbers within template 𝑇(𝜗) 
𝐿)(𝜗) Image obtained by rotating image 𝐼) by angle 𝜗 
𝑛% Distance threshold from 𝛾&  
𝑚 Coefficient to set the threshold values for 𝛾 
𝑁! x 𝑁# Image size (height x width) [pixel] 

𝑂)
{+,-}! Origin of the {𝑈𝐺𝑉}) reference frame at time 𝑡) 

𝑝/ Template size 

𝑝',(
{*+,}"  Position of pixel 𝑑',( in the reference frame {𝑈𝐺𝑉}. at time 𝑡. [mm] 

𝑝/0,12
{*+,}"#$ Position of the template 𝑇.7𝜗89 centre in image 𝐼.34 [mm] 

$𝑝(,&, 𝑝(,''
0 Position coordinates of the camera centre in the {𝑈𝐺𝑉}. reference frame [mm] 

𝑞(𝑢, 𝑣, 𝜗) Binary function to select a neighbourhood Γ of 𝛾(𝑢, 𝑣, 𝜗) 
𝑅(∙) Rotation matrix 
𝑠(∙) (or 𝑠)

)12(∙)) Evaluated vehicle translation (between time instant 𝑡) and 𝑡)12) [mm] 
𝑠3 Reference vehicle translation [mm] 
𝑡) Generic image acquisition time instant [s] 
𝑇)(𝜗) Pixel subset, called template, of image 𝐿)(𝜗)  
𝑈 Ordered set of u indices 
$𝑢B4, 𝑣B4, 𝜗C4' Weighted centroid of Γ 
{𝑈𝐺𝑉}) Reference frame of the UGV at time 𝑡) 
𝑉 Ordered set of v indices 
𝑤/ Semi-width of the template	𝑇) [pixels] 
  
Greek letters  
𝛾(𝑢, 𝑣, 𝜗) Normalised cross-correlation function 
𝛾& Maximum value of 𝛾(𝑢, 𝑣, 𝜗) 
𝛿5 Angular resolution of the VO process [deg] 
Γ Specific subset of 𝛾 
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𝜀6 Error in translation assessment between two successive images [mm] 
𝜀5 Error in orientation assessment between two successive images [deg] 
𝜗 Rotation angle of image 𝐿)(𝜗) [deg] 
𝜗C Evaluated vehicle rotation [deg] 
𝜗3 Reference vehicle rotation [deg] 
𝜗7!8 Minimum value of 𝜗 ∈ Θ [deg] 
𝜗79& Maximum value of 𝜗 ∈ Θ [deg] 

Θ 
Ordered set of all considered rotation angles 𝜗 
(Θ = {𝜗5'6, 𝜗5'6 + 𝛿7, … , 𝜗589}) [deg] 

µ!%  Average of rotation assessment errors [deg] 
𝜎!!  Standard deviation of translation assessment errors [mm] 
𝜎!%  Standard deviation of rotation assessment errors [deg] 
  
Acronyms  
CCD Charged coupled device 
CEP Circular error probable 
GPS Global positioning system 
GSD Ground sample distance 
IMU Inertial measurement unit 
NCC Normalised cross correlation 
PA Precision agriculture 
SSD Sum of squared differences 
UGV Unmanned ground vehicle 
VO Visual odometry 

 49 

1. Introduction 50 

Precision agriculture (PA) has been recognised as an essential approach to optimise crop-managing 51 

practices and to improve field products quality ensuring, at the same time, environmental safety 52 

(Ding et al., 2018; Grella et al., 2017; Lindblom et al., 2017). In very large fields and/or in-fields 53 

located on hilly areas, cropland monitoring and maintenance may result in a laborious task, 54 

requiring automatic machines and procedures (Comba et al., 2018; Grimstad et al., 2017). In this 55 

regard, unmanned ground vehicles (UGVs) are playing a crucial role in increasing efficiency in 56 

cultivation, e.g. in optimising the use of fertilisers or precision weed control (Utstumo et al., 2018; 57 

Vakilian and Massah, 2017; De Baerdemaeker, 2013). 58 
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To perform agricultural in-field tasks with the least amount of human interaction, UGVs should 59 

be characterised by a high level of automation (van Henten et al., 2013; Kassler, 2001). Nowadays, 60 

developed autonomous navigation systems, which use GPS technologies (Bonadies and Gadsden, 61 

2018) and/or machine vision approaches (García-Santillán et al., 2017), allow UGVs, for example, 62 

to follow crop rows autonomously, even in complex agricultural scenarios. A common 63 

requirement for these applications is a robust up-to-date position and orientation assessment during 64 

movements (Ghaleb et al., 2017). Despite the wide diffusion of GPS systems, they show 65 

limitations and drawbacks when high precision navigation is required or where the satellite signal 66 

is poor, e.g. in covered areas, greenhouses or peculiar hilly regions (Ericson and Åstrand, 2018; 67 

Aboelmagd et al., 2013). In agricultural environments, UGV motion estimation by wheel odometry 68 

also encounters critical limitations due to wheels slippage on sloped terrains, which is very typical 69 

in some crops such as vineyards (Bechar and Vigneault, 2016; Aboelmagd et al., 2013; Nourani-70 

Vatani et al., 2009).  71 

Visual odometry (VO), the measurement of the position and orientation of a system by exploiting 72 

the information provided by a set of successive images (Moravec, 1980), can provide reliable 73 

movement feedback in UGV motion control (Aqel et al., 2016; Scaramuzza and Fraundorfer, 74 

2011). The hardware required to implement a VO system consists of one or more digital cameras, 75 

an image processing unit and an optional lighting system. Not requiring external signals or 76 

references, visual odometry has been proven to be very significant in particular contexts where the 77 

GPS signal is weak or absent (even where the magnetic field cannot be exploited by compass), by 78 

overcoming the limitations of other methodologies (Scaramuzza and Fraundorfer, 2011). 79 

Two main typologies of VO systems can be defined on the basis of the adopted number of cameras: 80 

(1) stereo systems use data provided by multiple cameras while (2) monocular systems, 81 

characterised by a simple and cost-effective setup, exploit a single digital camera. The image 82 

processing of stereo systems is typically complex and time consuming and requires accurate 83 

calibration procedures; indeed, an unsynchronised shutter speed between the stereo cameras can 84 

lead to errors in motion estimation (Aqel et al., 2016; Jiang et al., 2014). However, the stereo 85 

system degrades to the monocular case when the stereo baseline (the distance between the two 86 

cameras) is small compared to the distance of the acquired scene by the cameras (Aqel et al., 2016). 87 

The available image processing algorithms for VO applications have two main approaches: (1) 88 

feature-based algorithms and (2) appearance-based algorithms. In feature-based VO, specific 89 
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features/details detected and tracked in the sequence of successive images are exploited 90 

(Fraundorfer and Scaramuzza, 2012). Depending on the application, the performance to be 91 

achieved and the different approaches in feature selection, several algorithms can be found in 92 

literature, such as Libviso (Geiger et al., 2012), Gantry (Jiang et al., 2014) or the Newton-Raphson 93 

search methods (Shi and Tomasi, 1994). A different approach is adopted in appearance based-94 

algorithms where successive image frames are searched for changes in appearance by extracting 95 

information regarding pixels displacement. The template matching process, which is a widely 96 

recognised approach among VO appearance-based solutions, consists in selecting a small portion 97 

within a frame (called template) and in comparing it with a temporally subsequent image, then 98 

scoring the quality of the matching (Gonzalez et al., 2012; Goshtasby et al., 1984). This task has 99 

mainly been performed by using the sum of squared differences (SSD) and normalised cross-100 

correlation (NCC) as similarity measures (Aqel et al., 2016; Yoo et al., 2014; Nourani-Vatani et 101 

al., 2009). This latter matching measure, even if computationally heavier than SSD, is invariant to 102 

the linear gradient of image contrast and brightness (Mahmood and Khan, 2012; Lewis, 1995). 103 

Motion assessment by VO systems has been proven to be particularly effective when integrated 104 

with other sensors such as the inertial measurement unit (IMU), compass sensor, visual compass 105 

(Gonzalez et al., 2012), GPS technology or encoders (e.g. on wheels and tracks), to avoid error 106 

accumulation on long missions (Zaidner and Shapiro, 2016). Indeed, with particular attention to 107 

agricultural applications, innovative and reliable solutions should be developed to reduce system 108 

complexity and costs by implementing smart algorithms and by exploiting data fusion (Comba et 109 

al., 2016; Zaidner and Shapiro, 2016).  110 

In this paper, a reliable and cost-effective monocular visual odometry system, properly calibrated 111 

for the localisation and navigation of tracked vehicles on agricultural terrains, is presented. The 112 

main contribution of this work is the design and implementation of an enhanced image processing 113 

algorithm, based on the cross-correlation approach, with sub-pixel capabilities. It was specifically 114 

developed to use a simplified hardware and a low complexity mechanical system, without 115 

compromising performance. In the implemented VO system, installed on a full electric tracked 116 

UGV, ground images acquisition was performed by an off-the-shelf camera. The performance of 117 

the system, in terms of computing time and of movement evaluation accuracy, was investigated 118 

with in-field tests on several kinds of terrains, typical of agricultural scenarios. In addition, the 119 
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optimal set of algorithm parameters was investigated for the specific UGV navigation/motion 120 

control for precision agricultural applications. 121 

The paper is structured as follows: Section 2 reports the description of the implemented tracked 122 

UGV and of the vision system. The proposed algorithm for visual odometry is presented in Section 123 

3, while the results from the in-field tests are discussed in Section 4. Section 5 reports the 124 

conclusion and future developments. 125 

 126 

2. System setup 127 

The implemented VO system was developed to perform the motion and positioning controls of a 128 

full electric UGV specifically designed for precision spraying in tunnel crop management, where 129 

GPS technology is hampered by metal enclosures. Image acquisition is performed by a Logitech 130 

C922 webcam, properly positioned in the front part of the vehicle, with a downward looking setup 131 

at the height (ℎ:) of 245 mm from the ground. To improve the quality of the acquired images, the 132 

camera was shielded with a properly sized rigid cover to protect the portion of ground within the 133 

camera field of view from direct lighting, thus avoiding irregular lighting and the presence of 134 

marked shadows. The illumination of the observed ground surface is provided by a lighting system 135 

made of 48 SMD LED 5050 modules (surface-mount device light-emitting diode) with an overall 136 

lighting power of more than 1,000 lumens and a power consumption of 8.6 W. Fig. 1 reports the 137 

diagram of the VO system setup together with an image of the implemented UGV system. 138 

The image acquisition campaign was conducted on five different terrains (soil, grass, concrete, 139 

asphalt and gravel), typical of agricultural environments, in order to assess and quantify the 140 

performance of the proposed algorithm. Two datasets of more than 16,000 pairs of grey scale 141 

images (8-bit colour representation), at two image resolutions, were processed. Images with a high-142 

resolution have a size of 1280x720 pixels (width and height) while low-resolution ones, which 143 

were obtained by down sampling the high resolution ones, are 320x240 pixels (width and height). 144 

The sample images at high and low resolution, acquired on five different terrains, are shown in 145 

Fig. 2. 146 

A grey scale image 𝐼., acquired at time instant 𝑡., can be defined as an ordered set of digital 147 

numbers 𝑑',( as 148 

𝐼. = H𝑑',( ∈ [0,1, … ,255] ∨ 1 ≤ i ≤ 𝑁', 1 ≤ j ≤ 𝑁(U (1) 
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where i and j are the row and column indices while 𝑁' and 𝑁( are the numbers of pixels per row 149 

and column, respectively. 150 

The intrinsic camera parameters and acquisition settings were evaluated by performing a 151 

calibration procedure (Matlab© calibration toolbox). The focal length in pixel was 7𝑓9, 𝑓;9 =152 

(299.4122, 299.4303) and 7𝑓9, 𝑓;9 = (888.5340, 888.8749) for the low-resolution and high-153 

resolution images respectively. The position [mm] of pixels 𝑑',( in the UGV reference frame 154 

{𝑈𝐺𝑉}. at time 𝑡., defined with origin 𝑂. in the barycentre of the tracked system and with the x-155 

axis aligned to the vehicle’s forward motion direction (Fig. 4), can thus be easily computed as 156 

𝑝',(
{*+,}" = ^_j − a

𝑁(
2 bc

ℎ:
𝑓9
, _a
𝑁'
2 b − ic

ℎ:
𝑓;
d
<

+ e𝑝:,9, 𝑝:,;f
< (2) 

where ℎc
=&

 and ℎc
='

 are the pixels’ spatial resolutions 𝑔9 and 𝑔; [mm/pixel] respectively and e𝑝:,9, 𝑝:,;f
< 157 

are the position coordinates of the camera centre [mm] in the {𝑈𝐺𝑉}.. In the implemented UGV, 158 

the position coordinates of the camera with respect to the barycentre of the tracked system are 159 

[950,0]< mm. The relevant camera and images intrinsic parameters adopted in this work are 160 

summarised in Table 1. 161 
 162 

3. Visual odometry algorithms 163 

In visual odometry, the objective of measuring the position and orientation of an object at time 164 

𝑡.34, knowing its position and orientation at time 𝑡., is performed by evaluating the relative 165 

movement of a solid camera having occurred during time interval 𝑡.34 − 𝑡.. This task is performed 166 

by comparing the image pair 𝐼. and 𝐼.34,	acquired in the ordered time instants 𝑡. and 𝑡.34, 167 

respectively. 168 

In the normalised cross-correlation (NCC) approach, a pixel subset 𝑇.(𝜗) (also named template) 169 

is selected from the image 𝐿.(𝜗) centre, which is obtained rotating image 𝐼. by an angle 𝜗, as 170 

𝑇.(𝜗) = jℓ',( ∈ 𝐿.(𝜗)| li − a
𝑁'
2 bl ≤ 𝑤> , lj − a

𝑁(
2 bl ≤ 𝑤>n (3) 

where ℓ',( is a digital number of image 𝐿. and 𝑤< is the semi-width [pixels] of the template 𝑇.. 171 

The adopted template size 𝑝< can be defined as a fraction of the shortest image dimension as 𝑝< =172 

2 ∙ 𝑤< ∙ 𝑁'?4; with this definition 𝑝< ⊂ [0	1]. With no assumption on the performed movement, 173 

angle	𝜗 is usually selected from an ordered set of values Θ = {𝜗5'6, 𝜗5'6 + 𝛿7, … , 𝜗589}, with 174 
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𝜗5'6 and 𝜗589 chosen to consider	the whole circle angle. The 𝛿7 parameter can be defined as the 175 

angular resolution of the process.  176 

The relative movement of 𝐼.34 with respect to image 𝐼., in terms of translation [𝑢q, 𝑣q]< [pixels] and 177 

rotation 𝜗8 [deg], is thus performed by assessing the position of the ground portions represented in 178 

templates 𝑇.(𝜗) in the subsequent image 𝐼.34 by solving the problem 179 

𝛾& = max
/0,12,@A

𝛾(𝑢, 𝑣, 𝜗) (4) 

with 𝑢 ∈ 𝑈 = {𝑤<, 𝑤< + 1,… ,𝑁' −𝑤<}, 𝑣 ∈ 𝑉 = H𝑤<, 𝑤< + 1,… ,𝑁( −𝑤<U, 𝜗 ∈ Θ and where 180 

𝛾(𝑢, 𝑣, 𝜗) is the normalised cross-correlation function (Aqel et al., 2016; Lewis, 1995) defined as 181 

𝛾(𝑢, 𝑣, 𝜗) =
∑ ∑ 7𝑑'3/,(31 − 𝑑̅/,19B"#$ ∙

7ℓ'3C(,(3C( − ℓ(9>"(@)
C(
(F?C(

C(
'F?C(

s∑ ∑ 7𝑑'3/,(31 − 𝑑̅9B"#$
G ∙ 7ℓ'3C(,(3C( − ℓ(9>"(@)

GC(
(F?C(

C(
'F?C(

 (5) 

with  182 

𝑑̅/,1 =
∑ ∑ 7𝑑'3/,(319B"#$

C(
(F?C(

C(
'F?C(

4 ∙ 𝑤<G
 (6) 

and 183 

ℓ( =
∑ ∑ 7ℓ'3C),(3C)9>"(@)

C(
(F?C(

C(
'F?C(

4 ∙ 𝑤<G
 (7) 

the average values of the digital numbers within a portion of image 𝐼.34 and template 𝑇.(𝜗), 184 

respectively. A scheme of the implemented NCC algorithm is reported in Fig. 3. 185 

The relative movement 𝑠..34 performed by the UGV in the time interval 𝑡.34 − 𝑡.	(Fig. 4) can thus 186 

be easily computed as 187 

𝑠..34(𝑢q, 𝑣q, 𝜗8) = 𝑅7−𝜗89 ∙ 𝑝/0,12
{*+,}"#$ − 𝑝

HI*G J,K
I+
G L

{*+,}"  (8) 

where 𝑅7−𝜗89 is the rotation matrix of angle −𝜗8, 𝑝/0,12
{*+,}"#$ is the template 𝑇.7𝜗89 assessed position 188 

[mm] in 𝐼.34 (represented in {𝑈𝐺𝑉}.34, Eq. (2)), and 𝑝
H,*- J,K

,+
- L

{*+,}"  is the known position [mm] of 189 

template 𝑇. in 𝐼., (represented in {𝑈𝐺𝑉}., Eq. (2) . For the sake of clarity, it should be noted that 190 

𝑝
H,*- J,K

,+
- L

{*+,}"  is equal to e𝑝:,9, 𝑝:,;f
<, which is [950,0]< millimetres, and that 𝑠..34(𝑢q, 𝑣q, 𝜗8) coincides 191 
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with 𝑂.34
{*+,}", which is the origin of the reference frame {𝑈𝐺𝑉}.34 represented in {𝑈𝐺𝑉}. 192 

reference frame (Fig. 4). 193 

 194 

3.1 Enhanced cross-correlation algorithm 195 

The quality of the UGV’s movement measure, using normalised cross-correlation-based visual 196 

odometry algorithms, is strictly related to the solution of the problem defined in Eq. (4). The 197 

approach of considering the sole maximum value 𝛾& of 𝛾(𝑢, 𝑣, 𝜗), with 𝑢 ∈ {𝑤<, 𝑤< + 1,… ,𝑁' −198 

𝑤<}, 𝑣 ∈ H𝑤<, 𝑤< + 1,… ,𝑁( −𝑤<U and 𝜗 ∈ Θ, has intrinsic limitations regarding maximum 199 

achievable accuracy. Indeed, the digital discretisation of the field of view performed by the digital 200 

camera and the discrete set Θ of the investigated orientation 𝜗 affect both the translation and the 201 

rotation assessments. The accuracy of the VO system is thus related to the adopted image 202 

resolution, being directly related to the pixels ground sample distance (GSD) 𝑔9 and 𝑔; and the 203 

angle step 𝛿7 adopted in the image processing. Regarding this aspect, an accuracy improvement 204 

can be pursued by adopting high-resolution cameras, which can provide images with smaller pixels 205 

GSD 𝑔9 and 𝑔;: favourable effects are linked, in the meanwhile, to the accuracy of [𝑢q, 𝑣q]< and to 206 

the angular resolution 𝛿7 values. Indeed, concerning the rotation procedure of image 𝐿.(𝛿7), if the 207 

rotation angle 𝛿7 is small, no modifications are obtained on the pixels’ digital number in the central 208 

part of the image, where the template is selected. For the sake of clarity, the smallest 𝛿7	values 209 

which lead to template 𝑇.(𝛿7) modifications, in relation to image resolution and template size 𝑝<, 210 

are reported in Table 2. 211 

However, increasing image resolution leads to a considerable increment in the required computing 212 

load, which does not fit with the real-time requirements of the VO algorithm application or requires 213 

technologies which are too expensive.  214 

The proposed approach is aimed at increasing VO assessment accuracy by using very low-215 

resolution images, which allows to drastically reduce the computing load while achieving results 216 

comparable to the ones obtained by processing high-resolution data. This translates into more cost-217 

effective systems, requiring economical acquisition and processing hardware. 218 

For this purpose, a function 𝑞(𝑢, 𝑣, 𝜗) was defined as 219 
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𝑞(𝑢, 𝑣, 𝜗)

= w
0				if					𝛾(𝑢, 𝑣, 𝜗) < 𝑚 ∙ 𝛾&, z7[𝑢, 𝑣, 𝜗] − e𝑢q, 𝑣q, 𝜗8f9 ∘ [1,1, 𝛿7?4]zG > 𝑛%
1				if					𝛾(𝑢, 𝑣, 𝜗) ≥ 𝑚 ∙ 𝛾&, z7[𝑢, 𝑣, 𝜗] − e𝑢q, 𝑣q, 𝜗8f9 ∘ [1,1, 𝛿7?4]zG ≤ 𝑛%

 
(9) 

in order to consider a neighbourhood Γ of the maximum 𝛾& (Eq. (4)) of cross-correlation discrete 220 

function 𝛾(𝑢, 𝑣, 𝜗)	in	the	space	(𝑢, 𝑣, 𝜗), with values higher than 𝑚 ∙ 𝛾&. In particular, 𝑛% is the 221 

distance threshold from 𝛾& and 𝑚 is the coefficient to set the 𝛾 values threshold. In this work, 222 

adopted values are 𝑛% = 5 and 𝑚 = 0.95 on the base of empirical evaluations. The Hadamard 223 

product with [1,1, 𝛿7?4] was adopted to normalise the weight of the three spatial coordinates 224 

(𝑢, 𝑣, 𝜗). 225 

The enhanced movement assessment is thus performed by computing the weighted centroids 226 

e𝑢qM, 𝑣qM, 𝜗8Mf of Γ (Fig. 5), as 227 

𝑢qM =
∑ 𝑢 ∙ ∑ ∑ 𝛾(𝑢, 𝑣, 𝜗N) ∙ 𝑞(𝑢, 𝑣, 𝜗N)

:8OP(Q)
NF4

I+?C(
1FC(

I*?C(
/FC(

∑ ∑ ∑ 𝑞(𝑢, 𝑣, 𝜗N)
:8OP(Q)
NF4

I+?C(
1FC(

I*?C(
/FC(

 (10) 

 228 

𝑣qM =
∑ 𝑣 ∙ ∑ ∑ 𝛾(𝑢, 𝑣, 𝜗N) ∙ 𝑞(𝑢, 𝑣, 𝜗N)

:8OP(Q)
NF4

I*?C(
/F4

I+?C(
1FC(

∑ ∑ ∑ 𝑞(𝑢, 𝑣, 𝜗N)
:8OP(Q)
NF4

I+?C(
1FC(

I*?C(
/FC(

 (11) 

and 229 

𝜗8M =
∑ z ∙ ∑ ∑ 𝛾(𝑢, 𝑣, 𝜗N) ∙ 𝑞(𝑢, 𝑣, 𝜗N)

I+?C(
1FC(

I*?C(
/FC(

:8OP(Q)
NF4

∑ ∑ ∑ 𝑞(𝑢, 𝑣, 𝜗N)
:8OP(Q)
NF4

I+?C(
1FC(

I*?C(
/FC(

 (12) 

With the proposed approach, the UGV’s movement evaluation is not defined by discrete values, 230 

since e𝑢qM, 𝑣qM, 𝜗8Mf ∈ ℝR.  231 

 232 

4. Results and discussion  233 

The performance of the proposed visual odometry system, developed for a UGV motion 234 

estimation, was assessed by processing more than 16,000 images. The in-field tests were 235 

performed on different agricultural terrains by acquiring images on soil, grass, asphalt, concrete 236 

and gravel. In particular, both rectilinear and curvilinear paths were planned. Considering the 237 

whole dataset, the travelled distance between two subsequent images ranges between 0 mm (static 238 

vehicle) and 70 mm, which guarantees a minimum overlapping area of 72%. The relative rotation 239 
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does not exceed the range of [-9 +9] degrees, due to the short movement between two acquired 240 

frames. The image resolutions were 1280x720 pixels (high-resolution images) and 320x240 pixels 241 

(low-resolution images). To evaluate the performance improvements of the proposed algorithm, 242 

with sub-pixel capabilities, the set of acquired images was also processed by means of a standard 243 

VO algorithm (Computer Vision System Toolbox, MathWorks, 2018). 244 

The performance analysis of the proposed VO system was performed: (1) by assessing motion 245 

evaluation accuracy in pairs of successive images, using high-resolution datasets as a reference, 246 

and (2) by computing the cumulative error with respect to in-field position references travelling 247 

about 10 meters long paths. 248 

Concerning a pair of successive images, the error in measuring the relative movement 𝑠 and the 249 

rotation 𝜗 between two subsequent images was defined as  250 

𝜀S = ‖𝑠(∙) − 𝑠O‖G (13) 

and 251 

𝜀7 = �𝜗8 − 𝜗O� (14) 

respectively, where 𝑠(∙) (Eq. (8)) and 𝜗8 are the vehicle’s movement and rotation, evaluated by 252 

using the enhanced and standard algorithm and by processing low-resolution images, while 𝑠O and 253 

𝜗r represent the reference measurements from the high-resolution images. Concerning the 254 

translation assessment, accuracy was expressed by the circular error probable (CEPU!) and standard 255 

deviation (𝜎U!) indices (Winkler et al., 2012) (Table 3), while accuracy in measuring the changes 256 

in vehicle orientation 𝜗 were described by computing the average (µU%) and standard deviation 257 

(𝜎U%) of the computed 𝜀7	errors (Table 4). The results were detailed for each in-field test performed 258 

on a specific kind of terrain and, finally, computed by considering the whole image dataset. Overall 259 

accuracy in the translation assessment of the proposed algorithm across different terrains resulted 260 

to be 𝐶𝐸𝑃U! = 0.16 mm, with an improvement of around 54% with respect to the values obtained 261 

by processing the images with the standard algorithm, which shows a 𝐶𝐸𝑃U! of 0.37 mm. The 262 

average error in the vehicle’s orientation assessment was µU% = 0.26 degrees, with an 263 

improvement of around 67.6% with respect to the values obtained by processing the images with 264 

the standard algorithm. The typology of terrain slightly affects the achieved performance: on the 265 

grass surface, a lower performance improvement was found compared to other terrains. Indeed, 266 

the greater variability in object height within the camera field of view can lead to additional 267 
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perspective errors. Nevertheless, even in these complex scenarios, improvements of 44% in the 268 

𝐶𝐸𝑃U! and of 34% in the orientation assessment was observed (𝐶𝐸𝑃U!= 0.19 mm and µU% =	0.42 269 

degree) compared to the ones obtained by the standard algorithm. Boxplots of errors 𝜀S and 𝜀7, 270 

computed by considering the whole image dataset, are reported in Fig. 6 for standard and enhanced 271 

algorithms. The x and y components of 	𝜀V and the 𝐶𝐸𝑃U. circles are detailed in Fig. 7, with 𝜀@ 272 

represented by using a colour bar. 273 

The cumulative error was computed for 20 sample paths of the tracked vehicle with a length of 9.6 274 

meters, defined as a curvilinear path generated by a sinusoidal trajectory of 0.15 m amplitude and 275 

of 3.2 m period. The number of acquired images for a path repetition ranges between 156 and 166, 276 

with an average travelled distance between two consecutive frames of 61 mm. Defining a 277 

normalised cumulative error with respect to the travelled distance, the obtained values are 0.08 278 

and 0.84 [deg ∙ m?4] for what concerns translation and orientation, respectively. The improvement 279 

compared to the standard algorithm is of about 60% for both the translation and orientation 280 

assessments. The boxplots of all the obtained cumulative errors, expressed in normalised values, 281 

are reported in Fig. 8. Considering a constant travelled distance, the cumulative error is strictly 282 

related to the number of processed images, as every processing step contributes to the overall error. 283 

With this assumption, to minimise the cumulative error, pairs of frames acquired at the largest 284 

distance, still guaranteeing the proper overlapping surface, should be used. For this purpose, a 285 

multi-frame approach can further improve system performance (Jiang et al., 2014).  286 

The optimal configuration for a VO system setup requires thorough analysis of the parameters 287 

related to image processing and their tuning according to the application requirements. With 288 

particular attention to the overall VO system performance, the size 𝑝< of the template 𝑇.(𝜗) is a 289 

relevant algorithm parameter since it is strictly related to (1) the motion accuracy measure, (2) the 290 

allowed maximum length of the relative movement between two subsequent images, which should 291 

still assure the required overlapping surface of the template, (3) the computing time and, thus, (4) 292 

the maximum allowed velocity with a specific VO setup.  293 

The template size 𝑝< has a non-linear and non-monotonic effect on the overall VO system’s 294 

accuracy. Considering the translation assessment, by varying 𝑝< within the range 0.05-0.35, an 295 

optimal value can be found that provides the best accuracy. Indeed, the proposed algorithm 296 

achieves a 𝐶𝐸𝑃U! = 0.16	mm for	𝑝< = 	0.20, while accuracy degrades to 𝐶𝐸𝑃U! = 0.21 mm and 297 

𝐶𝐸𝑃U! = 0.22 for 𝑝< = 0.05 and 𝑝< = 0.35, respectively. The boxplots of errors 𝜀S and 𝜀7, 298 
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obtained by setting 𝑝< within the range 0.05-0.35, are reported in Figs. 9 and 10, respectively. The 299 

observed accuracy trend in determining the vehicle’s orientation is similar to the one described for 300 

translation, with the exception of the effect of 𝑝< values greater than 0.20 on the accuracy’s 301 

decrement: it is less marked until 𝑝< exceeds 0.6, values that lead to insufficient overlapping 302 

surfaces between two successive images. Indeed, regarding proper overlapping surfaces between 303 

successive images, the template size should not exceed a certain value. Larger template sizes 𝑝< 304 

require a shorter relative movement of the vehicle between image acquisition time instants to avoid 305 

complete mismatch between a pair of successive images. In the implemented VO system 306 

performance evaluation, increasing 𝑝< from 0.1 to 0.6 will limit the maximum allowed movement 307 

from 93.1 to 39.2 mm, requiring a higher framerate to keep proper image acquisition when 308 

considering a constant vehicle velocity. 309 

Concerning the computing time, smaller 𝑝< values allow to drastically reduce the required time to 310 

process an image pair: considering a low-resolution dataset, the average computing time (0.02 311 

seconds) using 𝑝< = 0.05 is 88% shorter than the one required by 𝑝< = 0.35 (0.19 seconds). Fig. 312 

11a reports the average computing time obtained for processing low and high resolution images 313 

with a template size 𝑝< ranging from 0.05 to 0.8. 314 

Consequently, the allowed maximum velocity of the vehicle is thus strictly related to template 315 

size: considering a constant computing power, smaller template sizes lead to higher vehicle 316 

maximum speeds, due to the concurrent effects on the processing time required for an image pair 317 

and the length of the maximum allowed movement between two subsequent images. In the 318 

implemented VO system, processing low-resolution images by using a value of 𝑝< = 0.05, the 319 

upper limit velocity (about 4.1	m ∙ s?4) is 91% greater than the one allowed by 𝑝< = 0.35 (about 320 

0.3	m ∙ s?4). The maximum allowed velocities for low and high-resolution images with respect to 321 

template size 𝑝< ranging from 0.05 to 0.8 are represented in Fig. 11b. 322 
 323 

5. Conclusions  324 

In this paper, an enhanced image processing algorithm for a cost-effective monocular visual 325 

odometry system, aimed at obtaining highly reliable results at low computational costs for a 326 

tracked UGV navigation in agricultural applications, is presented. The implemented VO system 327 

consists of a downward looking low cost web-camera sheltered with a rigid cover to acquire 328 

images with uniform LED lighting. Based on the normalised cross-correlation methodology, the 329 
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proposed VO algorithm was developed to exploit low-resolution images (320x240 pixels), 330 

achieving sub-pixel accuracy in motion estimation. The algorithm allows the VO system to be 331 

applied to real-time applications using cost-effective hardware, by requiring a lower computational 332 

load. 333 

The robustness of the proposed VO algorithm was evaluated by performing an extensive in-field 334 

test campaign on several terrains typical of agricultural scenarios: soil, grass, concrete, asphalt and 335 

gravel. The relationship between system performances and more relevant algorithm parameters 336 

was investigated in order to determine a proper final system setup. 337 

The obtained overall accuracy, in terms of circular probable error and normalised cumulative error, 338 

which are 0.16 mm and 0.08 respectively, were compatible with UGV requirements for precision 339 

agricultural applications. The obtained short computing time allowed the vehicle to achieve a 340 

maximum velocity limit higher than	4	m ∙ s?4. 341 

Based on the relative motion assessment, the performance of VO systems degrades when 342 

incrementing path length. Therefore, the system integration with absolute reference is required to 343 

maintain the needed accuracy during long mission paths. 344 
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