NIR-sensitized Dye-Sensitized Solar Cells: effect of the different molecular moieties on the photovoltaic performances

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1705627 since 2019-07-06T16:25:39Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
NIR-sensitized Dye-Sensitized Solar Cells: effect of the different molecular moieties on the photovoltaic performances

Nadia Barbero, a Vittoria Novelli, b Claudia Barolo, a, c Raffaele Borrelli, d Marco Giordano, a Matteo Bonomo, a G. Viscardi, a Frederic Sauvageb

Dye-sensitized solar cells (DSSCs) are nowadays one of the most interesting alternatives when looking at solar harvesting technologies able to provide enhanced performance under low or weak irradiation and for building integrated applications (BIPV) [1]. However, most of these cells absorb only the visible domain of the light spectrum that is why these devices are not transparent or no less than semi-transparent. For red-near infrared (NIR) light is indubitably interesting to widen solar harvesting. Of course, the photoconversion expected by the exploitation of these frequencies (700-1000 nm) is lower with respect to the visible region. But, NIR sensitizers allow to tune the colors of final devices from green to blue, even to transparent. Transparent cells without any coloration would allow the visible light pass through unhampered reaching a fully integration of PV devices in BIPV [2]. Our group has already developed several squaraine dyes for DSSC absorbing in the NIR region [4,5]. A few series of new efficient organic sensitizers based on squaraine [6], cyanine and croconicine core-units with a shifted absorption as high as 830 nm have been synthesized and fully characterized. DSSCs based on these new efficient sensitizers are able to convert up to 36% IPCE until 850 nm.

V610 SQUARAINES for DSSCs [3]

SQUARAINES for aqueous DSSCs

The central functionalization of the squaric acid with either barbituric acid (VG8 and VG17) and sulfoxide tiotanodine (VG18 and VG19) is also interesting for the application in water-based DSSC (hydrogen bonds interactions).

NIR DYES for DSSCs [5]

Croconine VG25

Squarines VG11 and VG12

Co-sensitization with VG20

Photo-dynamic of VG20

Excitation at 640 nm

Emission at 870 nm

VG20

- J_s = 21.6 mA/cm²
- V_oc = 389 mV
- ff = 0.57
- η = 4.9%

Data

- T1 = 391 ps (93.5%)
- T2 = 925 ps (6.5%)