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Abstract

Three alternative strategies for the calculation of the IR intensity of crystalline

systems, as determined by Born charges, have been implemented in the Crystal code,

using a gaussian type basis set. One uses the Berry Phase (BP) algorithm to compute

the dipole moment; another does so, instead, through well localized crystalline orbitals

(Wannier Functions, WF); and the third is based on a Coupled Perturbed Hartree-Fock

or Kohn-Sham procedure (CP). In WF and BP the derivative of the dipole moment

with respect to the atomic coordinates is evaluated numerically, whereas in CP it is

analytical. In the three cases very different numerical schemes are utilized, so that the

equivalence of the obtained IR intensities is not ensured a priori, but rather is the result

of the high numerical accuracy of the many computational steps involved. The main

aspects of the three schemes are shortly recalled, and the dependence of the results

on the computational parameters (number of k points in reciprocal space, tolerances

for the truncation of the Coulomb and exchange series, and so on) is documented.

It is shown that in standard computational conditions the three schemes produce IR

intensities that differ by less than 1%; this difference can be reduced by an order of

magnitude by acting on the parameters that control the accuracy of the calculation.

A large unit cell system (80 atoms per cell) is used to document the relative cost

of the three schemes. Within the current implementation the BP strategy, despite

its semi-numerical nature, is the most efficient choice. That is because it is the oldest

implementation, and is based on the simplest of the three algorithms. Thus, parallelism

and other schemes for improving efficiency have, so far, been implemented to a lesser

degree in the other two cases.

Introduction

The theoretical prediction of the vibrational spectrum is an extremely useful tool for the

characterization of crystalline solids in general, and in particular when materials are difficult
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to analyze experimentally as is the case of point defects, or when the system is affected by low

crystallinity. Moreover, when accurate experimental data are at hand, ab initio quantum

mechanical simulations can be used as a complementary source of information (e.g. in

detecting silent or low-intensity modes). If, besides the wavenumbers, the IR intensities are

also available, the complete spectrum can be generated.

As a matter of fact, both the accurate measurement and the simulation of the infrared

spectrum of a solid are considerably more challenging than for molecules in the gas phase.

The practical applicability of such a synergistic approach between theory and experiment, as

described above, has become possible only in recent years and has had an important impact

on many fields such as earth sciences,1 heterogeneous catalysis,2 supramolecular chemistry3

and terahertz spectroscopy.4

The IR intensity of a mode is proportional to the square of the unit cell dipole moment

derivative with respect to the normal coordinate describing the mode. Evaluation of the

dipole moment is trivial for finite systems (molecules, or polymers and slabs along non

periodic directions), but requires special attention and tools in periodic directions, since it

is an ill-defined quantity5,6 when evaluated as the mean value of the r operator with respect

to the crystalline orbitals (CO), which are usually represented in a basis of Bloch functions.

This problem can be by-passed in different ways:

1. By using the Berry phase (BP) theory, due to King-Smith and Vanderbilt,7 and Resta6

(see also Ref. 5), that permits one to evaluate the dipole moment difference between

two geometries. This scheme was implemented in the CRYSTAL code by Dall’Olio et

al in 1997 for the calculation of the spontaneous polarization (ferroelectricity). It was

extended later on to piezoelectricity8,9 and, finally, to the IR intensity in CRYSTAL09

by Claudio Zicovich-Wilson. In the case of IR intensities the following procedure is

employed. The Hessian for obtaining the vibrational frequencies is evaluated numer-

ically by displacing each atom a small amount along the three Cartesian coordinates

and, then, computing the difference between the analytical gradients at the displaced
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and equilibrium geometries. In parallel, the Berry phase difference is evaluated for

each displacement. The IR intensity is, then, obtained from the Berry phase difference

between the 3N (N is the number of atoms) displaced geometries and the equilibrium

one. A numerical derivative with respect to the reciprocal space lattice vector k is also

involved, which makes the accuracy of the method dependent on the chosen sampling

of reciprocal space.

2. Through the localized Wannier Function (WF) scheme implemented a number of years

ago (2001) by Claudio Zicovich and some of the present authors10,11 which was used,

at first, for an easy and intuitive description of the electronic structure of crystalline

compounds in terms of chemical concepts, such as lone pairs, shared electrons, and

covalent vs. ionic bonds.12 It was subsequently employed for the calculation of the

spontaneous polarization of ferroelectric materials and the piezoelectric tensor,9,13 and

then, more recently, for the calculation of the IR intensity of crystalline systems.14 The

latter is obtained as the difference between the sum of the reference WF centroids at

two geometries. In the present case, the difference involves the equilibrium geometry

and each one of the distorted geometries used in the numerical derivative scheme, in

exactly the same way as for the BP method.

Wannier functions are also one of the key ingredients for the Local MP215–17 approach

to post-Hartree-Fock correlation energy in crystalline compounds.

3. By using the Coupled Perturbed Hartree-Fock (CPHF) scheme of Dupuis et al.18,19, as

adapted for electric fields in periodic systems20–22 and implemented in the CRYSTAL

code by Ferrero et al.23,24, who included coupled perturbed Kohn Sham (CPKS) as well.

In combination with the standard analytical treatment of geometric energy gradients,

based on the orbital energy weighted density matrix, this yields the desired second

derivatives of the energy with respect to the field and atomic displacements.25,26

The three schemes are quite different.
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The first scheme, BP, operates on the crystalline-orbital eigenvectors in reciprocal space,

and is performed separately for the equilibrium and displaced geometries. It is a calculation

that requires the full overlap matrix between the occupied Crystalline Orbitals (CO) at each

k point with its three neighbors, and scales quadratically with the basis set size (since the

number of occupied CO is proportional to the basis set size).

The WF scheme, based on a Boys-like localization, operates mostly in direct space and re-

quires a Self-Consistent procedure.10 However, the complete localization scheme is applied

only for the equilibrium geometry. The WFs of the distorted structures are obtained by

projecting the WFs of the undistorted structure onto the corresponding occupied manifolds.

Owing to the small geometry differences between the equilibrium and displaced points (0.01

Å for an individual atomic coordinate), and taking into account that only the centroids

(first order moment) of the WF are required, the projection technique yields WFs that are

sufficiently localized for the accurate computation of the dipole moment derivative.

The third algorithm, CPHF/CPKS, is completely analytical and all calculations are per-

formed at the equilibrium geometry. The first-order perturbation equations must be solved

self-consistently in reciprocal space for each Cartesian component of the electric dipole mo-

ment.

The aim of the present paper is to compare these three alternative strategies with respect to

their relative merits and limitations. These formalisms, which have been presented in detail

previously, will be reviewed here and, then, critically analyzed and compared.

Our paper is organized as follows: first, the general scheme adopted for the calculation

of the vibrational frequencies is summarized. Then the role of the derivatives of the dipole

moment with respect to the atomic positions (also known as Born charges), Z, in the cal-

culation of the IR intensities, is briefly recalled. The following sections summarize the main

equations used for the calculation of Z with a Gaussian type basis set in the three alternative

methods: the Berry phase treatment; the path that uses Wannier functions; and the strategy
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based on the CPHF-KS scheme. The last two sections are devoted to the presentation of

results for two systems, α-quartz and pyrope, followed by some discussion and conclusions.

Most of the formal development for the three schemes appears in the Supplementary Mate-

rial section. Equations in the Supplementary Material are labelled as S.X, where X stands

for the eq. number.

Methods

Dynamical matrix

The Dynamical Matrix (DM)

For symmetry reasons, only the DM of the Central Zone Point (Γ point, or k = 0) of the

Brillouin zone is required for obtaining the IR (as well as Raman) spectra. The analytical

part of the DM is given by

Wαi,βj(k = 0) =
1√

MαMβ

Hαi,βj (1)

where H is the Hessian matrix, Mα(β) is the mass of atom α(β) and i, j are atomic Cartesian

coordinates. The square root of the eigenvalues of W are the TO (transverse Optical)

vibrational frequencies, whereas the eigenvectors determine the vibrational normal modes

(see www.crystal.unito.it/prtfreq/jmol.html for graphical animation of the modes) used to

obtain the mode intensities (see eq. 4-9 below).

First derivatives of the total energy E with respect to atomic displacements, υαj =

∂E/∂uαj, are calculated analytically (uαj is the displacement coordinate with respect to

equilibrium), whereas second derivatives at uαj = 0 are calculated numerically either as:

Hαi,βj ≈
υαi(0, · · · , uβj, · · · )− υαi(0, · · · , 0, · · · )

uβj
(2)
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or by averaging over equal positive and negative displacements:

Hαi,βj ≈
υαi(0, · · · , uβj, · · · )− υαi(0, · · · ,−uβj, · · · )

2uβj
. (3)

In our calculations the displacements uβi are set equal to 0.01 Å.

The Born charges and related quantities

The α-atomic Born tensor is the key quantity for the calculation of IR intensities. This

tensor is defined as follows:

Z∗α,ij =
∂

∂uαj

(∂E
∂Ei

)
≡ ∂

∂uαj
µi (4)

in which Ei is the i-th component of an applied electric field and µ is the cell dipole moment.

It is well known5,6 that, in crystalline systems, µ depends upon the arbitrary choice of

the unit cell. On the contrary, the dipole moment difference between two geometries of the

same system (i.e. the polarization per unit cell) is well-defined. Consequently, the partial

derivatives in eq. 4 can be estimated numerically (for the BP and WF strategies) from

the differences generated by small atomic displacements as in the calculation of the energy

second derivatives (see eq. 2 or 3). The formula for Born charges per unit volume (V ) then

reads:

Z∗α,ij/V = ∆Pα,ij
el + ∆Pα,ij

nuc (5)

The nuclear contribution is easily evaluated as

Z
∗ (nuc)
α,ij = ζαδij (6)

where ζα is the atomic number of nucleus α.
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The IR intensity

We seek the Born charge tensor in the basis of vibrational modes. The matrix of eigenvectors

t of the mass-weighted Hessian W transforms the Cartesian atomic displacements uαj into

normal coordinates, Qp, through a suitable mass-weighting factor:

Qp =
∑
αi

(
tαi,p

√
Mα

)
uαi (7)

Then the Born charges, in terms of normal coordinates, become:

Z̄p,i =
∑
αj

tαj,pZ
∗
α,ij/

√
Mα. (8)

The intensity of the p-th IR mode is proportional to the square of the modulus of the first

derivative of the dipole moment with respect to Qp:

Ap ∝
∣∣∣∣ ∂µ∂Qp

∣∣∣∣2 =
∑
i

Z̄2
p,i (9)

The Berry phase scheme for the derivative of the dipole moment

The theoretical framework of the Berry Phase scheme implemented in Crystal is reported

in detail in Ref. 8. We report here the main equations for purposes of comparison with the

other methods. The difference in electronic polarization between a deformed geometry (1)

and the equilibrium geometry (0), according to the Berry phase theory6,7 is:

∆Pel = − i

(2π)3

∫
dk
[〈

Φ(1)(k)
∣∣∇kΦ(1)(k)

〉
−〈

Φ(0)(k)
∣∣∇kΦ(0)(k)

〉]
(10)

where

8



∣∣Φ(λ) (k)
〉

=
1√
n!

∣∣∣u(λ)
1 (k) ū

(λ)
1 (k) . . . u

(λ)
n/2 (k) ū

(λ)
n/2 (k)

∣∣∣ (11)

and ui(ūi) is the periodic part of the i-th HF occupied spin α(β) crystalline orbital in the

Bloch form:

ψ
(λ)
i (r,k) = eik·ru

(λ)
i (r,k) . (12)

The reader must take care not to confuse the u
(λ)
ı , that represent occupied crystalline orbitals

here, with the uα,j of eq. 2 and 3, that represent atomic displacements.

In Eqs.(10)-(12) λ = 1 and λ = 0 refer to the deformed and equilibrium geometry respec-

tively.

The way the integral in Eq. 10 is implemented is explained in detail in Ref. 8 and in the

Supplementary Material section, where we report other technical details.

Computational Implementations of the periodic Foster-Boys local-

ization

The orbital localization usually considered in the context of molecular electronic structure

calculations can be extended to periodic systems through the use of generalized Wannier

functions (WFs). Given a particular reference WF (assigned to a reference cell), ω(r), the

family of its translational images forms an orthonormal set, i.e.

∫
dr ω(r)∗ω(r−Rg) = 〈ω|ωg〉 = δ0g1δ0g2δ0g3 , (13)

where Rg = g1a1 + g2a2 + g3a3 denotes a lattice vector, g ≡ (g1, g2, g3) and integration is

over the whole coordinate space. Each reference WF {ωi(r)}, in turn, may be written in

terms of an AO basis set as10

ωi(r) =
M∑
µ=1

∑
g

cgµiϕµ(r− sµ −Rg). (14)
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where sµ is the position of the atom in the reference cell. The sum over g on the rhs of eq.

14 is convergent by virtue of the exponential decay of WFs27 and the AOs. In numerical

implementations this sum is truncated so as to consider just those terms whose coefficients

cgµi are smaller in absolute value than a given threshold.

As previously proposed,11,28 the periodic extension of the Foster-Boys localization requires

a minimization of the spatial spread functional,

Ω({ωi}) =
∑
i

〈ωi|r2|ωi〉 − 〈ωi|r|ωi〉2, (15)

where the sum on the rhs is over all reference WFs in the orthonormal set {ωi(r)} and the

functional Ω({ωi}) depends upon the specific choice of such a set. This yields a straightfor-

ward extension of the stationary condition11 adopted in the molecular case

〈ωi|r|ωg
j 〉 · (〈ωi|r|ωi〉 − 〈ωj|r|ωj〉 −Rg) = 0. (16)

The localized WFs (LWFs) form a new orthonormal set that satisfies the previous conditions

through an orthogonal transformation of the original set of reference WFs, together with their

translational images, according to

ω′i(r) =
∞∑
q=0

|Rg|=Rq∑
g

∑
j

Og
ji ωj(r−Rg). (17)

Here the sum over q includes all ordered lattice vectors with the modulus, R0 = 0, Rq < Rq+1;

the sum over g includes those lattice vectors whose modulus is Rq; and the sum over j includes

all original reference WFs. The matrix Og
ji is translationally invariant. Given the decay of

the WFs: limq→∞ |Og
ij| = 0, the first sum can be truncated after a maximum value, qmax,

in numerical applications. In most optimization methods the determination of Og
ji depends

upon calculating all the matrix elements in eq. 16 (see more below).

Although there are algorithms11 that allow one to obtain a suitable set {ω′i(r)}, two
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practical problems arise that make their application difficult:

1. In the original Foster-Boys formulation the localization process can start with any

subset of canonical orbitals since the canonical and localized orbitals both exhibit

the same exponential decay. This is not the case for periodic systems in which the

canonical orbitals are Bloch functions (BF) that necessarily lack this property owing

to their translational invariance.29 Therefore, the application of the previous scheme

requires a suitable guess for the WFs to initiate the optimization procedure.

2. The calculation of the dipole matrix elements in eq. 16 that are used in construct-

ing the orthogonal transformation matrix Og
ij is computationally demanding. Even if

truncation criteria can be adopted to limit the set of numerically relevant components

there remain a large number depending strongly on the degree of localization of the

WFs. The less localized the set of reference WFs, the larger will be that number.

In the CRYSTAL code a localization scheme called Wannier-Boys (WB)11,30 has been

implemented to overcome these drawbacks. It is a mixed scheme that consists of an initial

step in which the canonical orbitals are transformed into a set of WFs and, then, localized

through a restricted Boys process in which just a few dipole moment matrix elements are

explicitly computed. It has been shown that the iterative (see later) application of these steps

provides LWFs that may be used to start a full Foster-Boys periodic localization through

eq. 16 and/or 17 . The latter are sufficiently well-localized for the accurate computation of

the WF centroids and the IR intensities.

More details on the localization scheme are presented in the Supplementary Information.

The CPHF/KS method

The BP and WF methods outlined in the two preceding sections both involve a numerical

differentiation (in reciprocal space in the first case – see Eq. 10; in real space in the second

case associated with displacement of the WF centroid) for evaluating the Born charges Z∗
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of eq. 4. The analytical evaluation of such quantities is not straightforward because the unit

cell dipole moment in periodic systems depends on an arbitrary choice of the unit cell.5,31

One solution to this fundamental concern has now been provided within the Modern Theory

of Polarization (MTP)6,31,32 and the Vector Potential Approach (VPA).22,33

In order to appreciate that solution we recall that the expression for the dipolar interac-

tion between a molecular electron and a uniform electric field E is given by

Ẑ(r) = E · r . (18)

When applied to an infinite periodic system, however, this expression is unbound and breaks

translational invariance.

This problem has been tackled by several authors.21,22,33–38 Their common approach relies

on an alternative formulation of the electronic interaction operator which, in the Bloch basis,

is diagonal with respect to the reciprocal space k vector. Provided the system has a non-zero

bandgap, this operator may be written as:

Ω̂(k) = ıE · eık·r∇ke
−ık·r . (19)

Then, the wavefunction and electric field response properties can be obtained through a

periodic Coupled-pertubed Hartree-Fock (CPHF) or Kohn-Sham (CPKS) approach. Such a

CPHF/CPKS treatment has recently been developed39,40 and implemented,23,24 by some of

the present authors, in the Crystal program.41 The recent addition of the DIIS accelerator42

has further improved the efficiency and stability of the procedure. A brief but detailed

description of the key elements of the CPHF/KS method, as implemented in Crystal, is

reported in the last section of the Supplementary Information. Here we recall only the final

formula actually implemented in the code.

Our goal is to obtain a computable expression for the Born charge tensor elements Eq.4.

This is obtained by differentiating the total energy expression with respect to a generic field
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direction Ej (in the zero field limit) and with respect to the displacement of atom α along

direction i:

∂

∂Ej
∂E

∂uαi

∣∣∣∣
E=0

=
1

nk

∑
k

Tr
[
F(uαi)(k)D(Ej)(k) +

(
F(uαi)

)(Ej)
(k)D(0)(k)− S(uαi)(k)D

(Ej)
W (k)

]
+ZAδij

(20)

in which the notation F(uαi) means that the derivative of the Fock matrix is taken with the

density matrix held fixed at its equilibrium geometry value. Although the basis functions

that determine Fock matrix do depend upon geometry it is worth recalling that they do

not depend on the external field. In eq. 20 Tr signifies the trace and the field-perturbed

eigenvalue-weighted density matrix

D
(Ej)
W (k) =

(
α[Ej ](k) ε[0](k)nα[0]†(k)

+ α[0](k) ε[Ej ](k)nα[0]†(k)

+ α[0](k) ε[0](k)nα[Ej ]†(k)
)

(21)

has been introduced. Here n is the diagonal occupation number matrix with eigenvalues

equal to two for occupied orbitals and zero for virtual orbitals.

Evaluation of eq. 21 involves the occupied diagonal block of Ωj(k) through ε(Ej)(k).

The occupied diagonal block of Ωj(k), in turn, is partially undetermined (see refs. 37, 43,

44). This aspect is related to the arbitrary phase in the BP scheme or, alternatively, to the

translational invariance of the Wannier Functions in the WF scheme.

We have demonstrated25,26 that, fortunately, the occ–occ block of Ωj(k) that appears

in DW is canceled by contributions from the other terms in eq. 20 so that, in the end,

the infrared intensity is completely determined. It should be noted that the expression for

the IR intensity, eq. 20, does not contain any terms involving the perturbed wavefunction

due to atomic displacements. As a consequence, the computational steps required to solve

eq. 20 are: i) self-consistent solution of the CPHF/KS equations along the three Cartesian
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directions ii) evaluation of integral (monoelectronic, bielectronic, overlap) gradients at the

equilibrium geometry and iii) assembly of all the quantities.

The extension from CPHF to CPKS requires the derivative of the exchange-correlation en-

ergy with respect to the atomic displacement and electric field. For this purpose the analyt-

ical expression for the energy gradient is exploited. Its derivative with respect to the electric

field depends on the solution of the CPHF/KS equations (for more details, see Ref. 25).

Results

The main interest in this paper on the calculation of IR intensities using the Crystal code is

to (i) test the numerical stability of the three different approaches with respect to the tunable

computational parameters, (ii) assess under which conditions the three schemes provide

comparable results and (iii) compare the computational cost of the three approaches as

currently implemented. This assessment includes the effort required to generate the Hessian

– needed for vibrational frequencies and normal modes – through mixed analytical/numerical

second derivatives.

Our discussion deals solely with internal comparisons. Comparison with other codes has

been possible for molecular systems, for which the same functional and basis set can be used.

In that case the agreement is excellent. With regard to periodic systems, this comparison

is much more difficult, due to many differences between computer codes (plane-waves vs

Gaussian type functions, all electron vs pseudopotential, pure DFT vs hybrid functionals).

No comparison with experiment is made, since that would imply a thorough analysis of the

experimental error bars and a careful examination of the effect of basis set and functional,

which is beyond the scope of this work.
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Assessing the computational parameters

In order to check the effect of the main computational parameters and thresholds on the

accuracy of the IR intensities evaluated with the three different methods, we have chosen

two prototypical systems. One is the quartz crystal in its α structure, which has 9 atoms

per unit cell and belongs to the space group P3221 with 6 point group symmetry operators

and 12 IR active modes. Due to symmetry, only 5 displaced geometries, instead of 3x9=27

are needed for the construction of the Hessian matrix, if eq. 2 is used (this number should

be doubled if eq. 3 is adopted).

The other prototypical system is pyrope, which has 80 atoms per unit cell and belongs to

the space group Ia3d with 48 point group symmetry operators and 17 IR active modes. In

this case only 8 displaced geometries are required for building the Hessian matrix.

For the first system, the PBEsol45 functional was adopted; the basis set is a 6-31G* contrac-

tion for O46 and a 6-631G* contraction for Si47. As usual, the first shell is of s type. It is

followed by sp type shells and, finally, the asterisk stands for a polarization d shell. There

are a total of 138 contracted Atomic Orbitals (AOs) in the unit cell.

For pyrope, we used the B3LYP48,49 functional; the basis set is the same as in references 14

and 50: an 8-511G* contraction for Mg, 8-611G* for Al, 8-6311G* for Si and 8-411G* for

O. This leads to a total of 1488 contracted AOs in the unit cell, about 10 times larger than

in α-quartz.

The reason for using different functionals for the two cases examined here is that PBEsol

and B3LYP probe different parts of the code in the integral part (the exchange-correlation

contribution to the Fock matrix is evaluated numerically in pure DFT; the exchange inte-

grals are evaluated analytically for the fraction of the Hartree-Fock exchange in B3LYP).

The integral part is called recursively in the CPHF scheme. Errors might then appear in

one case and not in the other. The very similar quality of the results will confirm that both

implementations are correct.

The slightly different basis set adopted for the O and Si atoms, that appear in both investi-
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gated systems, is related to the different ionic nature of the two systems (α-quartz is more

covalent).

The three different schemes for the calculation of the IR intensity are controlled by a sub-

stantial number of parameters. Default values, which may be considered safe with respect

to the numerical accuracy of the results, have been available for some time now. Here we

will limit most of the analysis to the two that are, by far, the most important and delicate.

They are also the most frequently varied when the accuracy of the calculated property values

needs to be checked.

The first of these parameters is the shrinking factor IS for the commensurate net51 that

defines the number of k points at which the Fock operator is diagonalized (this number is

IS3, when there is no point group symmetry). All the subsequent calculations are based on

the eigenvalues and eigenvectors obtained at this set of points. The effect of the number of

k points on the IR intensities can, in principle, be very different for the three schemes. In

the BP method IS determines the ‘step size’ for the finite differences in eq. S.4 (see Sup-

plementary Information) as well as the number of terms in the discretized eq. S.3. In the

WF approach, this parameter has an impact on the size of the direct space cyclic cluster for

which the set of WFs is defined. This connection is implicit in eq. S.8 , i.e. for reasonable

results the number of sampling points in the k space must be comparable to the number of

direct space cells used for the description of the WF.

We note that the CP approach benefits from relying fully on analytical derivatives. Hence,

it is less dependent on the density of the Brillouin-zone sampling. The threshold for the

convergence of the self-consistent first order coupled-perturbed cycles are set to very tight

values ( 10−4 a.u. in the value of the polarizability ), which is generally achieved in 5-6

iterative cycles,42 and is not a sensitive parameter.

The second key set of computational parameters are the thresholds controlling the trunca-

tion (thus, accuracy) of the infinite series of bielectronic integrals contributing to the Fock

operator. The effect of these parameters propagates along the entire chain of calculation:
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SCF eigenvalues and eigenvectors→ total energy → equilibrium geometry → construction

of the Hessian → calculation of the IR intensities. The tolerances Ti, i=1 to 5, control the

truncation of the Coulomb (i = 1 and 2) and exchange (i = 3,4 and 5) series. A full definition

of these parameters can be found in ref. 52. Roughly speaking, they correspond to termi-

nating the series when the overlaps between s-type gaussians used to simulate integrals, or

penetration between charge distributions, are smaller than 10−x where x is the value of the

parameter. Here we will employ just a single parameter that determines the value of all the

Ti. Thus, in the following Tx = j must be understood as j, j, j, j, 2j for the five parameters.

In all calculations presented here convergence on the total energy during the SCF cycle has

been set to 10−8 Hartree for the geometry optimization, and 10−10 Hartree for the wavenum-

ber calculation.

α-quartz: intensities and wavenumbers

The 12 IR active modes of α-quartz belong to the E and A2 irreducible representations.

of the C3v point group. Both the normal modes and the corresponding wavenumbers are

determined by diagonalizing the Hessian. The wavenumbers are shown in Table 1 as a

function of IS and Tx, respectively. In the first part of the table the statistical indices show

that the effect of the IS parameter on the wavenumbers is extremely small. At IS=3 the

maximum difference with respect to IS=9 is just 0.04 cm−1. In the second part of the table,

|∆| and |∆max| (the mean absolute difference and the maximum difference with respect to the

reference case, Tx = 8) are both in the range 0.5-1.5 cm−1, for Tx=7 and Tx=9, and increase

to 2.5 and 4.7 for the looser tolerance Tx=6. So we can conclude that the wavenumbers are

already well converged when relatively small parameter values, such as IS=3 and Tx=7, are

used.

The effect of the computational parameters on the normal modes – via the Hessian – can be

viewed through the behavior of the IR intensities, which is shown in Table 2, as a function

of the IS parameter, and in Table 3, as a function of the Tx parameter. In Table 2 the
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indices |δ| and |δmax| measure the difference of the IR intensities between the three methods

at fixed IS. At variance with respect to wavenumbers, the intensities span several orders of

magnitude. Hence, it is important to judge the differences on a percentage rather than an

absolute basis. In spite of some relatively large differences (particularly for WF) in going

from IS=3 to IS=6, the three methods provide intensities that coincide to within .04 percent

from IS=6 on.

We turn now to the effect of the Tx parameter on the IR intensities. As in the case of

the wavenumbers, the IR intensities are more sensitive to Tx than to IS over the range of

parameters considered (see Table 3). However, the differences between the three methods

for fixed Tx (see |δ| and |δmax|) remain extremely small (1-2 km/mol compared to, say,

the average intensity I, which is of the order of 600 km/mol). In addition, the differences

between the three schemes as a function of Tx are very limited; ∆max is always less than 10

km/mol for Tx=7, 8 and 9. The largest difference is for mode 10, whose intensity is about

3560 km/mol, which means that the percentage difference is smaller than 3%.

As a final remark on α-quartz, we comment on three other computational parameters that

could, in principle, significantly influence the accuracy of the calculation of the IR intensities.

These parameters have been tested and found not to affect the results in the present case,

hence the results are not shown. The first is the grid for the numerical integration of the

exchange-correlation contribution to the Fock operator (the XLGRID and XXLGRID options

in Crystal17, see ref. 52, were compared). The second is the number of points used for

the numerical construction of the Hessian matrix (equations 2 and 3 were compared), and

the third is the step used in these equations (0.003 and 0.01 Å were compared). In the three

cases |δ| and |δmax| essentially coincide with the ones shown in Tables 2 and 3.

Pyrope: intensities and wavenumbers

Pyrope is one of the most important members of the garnet family. IR intensities and full

spectra of garnets have already been studied with CRYSTAL, adopting the BP and WF
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approaches, in a number of works.14,50 Here Tables 4 - 6 report the same quantities that

were shown in Tables 1 - 3 for α-quartz. The trends are very similar, so that the analysis

can be more brief.

The convergence of the wavenumbers with increasing IS and Tx (Table 4) is very fast; for

the lowest IS and Tx values (2 and 7, respectively) well converged results are obtained (the

largest value for |∆max| is less than 2 cm−1 for IS=2 and smaller than 0.2 cm−1 in all other

cases).

Let us consider now the IR intensities. Whereas in α-quartz the range of intensities is from 1

(mode 1 of the list) to 3600 (mode 10 of the list) km/mol, for pyrope the minimum intensity

is as small as 0.01 (mode 4) and the maximum is as large as 14000 km/mol (mode 15).

Similarly, I is about five times larger for pyrope; roughly, 3600 compared to 640 Km/mol

for α-quartz. The quantity |δmax|, which is a measure of the maximum difference between

methods, is associated with the very intense peak 15 in pyrope. Its value is, nonetheless,

smaller than 2% of I for IS larger than 3 in Table 5 and for Tx larger than 7 in Table 6. We

conclude that the numerical stability of all three methods remains roughly the same when

increasing the size and complexity of the system.

The reader may note that in table 5 the WF column for IS=2 contains zeros. That is because

the formation of WFs fails due to an insufficient number of k points, and then of direct

space cells, included in the process (see the discussion just after eq. S.9 in Supplementary

Information). From IS=3 on, however, the localization converges. So, whereas all quantities

are quite reasonably converged at IS=2 for the BP and CPHF/KS methods, the WF approach

requires a slightly denser reciprocal space net.

Discussion and Conclusions

The three schemes implemented in the Crystal code41,52 for the evaluation of the IR inten-

sities of crystalline solids, differ greatly in the specific numerical steps that are involved, such
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as: truncation of infinite summations, discrete sampling of the Brillouin zone, analytical or

numerical derivatives and thresholds for the convergence of self consistent procedures.

Here we comment on the relative costs of the three schemes, with respect to one another and

with respect to the fraction of the total cost associated with the construction and diagonal-

ization of the Hessian matrix (let us call it TH, Time for Hessian). All timings reported are

total CPU times as obtained on 8 Intel Xeon CPU E5-2690 v4@2.60GHz nodes, 14 cores per

node, for a total 112 cores. The wall–clock time is roughly obtained dividing the reported

total times by this number. For pyrope, Table 4 shows that TH ranges from 200 (IS=2,

Tx=7) to 466 hours (IS=3, Tx=9) depending upon the tolerances and shrinking factor. The

total time for IR intensities (Tables 5 and 6) For the BP method the total time ranges from

about 6 to 81 hours. So the cost is always a fraction of TH (from 3% to 25% at the two

extremes) and is more dependent on the number of k points than on integral tolerances. The

total time for the WF scheme is higher: from 109 to 342 hours, so that in the more severe

conditions the calculation of IR intensity costs about the same as TH. For the CP method

the corresponding numbers are, roughly speaking, similar to the WF ones (from 113 to 276

hours).

These timing figures do not represent the ideal relative efficiencies since part of the difference

between them is due to history.

The core part of the Berry Phase approach was the first to be implemented (1997)8 and is

simpler than the other two: it does not rely on iterative procedures, involves only little linear

algebra, and does not require Fock matrix builds. Therefore, this algorithm was ported to a

massively parallel implementation of Crystal already in the 2014 release and applied to the

study of large-scale models, up to an order of magnitude larger than pyrope. Examples of

such models are ibuprofen adsorbed in MCM-41 mesoporous silica53 (a system that features

12054 atomic orbitals in the unit cell) and the B defect (a vacancy surrounded by 4 N atoms)

in diamond54 – the largest supercell studied contains 1000 atoms, with Td point symmetry

and 8991 AOs in the basis set. The WF and CP schemes utilize much more complex al-
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gorithms and are, at least in the present implementation, considerably more demanding in

terms of memory and time. On the other hand the CP approach, in particular, is more open

to greater efficiency through further algorithmic developments, such as analytical second

derivatives (i.e. the Hessian). It is also worth noticing that, if Raman intensities are to be

computed, the CP scheme remains as the only choice.55,56 In that case, the Born charges are

obtained almost as a by–product of the Raman tensor.

In other words, we have here an evidence of the general rule that evolution of software is

always slower than that of the hardware (speed of the CPU, parallel architecture).
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(23) Ferrero, M.; Rérat, M.; Orlando, R.; Dovesi, R. The Calculation of Static Polarizabilities

of 1-3D Periodic Compounds. The Implementation in the CRYSTAL Code. J. Comp.

Chem. 2008, 29, 1450–1459.

(24) Ferrero, M.; Rérat, M.; Orlando, R.; Dovesi, R. Coupled Perturbed Hartree-Fock for Pe-

riodic Systems: The Role of Symmetry and Related Computational Aspects. J. Chem.

Phys. 2008, 128, 014110.

(25) Maschio, L.; Kirtman, B.; Orlando, R.; Rérat, M. Ab initio Analytical Infrared Inten-
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Table 1: Influence of the shrinking factor IS (at Tx=8) and of Tx (at IS=9) on
the wavenumbers ν (cm−1) of the twelve IR active modes of α-quartz, calculated
with PBEsol45. The symmetry of the mode is indicated. |∆| is the mean absolute
difference with respect to the reference case (IS=9). |∆max| is the maximum
absolute error with respect to the same reference.

IS Tx
Mode # 3 6 9 12 6 7 8 9

1 E 122.30 122.28 122.28 122.28 126.39 123.72 122.28 120.96
2 E 243.20 243.20 243.19 243.20 245.04 243.41 243.20 242.52
3 A2 313.91 313.88 313.88 313.88 312.94 313.81 313.88 313.91
4 E 355.49 355.47 355.47 355.47 355.85 355.35 355.47 355.30
5 E 413.26 413.27 413.27 413.27 416.42 413.72 413.27 412.40
6 A2 464.03 464.03 464.03 464.03 467.39 464.58 464.03 463.03
7 E 680.42 680.40 680.40 680.40 682.56 680.98 680.40 680.12
8 A2 753.26 753.26 753.26 753.26 752.66 753.45 753.26 753.40
9 E 785.32 785.27 785.27 785.27 786.92 785.98 785.27 784.86
10 E 1023.89 1023.92 1023.92 1023.92 1020.06 1023.73 1023.92 1025.29
11 A2 1036.28 1036.30 1036.31 1036.31 1033.32 1036.03 1036.31 1037.52
12 E 1106.05 1106.07 1106.07 1106.07 1101.34 1105.53 1106.07 1107.61

|∆| 0.06 0.00 - 0.00 2.48 0.45 - 0.75
|∆max| 0.04 0.00 - 0.00 4.73 1.44 - 1.55
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Table 4: Influence of the shrinking factor IS (Tx=7) and of the Tx tolerance
(IS=3) controlling the truncation of the Coulomb and exchange infinite sum-
mations on the wavenumbers ν (cm−1) of the 17 IR active modes of pyrope,
calculated with B3LYP. TCP is the total CPU time, in hours, required by the
calculation of the Hessian matrix. Four nodes of 28 cores each, for a total of 112
cores, have been used. Symbols and units as in previous tables.

IS Tx
Mode # 2 3 4 6 7 8 9

1 113.64 115.21 113.67 115.35 113.66 113.64 113.65
2 137.06 137.88 137.06 137.93 137.04 137.06 137.04
3 184.92 185.62 184.92 185.59 184.89 184.92 184.89
4 213.00 213.67 212.99 213.60 212.97 213.00 212.96
5 258.63 258.88 258.64 258.82 258.64 258.63 258.64
6 332.65 332.65 332.65 332.63 332.64 332.65 332.66
7 345.82 346.20 345.83 346.28 345.82 345.82 345.83
8 379.57 380.16 379.60 380.30 379.57 379.57 379.59
9 420.80 421.01 420.87 420.96 420.81 420.80 420.85
10 456.57 456.90 456.62 456.89 456.55 456.57 456.61
11 480.32 481.31 480.35 481.42 480.33 480.32 480.33
12 530.44 531.08 530.48 531.12 530.44 530.44 530.48
13 580.21 580.63 580.23 580.76 580.18 580.21 580.23
14 672.79 673.09 672.76 672.96 672.73 672.79 672.76
15 864.83 864.86 864.82 864.82 864.83 864.83 864.83
16 895.93 895.99 895.95 895.95 895.95 895.93 895.95
17 970.31 970.37 970.28 970.29 970.25 970.31 970.28

|∆| 0.49 0.07 0.01 0.02 0.02 -
|∆max| 1.71 0.14 0.03 0.06 0.05 -

TCP 200 247 285 312 247 338 466
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