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The Jacobi process is a stochastic diffusion characterized by a linear drift and a special form of
multiplicative noise which keeps the process confined between two boundaries. One example of
such a process can be obtained as the diffusion limit of the Stein’s model of membrane depolarization
which includes both excitatory and inhibitory reversal potentials. The reversal potentials create the
two boundaries between which the process is confined. Solving the first-passage-time problem for
the Jacobi process, we found closed-form expressions for mean, variance, and third moment that are
easy to implement numerically. The first two moments are used here to determine the role played by
the parameters of the neuronal model; namely, the effect of multiplicative noise on the output of the
Jacobi neuronal model with input-dependent parameters is examined in detail and compared with the
properties of the generic Jacobi diffusion. It appears that the dependence of the model parameters
on the rate of inhibition turns out to be of primary importance to observe a change in the slope
of the response curves. This dependence also affects the variability of the output as reflected by
the coefficient of variation. It often takes values larger than one, and it is not always a monotonic
function in dependency on the rate of excitation. Published by AIP Publishing. https://doi.org/10.
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Diffusion processes with multiplicative noise are able
to model the changes in the membrane depolarization
between two consecutive spikes of a single neuron. Among
them, the most commonly used models consider either no
state-space boundaries or only a lower boundary. Never-
theless, the upper boundary also modifies the properties
of the model due to the multiplicativity of the noise. Here,
we consider the Jacobi diffusion process that is able to
include, in its neuronal interpretation, both excitatory and
inhibitory reversal potentials (upper and lower boundary,
respectively). In the Jacobi neuronal model, the involved
parameters are input-dependent and this, together with
the form of the multiplicative noise, affects the output of
the model. The response of the neuron is studied focus-
ing on the behavior of the first-passage time through the
firing threshold, identified with the dynamics of spike gen-
eration. Computationally easy expressions of the first two
moments of the first-passage time for the Jacobi pro-
cess are derived and implemented to study the firing
rate and variability of the inter-spike intervals. The third
moment is given as a tool for the parameter estimation.
All the results concerning the first-passage-time problem
are general and can be used outside the framework of
computational neuroscience.

I. INTRODUCTION

In the models where noise is assigned a casual impor-
tance, it is often assumed to be a source of inefficiency
and unpredictability. However, there exists a large class of

¥ Electronic mail: giuseppe.donofrio@unito.it
Y Electronic mail: massimiliano.tamborrino @jku.at
9Electronic mail: lansky @biomed.cas.cz

1054-1500/2018/28(10)/103119/10/$30.00

28, 103119-1

phenomena for which the noise is of a primary importance
or even a part of the signal itself. Mathematical models in
neuroscience are one of the most prominent examples in this
direction. The celebrated model of Lapicque, republished and
discussed at its centennial anniversary,l*2 was deterministic,
but its numerous generalizations took into account the input-
output variability of the neurons in the networks and became
intrinsically stochastic. From a biophysical point of view, the
models of a single neuron reflect the electrical properties of
its membrane. Such circuit models can be written in terms
of differential equations for the membrane voltage. To reduce
their mathematical complexity, integrate-and-fire types of the
models have been derived.>* These models aim to describe
the dynamics of interspike intervals, and they are based on a
one-dimensional representation of the time evolution of the
neuronal membrane depolarization.

One class of stochastic models which can be classified as
a generalization of the Lapicque model with restricted state
space appeared in the 1960s. Stein’ and Johannesma® intro-
duced models with conductance changes caused by excitatory
and inhibitory inputs. The state space of the depolarization
was limited between two boundaries, the inhibitory and the
excitatory reversal potentials. Later, this type of models with
multiplicative noise started to be extensively investigated.”!!
These studies often employed the diffusion limits of the
originally discontinuous models to improve their tractability.
Among them, the most commonly investigated model consid-
ers the lower boundary only, and with its specific form of the
diffusion coefficient, it can be identified as the Feller process
(in biology), also known as Cox-Ingersoll-Ross (in finance)
or square-root process (in mathematics). Nevertheless, there
seems to be no strong mathematical argument for the selection
of a specific form of the diffusion coefficient which con-
trols the state space of the depolarization. Thus, several other
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different variants have been investigated.'""!”> The empha-
sis on the lower boundary, the inhibitory reversal potential,
appears probably because the role of the upper boundary, the
excitatory reversal potential, seems to be blurred by imposing
below it a firing threshold. However, despite the existence of
the threshold, the upper boundary modifies the properties of
the model due to the multiplicativity of the noise.

The studies in which both reversal potentials are con-
sidered are more rare,'>!% and the present article is devoted
to such a model. Here, the effect of multiplicative noise
on the output of the Jacobi neuronal model with dependent
parameters is examined in detail. After introducing the Jacobi
diffusion process and describing the firing mechanism which
is based on the solution of the first-passage-time problem, the
expressions for the first three moments are presented. Up to
this point, the results are independent of the application in
neuroscience. Further, intrinsic dependency of the parame-
ters as it follows from the biophysical model is presented, and
results for such a model are deduced and interpreted.

Il. THE PEARSON DIFFUSION MODELS

One-dimensional stochastic differential equations play a
key role in the description of fluctuating phenomena belong-
ing to different fields of applications as physics, biology,
neuroscience, finance, and others.'” In particular, the class of
models with a linear drift and driven by a Wiener process
is widely used for its mathematical tractability and flexibil-
ity. These models are described by a stochastic differential
equation of the following type

dY; = (=Y + p)di + Z(YpdW,, Yo=yo, (1)

where a >0, B e R, W= {W,;};>0 is a standard Wiener
process and Yy =y, is the initial condition. The diffu-
sion coefficient X(Y;) > 0 determines the amplitude of the
noise, and, according to its dependence on Y, it charac-
terizes the solution of Eq. (1). If X(Y;) = \/aY,2 +bY; +c
for a,b,c € R, the solution of Eq. (1) is called Pear-
son diffusion process.'”® A wide range of well-known
processes belongs to this class. The solution of Egq.
(1) is an Ornstein-Uhlenbeck process for X(Y;) =0 >
0 constant (i.e., a=>b =0,c =0), a Feller process (also
known as Cox-Ingersoll-Ross model or square-root pro-
cess) for (Y,) = op/Yi,0r > 0 (ie., b=0f,a=c=0),
an inhomogeneous geometric Brownian motion for
2(Y;) = oY, 06 > 0 (i.e., a = 02,b = ¢ = 0), and a Jacobi
diffusion (or Wright-Fisher diffusion process) for
(Y) =o0;/Y, (1Y) (e, a=—0},b=0},c=0). Thr-
oughout this work, we will focus on this last process.

The values taken by model (1), i.e., its state space, are in
the interval —oo < By < yyp < B, < 4-00. The endpoints B;
and B; can or cannot be reached in a finite time depending on
the underlying parameter conditions. According to the Feller’s
classification of boundaries,'® B; is an entrance boundary if it
cannot be reached by Y; in finite time, and there is no proba-
bility flow to the outside of the interval (B}, +00), that is, the
process stays in [By, +00) with probability 1. Vice versa, B is
an exit boundary if the process can attain it, but then it cannot
return into (B, +00). The latter situation is not suitable for
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our modeling purposes, and thus, it is not considered here. An
analogous classification for B, can be stated.

We denote the transition probability density function
(pdf) of the diffusion process (1) by f(y,t|z, 7). If W(y) :=
lim,_, o f (v, t|y0, 0) exists independently on yy, we say that
the process Y; admits a stationary distribution ¥V (y). Indepen-
dently on the choice of X (Y;), the mean of ¥, in (1) is given by

B[V, 1Yo = 3o = £ + ()’o - é) )
o o
and the asymptotic mean by
. B L B
lim E[Y,|Yy = yo] := E[Yeo] = —, 3)
1——+00 o

while higher moments of Y; depend on the function X(Y;)
in (1).

Let the process Y; evolve in the presence of an absorbing
boundary S, yo < S < B,. Then, Eq. (1) describes the dynam-
ics of Y; until it crosses S for the first time, the so called
first-passage time (FPT), defined as

T:=inf{t>0:Y, > S < S}, @

with pdf g(7) := g(t|y,S). The moments of 7 can be calcu-
lated through the Siegert’s formula®”

S
E[T"] = n/ L
w [ZXDPW(2)
n=12,.... &)

/ O WEE[T"dx.

Three distinct situations for the FPT can occur. The pro-
cess is said to be in the suprathreshold, subthreshold, and
threshold regimes if E[Yo] > S,E[Ys] < S, and E[Y] = S,
respectively.

A. The Jacobi diffusion process

The aforementioned Jacobi diffusion'® is a stochastic

process with state space (0, 1), given as the solution to the
following stochastic differential equation

dYt - (—O[Y, +ﬂ)dt+0\/ Yt(l - Y,«)dW,,

with « > 0,0 > 0,y9 € (0,1). Sometimes, it is alterna-
tively defined on the interval (—1,1) by setting
%(Y,) = oy4/1 — Y?,0; > 0. Throughout, we will consider
the Jacobi diffusion given by (6). The conditional variance of
the Jacobi process, the moment generating function, and the
transition pdf are given in Refs. 18, 21, and 22, respectively.

Let n :=2a/o? and y := 28/0?. Then, for y > 0 such
that min(y,n — y) > 1, the boundaries 0 and 1 are of entrance
type®”> and the Jacobi diffusion admits a stationary distribu-
tion W. In particular, WV is a beta-distribution with shape
parameter y and scale parameter  — y, i.e.,'8

Yo =yo, (6)

Yoo ~ Beta(y,n—y), @)

with mean (3) and variance Var(Yy,) = (e —B)o?/2a + o ?).
In the presence of a constant threshold S, with
0 <yp < S < 1, the Laplace transform of the FPT T, i.e.,
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g* (&) =E[e*T] = [;* e 'g(t)dt, & > 0, is given by”!

2F) (%,Q;V;yo)

2F1 (92(,—52,9,3/;5)

g' () = ®)

where

_ 2a—0%—/(c? —20)> — 80

%
202

Here, ,F| denotes the Gaussian hypergeometric function
belonging to the class of the generalized hypergeometric
functions ,F, defined by

oo

b3 2) = Z @0 @) 22 9

F ((11,.. ’
- =0 (bl)n"'(bq)n n!

S ap by, ..

where (a), is the rising factorial defined by (a), = a(a+ 1)
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FPT, E[T], is*!

I
Em_ﬂg(yﬂ)k

Using the definition of the hypergeometric function (9) for
p =3 and g = 2 and the fact that (1) = k!, 2)r = (k + 1)},
we rewrite Eq. (10) as

k+1 k+1
ST =y

k+1

(10)

1

—3F5 (L, 1,12,y + 1;y0) yol - (1D

This expression involves only hypergeometric functions and
has the advantage of easier numerical evaluations with the
package hypergeo® in the computing environment R.>*

We derive the second moment of 7" using the Siegert for-
mula (5) and replacing the integral terms with their Taylor
expansions, following what has been proposed in Ref. 25 for
the calculation of the moments of the FPT of an Ornstein-

-@+n—1) for neN and {(a)o =1. The Mean — Uhlenbeck process. In this way, we obtain the variance of T
E[T] 4 < ()
Var(T) = — [S3F> (1, 1,n;2,y + 1,8) + Fr,A,1,n;2,y +1; - —
(1) 5 [S3F> (1, L2,y )+ yosFa (1, 1,2,y Yo)] 52,3kzzo()/+1)k(k+1)(k+2)(y+k+l)

x [3Fa(Lk+2,n+k+1k+3,y +k+ 298 —sF(Lk+2,n+k+ Lk + 3,y +k+2y0)y 7], (12)

To evaluate Eq. (12) numerically, we replace the series with the sum of the first £ terms. Our comparisons for different

values of k with Monte Carlo simulations show that the series (and thus the value of the variance) can be satisfactorily computed
by summing the first 20 terms. All the numerical results presented in the following parts were carefully verified by extensive
simulations with relative difference always below 1%. Finally, we also derive the third moment of T using the Siegert formula

(5), obtaining

3SE[T?]

M sFr(Lk+2,n+k+1;k+3,y +k+2;5)5?2

E[T?] =

E[T] &
k=0

Y+ Drtk+DKk+2)(y +k+1)

m+k+ 1),

24 & (M >
T o1 G DG TR = ¢

k=0 n=0

y4+k+2)k+n+2)(y +k+n+2)

x [3Fa(Lk+n+3,n+k+n+2k+n+4,y +k+n+3;8) s+

—sF (Lk+n+3,0+k4+n+2k+n+4y+k+n+350 "]

The derived expressions of the first three moments can
be used to perform moment estimation of the parameters «,
B, and o appearing in Eq. (6). This would be particularly
interesting in neuroscience, where parameter estimation from
FPT data has already been successfully applied for other dif-
fusion models.”*~>° Moreover, it will allow a comparison with
the results available for the parameter inference on « and
B for the Jacobi process for continuously recorded obser-
vations of the trajectory of X (¢) (modeling the membrane
voltage).*"

In Fig. 1, we illustrate the inverse mean FPT, defined as
1/E[T], the coefficient of variation (CV) of T, defined as the
ratio between the standard deviation and the mean of T, i.e.,
CV(T) = /Var(T)/E[T], and the stationary distribution W
of the Jacobi diffusion (6) given by Eq. (7). As expected, the
inverse mean FPT increases and CV decreases with increas-
ing drift coefficient, §. Further, the asymptotic distribution

(
gets more symmetric for large values of 8. Both the inverse

mean FPT as well as CV increase with increasing the noise
amplitude and the curves become smoother.

B. The Jacobi diffusion as a neuronal model

Equation (1) with various noisy terms is widely used
in the context of neuroscience. It describes the subthresh-
old dynamics of the membrane voltage of a nerve cell, i.e.,
the evolution of the membrane depolarization between two
consecutive spikes (firing), modeled as crossings of a cer-
tain threshold. In this way, the interspike interval (ISI) is
identified with the FPT of the mathematical model. With
2 (Y;) =0, constant absorbing threshold S, time constant
T =1/, and constant or time-varying input B, Eq.
(1) has often been investigated as a deterministic leaky
integrate-and-fire neuronal model.! To take the underlying
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FIG. 1. Some properties of the Jacobi diffusion. (a) and (b) Inverse mean FPT and CV(T) as a function of the drift coefficient, B, for different values of the
noise, o2. The process is in suprathreshold regime for 8 > 0.2 (thick lines). In both figures, yo = 0.1, @ = 1, S = 0.2. (c) pdf of the asymptotic distribution W
of Y, for different values of 8 with yo = 0.1, @ = 1, and 6> = 0.1. Values of 8 < 0.05 do not satisfy the condition min(y,n — y) > 1 in this case. The vertical

line represents the threshold S.

intrinsic neuronal randomness into account, the model was
often extended by adding a white or colored noise.

The diffusion process (1) has been often obtained as a
diffusion limit (also known as diffusion approximation) of dis-
continuous jump process under the assumption of increasing
frequency and decreasing size of the jumps.”!!3%33 An exam-
ple of the initial discontinuous process is the Stein’s model
with reversal potentials V; and Vg given by the following
stochastic differential equation,

1
dX, = ——X,dt + a(Vg — X)dN* (1)
T

+i(X; = VAN (1),  Xo = X0, (13)

where i and a are constants such that —1 <i <0 <a < 1.
Here, T > 0 is the membrane constant taking into account
the spontaneous voltage decay toward the resting potential
Vr in the absence of input, and the inhibitory and excita-
tory reversal potentials V; and Vg are such that V; < 0 < V.
We assume Vi = x9p = 0. In Eq. (13), Nt := {N*(5),t > 0}
and N~ := {N~(¢),t > 0} are two independent homogeneous
Poisson processes with NT(0) = N~(0) = 0 and intensities
A and w, respectively. The processes NT and N~ represent
the excitatory and inhibitory neuronal inputs, respectively,
while A and w are called the excitatory and inhibitory input
parameters and represent the rate of arrival of excitatory and
inhibitory postsynaptic potentials. According to model (13),
each event of the excitatory process N™ produces a jump in
the membrane voltage AX = a(Vg — X;). Similarly, an event
of the inhibitory process N~ hyperpolarizes the membrane by
i(X; — V). This implies that the effect of the input is state-
dependent: the amplitude of changes in the depolarization X;
decreases when X, approaches the inhibitory or the excitatory
reversal potentials V; and Vg. A direct consequence is that the
process is constrained on the interval (V;, Vg), i.e., the state
space of the process is (V, Vg).

Under the assumptions of jump amplitudes a, i decreasing
to zero but occurring at increasing frequencies A, @ roughly
inversely proportional to the square of the jump size, a diffu-
sion approximation of a generalization of Eq. (13), including
random jump amplitudes depending simultaneously on both
reversal potentials, was proposed.!! The stochastic differential

equation describing this dynamics is

X
dX, = |:—?t +u(Ve — X)) +v(X; — Vl)i| dt

+ 0oV (Ve = X)X, — VDdW,, Xo=0, (14)

where
(15)

nw=akr, v=io.

The parameter o2 determines the amplitude of the noise, and
it is often assumed to grow linearly with the input.’*-3¢ Fol-
lowing this, we let the noise intensity vary according to the
formula

or =+ w)e, (16)

obtained through the diffusion approximation. Here, the con-
stant € > 0 determines the relation between the input param-
eters and the noise amplitude. The asymptotic depolarization

of the process X; is denoted by X, and its mean is given by
H/VE — UV[

- 17)
VoK

For a better understanding of the parameters p© and v, we
recall the equation of a conductance-based neuronal model.
The evolution in time of the potential difference V across the
membrane of a neuron is given by (see, e.g., Refs. 14 and 37)

ge(®) g0
C (Vi = Vp) + C

dw:-%mm—[ (m—wqm

(18)

where C is the membrane capacitance, g;, is the conductance
of the leak current, while gg(¢) and g;(¢) are the conductances
of the excitatory and inhibitory components of the synap-
tic current, respectively. Equation (18) is analogous to Eq.
(13) with g;/C playing the role of the membrane constant
7 and with gg(r) = Cag )", 8(t — ), where ag is a dimen-
sionless constant measuring the strength of the synapse and
t, is the time of the arrival of the k-th incoming excita-
tory pulse, distributed according to a Poisson process with
parameter A [similarly for g,(#) and w]. The arrival of one
excitatory pulse increases the conductance gg(¢) by a fac-
tor of Cag, and consequently, the increase in the voltage is
AV = aE(VE - Vt)
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£=0.0145
0.04 1
0.03
F’w
E
E 0.02
u
0.014
0.00
0.0 0.1 0.2 013
}\(ms’1)

FIG. 2. Firing rate, 1/E(T), for the Jacobi diffusion neuronal model, as a function of the excitatory rate A for several fixed levels of the inhibitory rate w; the
values of A are limited by condition (19). The right panel is a zoomed version of the left one. The same parameter values of Example 1 of Ref. 21: V; = —10mV,
Ve=100mV, S = 10mV, t =5.8ms, i = —0.2, a = 0.02, xp = 0mV, and € = 0.0145 as in Ref. 36. The values of w are in the legend (ms~"). We note a
divisive effect for low frequencies and subtracting effect for high frequencies of the excitatory input, as also shown in Ref. 36. The lines become thick when the

chosen parameters yield the process in the suprathreshold regime.

Focusing again on the model (14), we see that the state
space of X, is again the interval (V;, Vi), where V; and Vi are
both entrance boundaries if the following condition is satisfied

2V,

€Oto) <oy, vy

19)

Throughout the paper, the underlying parameters are chosen
to guarantee that this boundary condition is met.

As previously mentioned, three firing regimes can be
considered for the process Y, and thus for the process X;.
Referring to the latter model, if the asymptotic mean depo-
larization (17) is larger than the firing threshold S, then the
process is in the suprathreshold regime. If it is smaller, then
it is in the subthreshold regime, and the noise plays a crucial
role for the crossing of the threshold. Finally, if the asymptotic
mean is equal to S, the process is in the threshold regime.
However, due to the interplay of the parameters, the spe-
cific situation is more complicated and the role played by
the noise may be counterintuitive, as seen later. Using the
transformation

from Eq. (14) we get Eq. (6), whose solution is confined in
(0, 1), with

Vi

T

1
oOa=—4+u—1v,
T

Vi

e —— 20
VeV, (20)

Yo=y0=—

All the analytical results previously presented for the Jacobi
process in (0, 1) can thus be used. However, it is important
to stress that the coefficients «, 8, and also the noise o? are
now input dependent, being functions of the input parameters
A and w.

lil. INPUT-OUTPUT PROPERTIES OF THE JACOBI
NEURONAL MODEL

A. Firing rate

The relation between the level of synaptic input received
by a neuron and the frequency of the generated action poten-
tials (firing frequency) is commonly reflected by the so-called
f-I curve. The activation of an inhibitory input can produce

x—=V; in the neuron a change in its membrane potential (hyperpo-
Y= Ve —V,’ larization) and/or an increase in the membrane conductance
£=0.001 £=0.02
(o]
—=a ()]
e S g Ty 0.35
! . -—- 0.69
0.9 i S ==t 10 10
>07 p \\ 3 3
) . S 0.9 0.9
05 “\
\‘\
03 i 08 081
[¢] 1 2 3 0.0 05 1.0 1.5 20 0.0 05 1.0 15

A(ms'1)

A(ms'1)

A(ms'1)

FIG. 3. Coefficient of variation of the ISIs generated by the Jacobi diffusion neuronal model as a function of the excitatory rate A for several choices of the
inhibitory rate w. The parameters are chosen as in Fig. 2. Left figure: ¢ = 0.001. The CVs monotonically decrease in A and take small values for low inhibitory
inputs. Central figure: € = 0.0145. The CVs grow with increasing inhibition. For high values of w, the curves reach a maximum value and then change concavity.
Right figure: € = 0.02. For values of w close to zero, the CV curves have minima. All CVs are plotted as a function of A such that Eq. (19) is fulfilled, and this
is the reason why some lines stop before others. The lines become thick when the chosen parameters yield a process in the suprathreshold regime. All maxima

and minima occur in the subthreshold regime in the considered cases.
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(shunting inhibition).® The latter effect modifies the sensi-
tivity of a neuron to a variation in the excitatory input rate*’
and produces a change in the slope of the f-I curve for dif-
ferent inhibitory input rates (divisive effect).’® If the slope is
high, a small variation in the excitatory input rate produces
a big difference in the resulting firing rate. The hyperpolar-
ization decreases the membrane depolarization reducing the
effect of a subsequent excitatory stimulation. In this case, the
f-I curve shifts for different inhibitory input rates but keeps its
slope (subtractive effect). In this section, we investigate how
the dependence of the coefficients «, 8,0 in the model (14)
on the input rates given by Egs. (16) and (20) affects the FPTs
(and thus the ISIs) of the Jacobi neuronal model.

As already mentioned, the firing frequency is commonly
replaced by the inverse of the mean ISI, 1/E(T). In this
way, we constructed the f-I curve for model (14) consid-
ering the same physiologically realistic parameters as those
given in Example 1 of Ref. 21: V; = —10mV, Vg = 100mV,
S=10mV,t =58ms,i = —0.2,a =0.02,xg = 0mV, for
different values of €, A, and w, namely, A € (0,3),w € (0, 1),
and € = 0.001,0.0145 (as in Ref. 36), and 0.02.

In Fig. 2, we plot the firing rate as a function of the
excitatory rate A for different values of the inhibitory rate w
and observe a divisive effect of inhibition for low frequen-
cies of the excitatory input and a subtracting effect for high
frequencies. For higher values of A, the deterministic force
characterized by B drives the neuron to fire. The behavior
of 1/E(T) for the neuronal model (14) differs from that of
the general Jacobi diffusion (6) reported in Fig. 1. There, the
inverse mean FPT increases when o2 increases, while here,
the firing rate decreases in the suprathreshold regime if we
increase o2 by increasing the inhibitory rate, w [cf. Eq. (16)].

If we decrease the value of the reversal potential Vg, the
excitatory term w(Vg — X;) in (14) has a weakened effect
(figure not shown). The f-I curve shifts to the right for
increasing inhibition w compared to the case of Fig. 2. This
is because changing the reversal potential is equivalent to
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change the input by a constant quantity.*' Also, in this case,
divisive and subtractive effects are observed. Thus, their pres-
ence does not depend on the value of the reversal potential.

B. Firing variability

Using Egs. (11) and (12), in Fig. 3, we plot the CV of the
ISIs generated by model (14) as a function of the excitatory
rate A for different fixed values of the inhibitory rate w. In
all the considered cases, the CV grows with increasing inhibi-
tion. For ¢ = 0.001, it means very small level of noise; as seen
from Eq. (16), the CVs are smaller than one and are decreas-
ing functions of the excitatory rate A. For bigger €, we observe
values of the CV greater than one and different behaviors,
concavities, and types of monotonicity of the CV for differ-
ent values of w. Interestingly, the CVs are non-monotonic in
A, and some CVs exhibit a maximum or a minimum for certain
values of the input parameters. Note that, in the cases consid-
ered here, all maxima and minima occur in the subthreshold
regime (the thick lines in the figure indicate the suprathreshold
regime). Many of these features are not present in the CVs of
the Jacobi diffusion (6) reported in Fig. 1, suggesting a qual-
itative difference between the general and the neuronal-based
models.

To illustrate the simultaneous dependence of the CV on
the inhibitory and the excitatory inputs, we report its heat
map in Fig. 4 (left) for e = 0.0145. All CVs increase in w;
CVs larger than one can be obtained by either increasing the
inhibitory inputs or decreasing the excitatory inputs, while
CVs smaller than one are only observed for low values of
w. Interestingly, for a fixed inhibitory input w, it is possible
to decrease the CVs by either increasing the excitatory input
(as one would expect) or decreasing it. The blue lines report
the contour plots of the CVs, i.e., the values of (X, w) yielding
the same CVs, while the black dots represent the values of A,
denoted by A*, maximizing the CV for a fixed w. The values of
A* increase with w, suggesting some relation in the proportion

1.05
1.00

0.75

0.50
co(ms'1)

FIG. 4. Left figure: Heat map of the dependency of the CV of T on both inhibitory and excitatory inputs. The ranges of values of A and w are written on the axes
labels; the other parameters are the same as Fig. 2. The yellowish areas represent values of the CV larger than one. The blue lines are the curves along which the
CV has a constant value, i.e., the 2D sections of the 3D plot (contour lines). The black points are (A*, w), where A* denotes the value of A maximizing the CV of
T for a given w. Right figure: Relationship between @ and A* for two different values of €. Note that A* increases for increasing absolute values of w; however,

the relation is not always linear as it may look from the heat map.
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of inhibitory and excitatory inputs. This can be observed in
Fig. 4 (right), where we report (w, A*) for two values of €.

C. The role of input-dependent parameters

What is the reason causing the different behaviors of the
inverse mean FPT (firing rate) and the CV(T') for the Jacobi
diffusion (6) and the neuronal model (14)? To answer this
question, we investigate the role played by the inhibitory and
excitatory inputs w and A in the coefficients «, 8, and o2 of the
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neuronal model (14). In the general Jacobi model (6), if seen
as a neuronal model, the only variable coefficient is 8, while
in (14), the inputs affect all three coefficients. To answer the
question posed above, keeping the notation of Sec. II B, we
study how 1/E(T) and CV(T) change if the input parameters
act only on two of the three coefficients.

In the first row of Fig. 5, we fix « = 1/t constant, i.e.,
independent of the input parameters. Under this scenario, we
observe, except for very low values of w, a small subtrac-
tive effect in the f-I curve for low values of A. Almost no

o2 =\ +w)e

0.0 05 10 15

1.10

cVv

1.05+

1.00+

0.0 0.5 1.0 1.5
k(ms’1)

FIG. 5. Firing rate, 1/E(T), and coefficient of variation of the ISIs generated by the Jacobi diffusion neuronal model as a function of the excitatory rate A for
several choices of the inhibitory rate o if the input parameters act on two of the three coefficients o, 8, and o2 only. In the first row, & = 1/7 constant (i.e.,
independent of the input parameters A and w); in the second row, 02 =0.03ms~! constant; and in the third row, 8 = —V;/[t(Vg — V;)] while & and o2 change

with X and w. We recall from Eq. (15) that © = aX and v = iw.
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effect is seen for high values of A. It suggests that the noise
alone cannot produce large divisive effects. Similarly, no divi-
sive effects are observed when o = 1/7 + u, i.e.,, when «
depends on the excitation only (« = aA) but not on the inhi-
bition (results not shown). In contrast to Fig. 2, the firing rate
increases with the inhibition in this case. This is because the
parameter o effects o' only and in this way increases the fluc-
tuations of the membrane depolarization and thus the firing
rate. On the right panel of the first row of Fig. 5, one can
see that the CV increases when the rate of inhibitory input,
w, increases and is monotonically decreasing function of A.
These results agree qualitatively with what we observed in
Fig. 1 for the Jacobi diffusion (6).

In the second row of Fig. 5, we let & and B vary with
the input parameters and fix o> = 0.33 ms™!, physiological
value used in Ref. 21. A divisive effect is not visible in the f-/
curve, while the subtractive one is strong. In this scenario, the
firing rate decreases if the inhibitory rate increases. The CVs
are monotonically decreasing functions of A that intersect for
different values of w. For A and w close to zero, the CV is
greater than one because, differently from before, o> does not
depend on them and therefore, it does not tend to zero. Inter-
estingly, increasing the inhibition reduces the CVs for values
of A smaller than 0.5 ms~!.

In the third row of Fig. 5, we consider g8 = —V;/
[t (Vg — Vi)] independent of A, while o and o? are varying
with the input parameters. Both the divisive and the subtrac-
tive effects are visible in the f-I curve. However, the firing
frequency, 1/E(T), is lower than before (about 1/10). Con-
sidering the dependency of CV on the input, we see that for
values of w greater than 0.1 ms~!, the CV is monotonically
increasing in A and larger than one. This happens because
B is constant while o2 increases in A causing the variabil-
ity to increase. Finally, under this scenario, for small values
of w (see the case w = 0.0l ms™!), the CV curve shows a
minimum, Fig. 3 (right panel). To get maxima in the CV as
a function of A, it seems that the input parameters have to
act simultaneously on all the three coefficients as happens for
the Jacobi neuronal model (14) with coefficients given by Eq.
(20).

IV. DISCUSSION
A. Firing rate

An increase of the firing frequency with increasing
level of inhibition is a counterintuitive phenomenon. It was
observed for neuronal networks, e.g., in Ref. 42, and for single
neurons, e.g., in Ref. 43. Here, for low values of the excitatory
rate A, we see on the right panel of Fig. 2 that increasing the
inhibition increases the firing rate. The reason is the follow-
ing: if the input frequency is low (small 1), then the inhibition
helps the firing since it increases the noise, cf. Eq. (16).

The noise alone causes only a modest divisive effect on
the firing rate during shunting inhibition. Holt and Koch*!
showed that for an integrate-and-fire model in the suprathresh-
old regime, the effect of a voltage-independent inhibition is
subtractive. Doiron et al.** extended this result to the voltage-
dependent case, observing a divisive effect at low frequencies
of excitation for a stochastic leaky integrate-and-fire model

Chaos 28, 103119 (2018)

with additive noise, provided that the noise increases with
the inhibitory input.*® Divisive modulation of the firing rate
under noisy conditions is instead enhanced by a nonlinear
integration of the inputs.* In fact, it is known that dendritic
integration of excitatory and inhibitory inputs can be highly
nonlinear due to the dendritic saturation.*® In Ref. 47, the
authors proposed a dendritic integrate-and-fire model incorpo-
rating the nonlinearity of the dendritic integration rule, at the
expense of a heavier mathematical formulation. The synaptic
inputs are summed linearly in the original Stein’s model,’ but
the inclusion of the reversal potentials introduces a nonlinear
synaptic summation. Here, we argue that in neuronal models
with multiplicative noise, like the Jacobi diffusion considered
in Eq. (6) with parameters given by Eq. (20), a fundamental
role to obtain divisive phenomena is played by the coeffi-
cient @ and in particular its dependence on the underlying
inhibitory inputs. We speculate that not only the role of the
noise is crucial,*® but also 1/« has to decrease for increasing
w to obtain a divisive effect (see the third row of Fig. 5).

B. Variability of the response

Traditionally, the neural code is assumed to be hidden in
the firing frequency. Nevertheless, recently, the spiking vari-
ability attracts attention of neuroscientists as an alternative
or at least as an auxiliary part of the code.*~>! Two inter-
changeable measures of variability, the Fano factor and the
coefficient of variation, have been employed.””>* Here, due
to the knowledge of the first two moments of the ISIs, we
evaluated the CV as a function of the excitation rate. It is dras-
tically affected by the dependence of the coefficients «, 8, and
o? on the input parameters in Eq. (20) producing three main
features: CV greater than one and the presence of maxima and
minima with respect to the rate of excitatory inputs, A.

We observe minima of CV for small values of the
inhibitory rate and for strong dependency of the noise on the
input (large values of €). If the rate of inhibitory inputs, o,
is small, then an increase of A implies a decrease in the CV,
as it happens for the general Jacobi process with fixed o and
o%. However, if the rate of excitatory inputs, A, is large, the
noisy term o> = (A + w)e ~ Ae becomes dominant and the
CV increases. Minima in the CV as a function of the noise
were observed for the Ornstein-Uhlenbeck neuronal model.>

In the Jacobi neuronal model with coefficients given
by Eq. (20), the increase of inhibitory and excitatory rates
leads to an increase of the noise o2, but at the same time
to a decrease in 1/« that reduces the voltage fluctuations.
This suppression of fluctuations was also observed in the
conductance-based model'* and in vivo recordings.® This
mechanism explains the presence of maxima in Fig. 3: the
CV grows with the noise, but then it is slowed down by «.
The maxima are not observed for ¢ = 0.001, because in that
case, the noise is too small to produce an increase in the
CV. To the best of our knowledge, maxima in the CV for
the Ornstein-Uhlenbeck neuronal model were observed only
when a refractory period was added to the dynamics.>

Values of the CV larger than one are commonly found
in experimental data, and investigation of neuronal models in
this direction has a long history.”® Generally, it is perceived
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as connected to an increase of inhibition. Also, for the Jacobi
neuronal model with coefficients (20), the inhibition increases
the CV. In fact, even if the inhibition causes an increase of the
firing rate (and thus decreases the mean of T), it increases
the variance of T even more substantially, producing thus a
higher CV. Some authors connect large values of the CV with
a balance between excitation and inhibition. For example, a
highly irregular firing activity is produced in the presence of
an appropriate balance of the excitatory and inhibitory input
(see, e.g., Refs. 49 and 57). Christodoulou and Bugmann’®>°
obtained CVs greater than one for strong inhibition, in partic-
ular for a level of inhibition that is greater than 80% of the
level of excitation. Konig et al.®* argued that an exact balance
(100%) of excitatory and inhibitory inputs cannot be realis-
tic from a biological point of view. For the Jacobi neuronal
model, we observe CVs greater than one also for the inhibitory
rate that is less than 50% of the rate of the excitatory one; see,
for example, Fig. 3 (central panel).

For all these reasons, the Jacobi neuronal model given
by Egs. (14), (16), and (20) constitutes a good compromise
between the realistic description of a neuron and the mathe-
matical tractability. Indeed, it is able to reproduce high degree
of irregularity of the real neuronal firing. A deeper under-
standing of the meaning and consequences of minima and
maxima in the CV of the ISIs is also of interest, and it will
be the object of a future work in the context of information
transmission and coherence resonance.
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