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Millisecond pulsars (MSPs) are old neutron stars that spin hundreds of times per second and appear to pulsate as
their emission beams cross our line of sight. To date, radio pulsations have been detected from all rotation-powered
MSPs. In an attempt to discover radio-quiet gamma-ray MSPs, we used the aggregated power from the computers
of tens of thousands of volunteers participating in the Einstein@Home distributed computing project to search for
pulsations from unidentified gamma-ray sources in Fermi Large Area Telescope data. This survey discovered two
isolated MSPs, one of which is the only known rotation-powered MSP to remain undetected in radio observations.
These gamma-ray MSPs were discovered in completely blind searches without prior constraints from other observa-
tions, raising hopes for detecting MSPs from a predicted Galactic bulge population.
INTRODUCTION
Since its launch in 2008, the Large Area Telescope (LAT) on board
the Fermi Gamma-ray Space Telescope (1) has detected pulsations
from more than 200 gamma ray–emitting rotation-powered pulsars
(see http://tinyurl.com/fermipulsars). Nearly half of these are milli-
second pulsars (MSPs), old neutron stars thought to have been spun
up by accreting matter from a companion star (2, 3), reaching fast
rotation rates of hundreds of revolutions per second (4). The first
gamma-rayMSPs were found shortly after Fermi’s launch by folding
gamma-ray photon arrival times using rotational ephemerides from
concurrent radio telescope observations (5). Dedicated radio searches
targeting unidentified LAT sources (6) have also led to the discovery
of more than 80 new MSPs.
However, radio pulsations from many gamma-ray pulsars are
not detectable from Earth because of their low intrinsic luminosity
or their radio beams not intersecting our line of sight. These
radio-quiet pulsars can only be found by directly searching for pul-
sations at unknown frequencies in gamma-ray data. These “blind”
searches in LAT data (7, 8) have discovered 57 young pulsars, 53 of
which are radio quiet (9–11). However, the blind search detection
of gamma-ray MSPs is challenging. Only one gamma-ray MSP
(12), also detected later in radio (13), has been found in previous
blind searches, and this was only possible with additional posi-
tional and orbital constraints from optical and x-ray observations
(14). With this exception, all rotationally powered MSPs have been
discovered through their radio pulsations, limiting knowledge of the
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population of MSPs to nearby bright pulsars with radio emission
beamed toward Earth (15).

Thus, in contrast to the large number of radio-quiet young pulsars
seen by the LAT, no radio-quiet gamma-ray MSP has been found. Some
disparity between the numbers observed in each of these two groups is
expected; MSPs have wider radio beams that are visible from a larger
range of viewing angles, making radio-quiet MSPs less common (16).
However, the apparent absence of this source class so far is more likely
to be due to the inherent difficulty of detecting the signal from anMSP at
an unknown location. At higher pulsation frequencies, higher precision
is required for the position-dependent “barycentering” corrections ap-
plied to photon arrival times to account for the Doppler shift due to
Fermi’s motion through the solar system. The localization region of a
typical unidentified gamma-ray source, limited by the LAT’s angular
resolution to a few arc minutes (17), is far larger than the arc second
precision required to detect gamma-ray pulsations from MSPs. Hun-
dreds of thousands of sky locations covering the source localization re-
gion must therefore be searched, incurring a large computational cost.

In a recent study (18), we improved gamma-ray pulsar blind search
methods to reduce their computational cost and increase their sen-
sitivity. These methods are based on an efficient “semicoherent” first
stage, in which only photons arriving within a short time of one an-
other (within a “lag window”) are combined coherently. More sensi-
tive, but more computationally expensive, follow-up stages are then
used to pick out and refine weak candidate signals. The efficient search-
grid spacings derived from our study (18) allowed us to use a longer
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lag window and, hence, achieve higher sensitivity than was possible
in previous surveys.

Using these techniques, we performed a survey (10) on the dis-
tributed volunteer computing system Einstein@Home (19) to search
for pulsations from 152 pulsar-like unidentified sources (which have
curved spectra and low flux variability) from the Fermi-LAT Third
Source Catalog (3FGL) (17). The survey searched 5.5 years of im-
proved “Pass 8” Fermi-LAT data (20). We searched the full gamma-
ray source localization region for each source and over a range of spin
frequencies and spin-down rates broad enough to cover all known
young pulsars andMSPs. This search volume for each source was split
into hundreds of thousands of smaller regions, each of which could be
searched by a typical personal computer within a few hours. These
are then distributed among the computers of tens of thousands of
volunteers located across the globe, which run the search when
otherwise idle. Using more than 10,000 years of volunteered central
processing unit (CPU) time, this gamma-ray pulsar survey has dis-
covered 17 young pulsars (10, 11).
RESULTS
Among the sources searched by the Einstein@Home survey were two
of the three unassociated 3FGL sources with the highest detection
significance, 3FGL J1035.7−6720 and 3FGL J1744.1−7619 (18). Both
of these have high Galactic latitudes and pulsar-like spectra, marking
them as promisingMSP candidates (21). These sources were searched
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9 and 10 times, respectively, in a survey of unidentified Fermi-LAT
sources performed with the Parkes radio telescope (6), but no pulsa-
tions were detected. Previous blind gamma-ray searches of these
sources, including an earlier Einstein@Home survey (22) using less
data and a shorter lag window, were also unsuccessful.

The latest Einstein@Home survey revealed gamma-ray pulsations
from these sources, at frequencies of n = 348 Hz and n = 213 Hz,
identifying them as isolated MSPs now known as PSR J1035−6720
and PSR J1744−7619. The gamma-ray pulsations had H test [a sig-
nificance test for pulsations in unbinned event data (23)] values of
H = 389 and H = 494, corresponding to single-trial false-alarm
probabilities of < 5 × 10−68 and < 4 × 10−86, respectively. For com-
parison, Einstein@Home can perform fewer than 1020 independent
trials in 1 year.

Following their discoveries, we refined the rotational and astro-
metric parameters of each pulsar by timing their gamma-ray pulsa-
tions. The resulting estimates and uncertainties on their timing and
spectral parameters are given in Table 1, and the resulting integrated
pulse profiles are shown in Fig. 1.

These MSPs remained undetected in more sensitive analyses of
the earlier Parkes survey data (6), using the now-known pulsation
periods. However, a weak signal [with average flux density S1400 ≈
40 mJy (microjanskys) at a radio frequency of 1400 MHz] was detected
from PSR J1035−6720 in four follow-up Parkes searches. Its estimated
distance derived from its dispersionmeasure (DM=84.16 ± 0.22 pc cm–3)
is d ≈ 1.46 kpc or d ≈ 2.24 kpc, according to the YMW16 (24) and
NE2001 (25) Galactic electron-density models, respectively. PSR
J1035−6720 therefore has a pseudo-luminosity of L1400 = S1400d

2 ~
0.085 to 0.20 mJy (millijanskys) kpc2. This is less luminous than the
majority of known radio MSPs with measured pseudo-luminosities
in the Australia Telescope National Facility (ATNF) Catalogue (26),
as shown in Fig. 2.

In contrast, PSR J1744−7619 has remained undetected in two de-
dicated 3-hour follow-up searches on 19 March 2017 and 10 April
2017. These give an upper limit of ~ 23 mJy on its radio flux density,
below the 30 mJy threshold used byAbdo et al. (9) to classify gamma-ray
pulsars as radio quiet. This threshold is chosen to represent a limiting
sensitivity for pulsar surveys; a new generation of radio telescopes
will be needed to discover new Galactic field pulsars with flux den-
sities below this level (27).

In the absence of a dispersion measurement, the distance to PSR
J1744−7619 is hard to constrain. A weak upper limit of d ~ 1 kpc can
be obtained by assuming that its loss in rotational energy as it spins
down is converted entirely into the observed gamma-ray emission. This
distance limit implies a maximum L1400 ≈ 0.023 mJy kpc2. Only two
known MSPs have lower reliably measured pseudo-luminosities
(28, 29). Even if the lack of detection in these follow-up searches was
due to temporary interstellar scintillation, the upper limit from the
multiple shorter observations from the previous survey suggests a max-
imum L1400 ≈ 0.15 mJy kpc2, weaker than 90% of radio MSPs. PSR
J1744−7619 therefore has (at least) an unusually low radio luminosity.

The fields of PSRs J1035−6720 and J1744−7619 were observed
in x-rays by XMM-Newton as part of a complementary effort to dis-
cover radio-quiet MSPs by searching for possible x-ray counterparts to
unidentified LAT sources (21). Positionally coincident x-ray counter-
parts were detected for both pulsars. Their gamma-ray–to–x-ray flux
ratios (Fg/FX ≈ 700 and 1100, respectively) are consistent with those
of other known isolated gamma-ray MSPs (30). The gamma-ray spec-
tral properties of these pulsars are also consistent with those of the
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
Table 1. Measured andderived properties of the newly discoveredMSPs.
For timing parameters, we report the mean values from a Monte Carlo
timing analysis and 1s uncertainties on the final digits in parentheses. The first
set of uncertainties on spectral parameters is statistical and the second set
estimates the effects of systematic uncertainties in the LAT’s effective collecting
area and the Galactic diffuse emission model. Timing parameters are in bary-
centric dynamical time (TDB) units. The spin-down power of PSR J1035−6720
has been corrected for the Doppler shift induced by its proper motion; only
an upper limit is given for PSR J1744−7619, because this correction cannot be
applied as a result of its uncertain distance. mas, milli–arc second.
Parameter P
SR J1035−6720 P
SR J1744−7619
Timing parameters
Reference time (MJD)
 55716
Data span (MJD)
 54682–57828
Right ascension (R.A.) (J2000.0),
a (hh:mm:ss)
10:35:27.478(1)
 17:44:00.488(2)
Declination (Decl.) (J2000.0), d (dd:mm:ss)
 −67:20:12.692(6)
 −76:19:14.710(9)
Proper motion in R.A., ma cos d (mas year−1)
 −12(3)
 −21(3)
Proper motion in Decl. md (mas year−1)
 1(3)
 −7(3)
Spin frequency, n (Hz)
 348.18864014054
(8)
213.33223675351
(5)
Spin-down rate, �n
� (10−15 Hz s−1)
 5.633(1)
 0.4405(8)
Second frequency derivative,
jṅ̇j (10− 25 Hz s−2)
< 1.1
 < 0.7
Spin period, P (ms) 2
.8720063916972(7) 4
.687524094895(1)
Period derivative, P
�

(10−20 s s−1)
 4.647(1)
 0.968(2)
Derived parameters
Galactic longitude, l (°)
 290.37
 317.11
Galactic latitude, b (°)
 −7.84
 −22.46
Spin-down power, E
�

(1033 erg s−1)
 75.0
 < 3.7
Characteristic age, tc (10
9 years)
 1.0
 7.7
Surface magnetic field, BS (10
8 G)
 3.7
 2.2
Light-cylinder magnetic field,
BLC (105 G)
1.4
 0.2
Phase-averaged gamma-ray spectral parameters above 100 MeV
Test statistic, TS
 1839.2
 2492.2
Photon index, G 1
.46 ± 0.07 ± 0.09 1
.07 ± 0.10 ± 0.02
Cutoff energy, Ec (GeV) 2
.76 ± 0.26 ± 0.36 1
.82 ± 0.19 ± 0.01
Photon flux (10−9 cm−2 s−1)
 24.4 ± 1.7 ± 1.5
 19.2 ± 1.5 ± 1.0
Energy flux, Fg (10
−12 erg cm−2 s−1)
 21.5 ± 0.8 ± 1.1
 20.8 ± 0.8 ± 1.1
Off-pulse spectral parameters above 100 MeV
Test statistic, TS
 7.4
 33.8
TS of exponential cutoff, TScut
 —
 8.3
Photon index, G
 — 1
.35 ± 0.70 ± 0.09
Cutoff energy, Ec (GeV)
 — 1
.06 ± 0.76 ± 0.13
Photon flux (10−9 cm−2 s−1)
 —
 1.9 ± 0.9 ± 0.1
Energy flux, Fg (10
−12 erg cm−2 s−1)
 —
 1.2 ± 0.3 ± 0.1
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MSPs studied in the Second Fermi-LAT Catalog of Gamma-ray Pulsars
(9). Their x-ray and gamma-ray spectra therefore give us no reason to
suspect that these radio-faint MSPs belong to another class of objects
different from that of other gamma-ray emitting MSPs.

One explanation for their weak radio pulsations could therefore
be that their radio beams either clip our line of sight or, in the case of
PSR J1744−7619, do not cross it at all. To investigate this scenario, we
modeled the gamma-ray emission geometries by fitting simulated pulse
profiles to the observed gamma-ray photon phases, using the fitting
technique and models described in the study of Johnson et al. (31)
and references therein. We considered three emission models: an outer
gap (OG) model, a two-pole caustic (TPC) model, and a pair-starved
polar cap (PSPC) model.

For PSR J1035−6720, only the PSPC model is consistent with the
detection of radio pulsations. This model predicts that the gamma-
ray pulse should lead the radio pulse, an unusual characteristic shared
by only six other MSPs studied by Johnson et al. (31). The observed lag
between the radio and gamma-ray pulses, shown in Fig. 1, is consistent
with this prediction. However, the uncertainty of DM leads to an addi-
tional uncertainty of the arrival phase of the radio pulse of 0.15 rota-
tions, larger than the observed lag between the two pulses. Because of
this phase uncertainty and the faintness of the radio pulse, we have not
attempted a joint fit of the radio and gamma-ray data.
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
The best-fitting models (TPC and PSPC) for PSR J1744−7619 have
our line of sight cutting across the predicted radio emission cone and
notmerely clipping it. The lack of radio emission fromPSR J1744−7619
is therefore not easily explained by small offsets of a few degrees from
the best-fitting geometry. The best-fittingTPCmodel for this pulsar is fur-
ther supported by a spectral analysis of off-pulse flux fromPSR J1744−7619,
which revealed likely magnetospheric unpulsed emission. Therefore,
either the nondetection of radio pulsations is due to an extremely low
intrinsic radio luminosity or it is at odds with the best-fitting emis-
sion models. More elaborate pulsar emission models, including emis-
sion from the current sheet (32, 33), may be required to address this
tension.
DISCUSSION
At least 12 high-confidence pulsar-like 3FGL sources at high Galac-
tic latitudes have been identified but have remained undetected in
repeated radio pulsation searches. Several convincingMSP candidates
have also been highlighted by Saz Parkinson et al. (21). The most
natural explanation for these sources is that they are either radio-quiet
MSPs or MSPs in eclipsing binary systems, which are also difficult to
detect in radio searches. Our results demonstrate that blind gamma-
ray pulsation searches of LAT data are now able to find isolatedMSPs
PSR J1035–6720
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Fig. 1. Pulsed signals from the two newly discovered MSPs. Rotational phases of individual gamma-ray photons (bottom) and integrated pulse profiles (top) of the
newly detected MSPs. Each photon has been assigned a weight, determined by its energy and arrival direction, representing the probability of it having come from the
gamma-ray source in question. These weights are indicated by the color bar. In the top panels, the black dashed line shows the estimated background level, derived
from the photon weights as in study of Abdo et al. (9). For PSR J1035−6720, the blue line shows the radio profile as measured by the Parkes radio telescope at 1400 MHz,
averaged over four observations after subtracting an estimated baseline (dotted line). Two identical rotations are shown for clarity. MJD, Modified Julian Date.
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among these sources without requiring any additional constraints
from multiwavelength observations and therefore provide an entirely
newmethod throughwhich to investigate theGalacticMSP population.

In particular, blind gamma-ray searches may partially address the
severe biases in the observed radio MSP luminosity distribution be-
cause of the difficulty of detecting faint MSPs (15). A sizeable sample
of gamma ray–selected MSPs would also provide an unbiased esti-
mate of the relative numbers of radio-loud and radio-quiet gamma-
ray MSPs, constraining the ratio of the radio and gamma-ray beam
solid angles, an important discriminator for pulsar emission models
(16, 34). Thesemodels suggest that a large fraction of gamma-rayMSPs
could be radio quiet; the contrast with the present situation of just three
gamma ray–selectedMSPs compared to almost 100 radio-loud gamma-
ray MSPs illustrates both the technical barrier faced by blind searches
for gamma-ray MSPs until now and their large discovery potential.

Furthermore, the rotational stability and low flux variability of
MSPsmean that their recoverable signals will accumulate steadily over
time. Blind gamma-ray searches will therefore become sensitive to
fainter and more distant MSPs as the Fermi mission continues. The
rotation rates of MSPs are also unaffected by glitches or timing noise,
which often interrupt the signals from young pulsars. We may there-
fore expect future blind gamma-ray searches to find a larger propor-
tion of MSPs compared to previous surveys, whose discoveries have
been dominated by young pulsars.

The ability to detect radio-quietMSPs in blind gamma-ray searches
is also an important tool for the search for gamma-ray emission from
dark matter. A number of unidentified LAT sources at high Galactic
latitudes have curved spectra that are consistent with the annihilation of
a candidate for dark matter in ultra-faint dwarf spheroidal galaxies or
darkmatter subhalos (35, 36). However, these sources are perhapsmore
likely to beMSPs, whose spectra are similar. If these sources continue to
remain undetected at other wavelengths, then blind gamma-ray
searches are necessary to confirm or rule out at least an isolated,
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
radio-quietMSP explanation. The observed GeV (billion electron volts)
excess toward the Galactic center (37), another possible dark matter
annihilation signal, is also consistent with an unresolved popula-
tion of thousands of MSPs in the Galactic bulge (38–40). No more
than a handful of these are expected to be detected with current
radio telescopes because of the large distance to the bulge and the
strong scattering in that region of the Galaxy (40). This latter issue
does not affect gamma-ray pulsations, meaning that gamma-ray
searches perhaps have the highest potential to uncover the brightest
members of this population.
MATERIALS AND METHODS
LAT data preparation
The data in which the two MSPs were first detected covered approx-
imately 5.5 years of LAT observations between 4 August 2008 and
6 April 2014. They were produced using preliminary internal versions
of the Pass 8 instrument response functions (IRFs) and background
models. Using gtselect, which is part of the Fermi Science Tools (http://
fermi.gsfc.nasa.gov/ssc/data/analysis/software/), we selected SOURCE-
class photons, within an 8° region of interest (ROI) around the positions
of the corresponding 3FGL sources, with energies > 100 MeV and
zenith angles < 100°.We excluded photons recorded when the LAT’s
rocking angle was > 52° and when the LATwas not operating in nor-
mal science mode.

A photon-weighting scheme developed by Kerr (41) greatly in-
creases the sensitivity when searching for gamma-ray pulsations by
weighting the contribution of each photon to a detection statistic ac-
cording to the probability of it having been emitted by the target source,
derived from its reconstructed energy and arrival direction. To assign
these weights, we first carried out a spectral analysis of the target
sources. The initial source model consisted of all sources in the 3FGL
catalog within 13° of the target source andGalactic diffuse emission and
isotropic diffuse background models. With this source model, we per-
formed a binned maximum likelihood analysis using the pointlike
package (42). The spectrum of the target source was modeled with an
exponentially cutoff power law (PL) with pre-factor N0, spectral index
G, and cutoff energy Ec

dN
dE

¼ N0
E

1 GeV

� ��G

exp � E
Ec

� �� �
ð1Þ

The spectral parameters of the target and all sources within 5° were free
to vary in the fit, as were the normalizations of the backgroundmodels.
From the results of this spectral fitting, probability weights were
calculated for each photon using gtsrcprob.

After discovering the pulsars, we refined their spin parameters
(see the “Pulsar parameter estimation” section) using extended data
sets, which included LAT photons recorded from 4 August 2008 to
16 March 2017. These data consisted of publicly available Pass 8 R2
SOURCE-class photons, processed with the P8R2_SOURCE_V6 IRFs.
When producing the extended data sets, we extended the size of the
ROI to 15° and reduced the zenith angle cutoff to < 90°. To produce a
source model for use with gtsrcprob, another binned spectral analy-
sis was performed using gtlike, including sources within 20° of the
pulsars, and with the latest gll_iem_v06.fits map cube (43) and
iso_P8R2_SOURCE_V6_v06.txt template (http://fermi.gsfc.nasa.gov/
ssc/data/access/lat/BackgroundModels.html) used to model the diffuse
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Fig. 2. Pseudo-luminosities (L1400 = S1400 d
2) of known MSPs (including both

Galactic field MSPs and those found in globular clusters) with flux density and
distance measurements in the ATNF Catalogue (26), version 1.57. The measured
pseudo-luminosities of PSR J1035−6720 according to the NE2001 and YMW16
Galactic dispersion models are shown by solid and dashed vertical lines, respec-
tively. The dotted and dashed-dotted vertical lines show the upper limits on the
pseudo-luminosity of PSR J1744−7619, assuming a maximum distance of 1 kpc,
from two dedicated follow-up radio observations and (a conservative estimate)
from the 10 shorter observations of Camilo et al. (6), respectively.
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emission. The source positions were fixed at the preliminary timing
positions of the pulsars.

The estimates of the spectral parameters contain systematic un-
certainties due to our choice of IRFs and diffuse background models.
To estimate these systematic uncertainties, we performed the same
spectral analysis with rescaled effective areas (http://fermi.gsfc.nasa.
gov/ssc/data/analysis/scitools/Aeff_Systematics.html) and with the
normalization of the Galactic diffuse emission rescaled to ± 6 % of
the best-fit value.

The results of this spectral analysis for both pulsars are summar-
ized in Table 1. The spectral properties (G and Ec) of PSRs J1035−6720
and J1744−7619 are similar to those of the MSP population seen in the
Second Fermi-LAT Catalog of Gamma-ray Pulsars (9).

LAT off-pulse analysis
The integrated pulse profile for PSR J1744−7619 includes unpulsed
emission at all phases above the estimated background level. We per-
formed a spectral analysis of this “off-pulse” emission to determine
whether this is likely to be magnetospheric emission or contamina-
tion from a nearby source. We performed a similar analysis to search
for unpulsed emission from PSR J1035−6720.

We defined off-pulse regions for the two pulsars using the Bayes-
ian block decomposition method described by Scargle et al. (44). The
definitions of the off-pulse regions are shown in Fig. 3. We first com-
puted residual test statistic maps (TS = 2 D log L, where D log L is the
difference in log-likelihood between models with and without a pu-
tative source) with gamma-ray photons coming solely from the off-
pulse region to look for putative sources around the pulsar position.
No significant off-pulse emission was detected from PSR J1035−6720.
This could be due to the low photon statistics in the defined off-pulse
region; because the duty cycle for PSR J1035−6720 is close to 100%, a
phase interval covering only ~14% of a rotation was selected for the
analysis. Off-pulse emission at the position of PSR J1744−7619 was
detected with TS = 33.8. Under the null hypothesis, the TS is approx-
imately c2 distributed with three degrees of freedom (from the nor-
malization, spectral index, and cutoff that are free in this test). This
TS therefore corresponds to a significance of ~ 5.0 s. We computed
the TS value with both PL and exponentially cutoff PL (PLEC)
models to test for curvature of the gamma-ray spectrum. The off-
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
pulse emission from PSR J1744−7619 shows marginal evidence of a
cutoff, with TScut = TSPLEC − TSPL = 8.3 and one degree of freedom,
corresponding to a significance of ~ 2.6s. The positional consistency
between the off-pulse source and the pulsar and the hint of a spectral
cutoff suggest a magnetospheric origin for the unpulsed emission (9).

Pulsar parameter estimation
After discovering the pulsars, we performed dedicated timing analyses
using the extended data sets described above. To speed up our param-
eter estimation procedures, we applied a photon probability weight cut-
off to remove the lowest-weighted photons. The cutoff values for each
pulsar were chosen such that only 1% of the pulsation signal-to-noise
ratio would be lost by this but around 90%of the lowest-weight photons
would be removed. The analyses followed the timing procedure de-
scribed by Clark et al. (10), with photon arrival times being corrected to
the solar system barycenter using the JPLDE405 solar system ephemeris.

Starting with the signal parameters detected by the search (sky
position, rotational frequency, and spin-down rate), we “phase-folded”
the photon arrival times. We then fit template pulse profiles by mini-
mizing the Bayesian information criterion (BIC) (45), the sum of the
negative log-likelihood and a penalty factor proportional to the number
ofmodel parameters that prevents overfitting.We then varied the signal
parameters using a parallelized affine-invariant Monte Carlo sampling
algorithm (46, 47) to maximize the likelihood given our template pulse
profile. This process continued iteratively until the likelihood stopped
increasing: After each Monte Carlo step, we refolded the data with the
most likely set of signal parameters, constructed a new template pulse
profile, and repeated the Monte Carlo sampling.

We then added additional parameters to our phase model one by
one, performed a further Monte Carlo step, and kept the new param-
eter in our model if its inclusion led to a decrease in the BIC. By this
criterion, we were unable to measure a second frequency derivative or
parallax from either pulsar. The inclusion of proper motion in our tim-
ing models led to a moderate decrease in the BIC (DBIC = −7.8) for PSR
J1035−6720 and a significant decrease (DBIC=−40.6) for PSR J1744−7619.

Because we measured proper motion from each pulsar, a por-
tion of the observed spin-down rate for each must be caused by the
Doppler shift introduced by their velocity gaining an increasing radial
component (9, 48), known as the Shklovskii effect. Correcting the observed
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Fig. 3. Pulse profiles of the two new gamma-ray MSPs, showing the phase definitions of the off-pulse regions (blue dashed-dotted lines) used to search for
unpulsed gamma-ray emission. The estimated background levels are shown by the black dashed lines. No significant off-pulse emission was detected from PSR J1035−6720.
Off-pulse emission was detected with a significance of ~ 5s from PSR J1744−7619.
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spin-down rates (n
�

OBS) of the pulsars for the Doppler-induced appar-
ent spin-down (n

�

SHK) due to their proper motion to retrieve their in-
trinsic spin-down rate (̇ nINT) requires knowledge of their distances,
which are uncertain without additional dispersion or parallax mea-
surements. However, we can use the observed gamma-ray fluxes (Fg)
and proper motions (m), and assume certain gamma-ray efficiencies (h),
to retrieve constraints on the distances (d) by solving

n
�

OBS ¼ n
�

INT þ n
�

SHK ¼ � FgfWd2

hpIn
� m2nd

c
ð2Þ

Figure 4 shows the results of this, assuming a canonical moment of
inertia I=1045g cm2, a gamma-ray beamcorrection factor of fW= 1 (49),
and a realistic rangeof gamma-ray efficiencies 0.01<h <1 (converting loss
of rotational energy into gamma-ray emission) (9). From the inferred
distances, we can retrieve Shklovskii-corrected spin-down powers (E

�

)
viaE

� ¼ Fg4pfWd2=h. These ranges are shown in the lower panels of Fig. 4.
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
From itsDMdistance, the gamma-ray efficiency of PSR J1035−6720
is around7%(YMW16model) to17%(NE2001model).ForPSRJ1744−7619,
the Shklovskii effect can account for up to 65% of the apparent spin-
down rate of PSR J1744−7619. The observed gamma-ray flux constrains
the distance to PSR J1744−7619 to be less than ~1 kpc, assuming h =
1 and fW = 1.

If the gamma-ray efficiency of PSR J1744−7619 is high, then its
spin-down power could be as low as 1.5 × 1033 erg s−1, which would
make this one of the least energetic gamma-ray MSPs and close to
the empirical gamma-ray “death line,” that is, theminimum spin-down
power an MSP must have to emit gamma rays (50).

An additional comparison can be made between the transverse ve-
locities of known isolated MSPs and the transverse velocities given by
the proper motion measurements and distance constraints described
above. Lines of constant transverse velocity are shown in Fig. 4 to illustrate
this. Themean (median) transverse velocity of isolatedMSPs (outside of
globular clusters) in the ATNF Catalogue is 84 (59) km s−1. For PSR
J1035−6720, the DM distances correspond to transverse velocities of
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Fig. 4. Distanceandspin-downconstraints for the twonewMSPsobtained fromtheirgamma-ray flux, radiodispersionmeasure, and timingmeasurementsof theirproper
motion. (Top) constraints onMSPdistances, as in figure 11 of thework byAbdo et al. (9). Assuming certain gamma-ray efficiencies, constraints on the pulsar distance are inferred from
the gamma-ray flux and spin-downpower, after correcting the observedn� for the Shklovskii effect due to themeasured propermotion (1s rangegivenby the gray shaded region). The
physically realistic region is to the left of the 100% efficiency line (Lg ¼ E

�

), although higher apparent efficiencies are possible, depending on the beam correction factor. Contours of
constant transverse velocity are shown in gray. For PSR J1035−6720, the green dotted and dashed-dotted vertical lines show the DM distance according to the YMW16 and NE2001
models, respectively. For PSR J1744−7619, then� INT ¼ 0 line shows the required distance for the observed spin down to be purely due to the Shklovskii effect, giving a hard upper limit.
(Bottom) Spin-downpowers after correctingn� for the Shklovskii effect. The shaded region shows the allowed range forE

�

at each distance, given the observed propermotion. The solid
curves show E

�

as a function of distance at fixed gamma-ray efficiencies. The dashed line shows the maximum E
�

, that is, if there was no proper motion.
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84 ± 20 km s−1 (YMW16) and 130 ± 30 km s−1 (NE2001). For PSR
J1744−7619, assuming 100% gamma-ray efficiency leads to a transverse
velocity of around 90 km s−1, suggesting that the 1-kpc distance limit
derived above is likely to be realistic for this pulsar. However, larger
distances (for example, due to a lower beam correction factor) cannot
be excluded on the basis of the resulting transverse velocity alone.

Radio observations
The radio pulsar survey performed by Camilo et al. (6) targeted 56
unidentified Fermi-LAT sources with the Parkes radio telescope and
detected 11 MSPs, 10 of which were new discoveries. As part of this
survey, we observed the LAT sources now known to be associated
with the twoMSPsmultiple times between 2009 and 2012, at a center
frequency of 1390MHz using an analog filter-bank system. The total
power from the central beam of the Parkes multibeam receiver (full
width at half maximum = 14′), filtered through 512 frequency chan-
nels spanning a bandwidth of 256 MHz, was sampled every 125 ms
and recorded for off-line analysis.

Typical integration times were around 1 hour, although they ran-
ged between 41 and 136 min for these two sources [see table 1 of
Abdo et al. (7)]. The LAT source associated with PSR J1035−6720
was observed a total of nine times, at a typical offset from the actual
pulsar position of 4.3′. This reduced the sensitivity of those obser-
vations to 80% of the maximum (on axis) sensitivity. The LAT source
associated with PSR J1744−7619 was observed 10 times at a typical
offset of 1′, with no material impact on the sensitivity.

The data were analyzed using standard pulsar search techniques
implemented in PRESTO (51). Before the new gamma-ray pulsars
were known, the data were searched as described by Camilo et al.
(6), considering possible DMs up to approximately twice the maxi-
mum DM predicted by the NE2001 model (25) for the correspond-
ing line of sight [about 500 pc cm−3 for PSR J1035−6720 and 200 pc cm−3

for PSR J1744−7619; table 1 of Abdo et al. (7)]. Subsequently, we rea-
nalyzed the data sets using the timing ephemerides obtained from
gamma-ray data, folding the radio data while searching only in DM.
None of the observations yielded significant radio pulsations.

The nominal threshold for these searches depends on the putative
radio duty cycle of these pulsars and their DM. For an assumed duty
cycle of 25% and DM < 50 pc cm−3, an indicative 1.4-GHz flux den-
sity threshold for PSR J1035−6720 is about 0.25 mJy normalized to a
1-hour integration. For PSR J1744−7619, the equivalent figure is ap-
proximately 0.15 mJy.

Some of the MSPs discovered by Camilo et al. (6) were not detected
in all their search observations. This can be caused by a combination of
orbital acceleration, eclipses, or interstellar scintillation. The first two
effects are not relevant for the two new isolated MSPs. Depending on
the distance of the new MSPs, especially if they are nearby objects, in-
terstellar scintillation could verymuchmodulate any putative radio flux
density recorded by our Parkes observing system. In extreme cases, such
as PSR J1514−4946 (6), this can lead to radio-loud MSPs being discov-
erable for less than one-third of the time. However, we know of no
established isolated radio-loud MSP in the Galactic disk that is un-
detectable as much as 90% of the time.

Following the discoveries of the pulsars, we performed five long
observations toward PSR J1035−6270 with the Parkes radio telescope.
All observations were performed at a center frequency of 1369 MHz
and sampled voltages were processed online with a digital polyphase
filter bank into 2048 channels across a bandwidth of 256 MHz, for an
effective sampling time of 4 ms. The filter-bank outputs were detected
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
and folded online into 256-bin profiles using the known spin ephem-
eris. Before each observation, we observed a pulsed noise diode to fa-
cilitate polarization and flux density (via archival observation of the
radio galaxy Hydra A) calibration. The first four observations used
the wideband “H-OH” receiver, whereas the latter used the center
pixel of the “multibeam” receiver; for consistency, we report results only
from the first four observations.

We searched the first observation over a range of DMs and found
a promising signalwith a signal-to-noise ratio of ~ 10 and aduty cycle of
about 10% at a DMof 84.2 pc cm−3. The signal appears at the sameDM
andpulse phase in the observations on 24August 2016 and, particularly,
26 September 2016, confirming the detection. Using a Gaussian tem-
plate, we maximized the likelihood for the data from 09 June 2016,
24 August 2016, and 26 September 2016 to estimate an optimal DM
of 84.16 ± 0.22 pc cm−3. With this template and DM, we measured
the average flux density in eachobservation. The results are summarized
in Table 2. (The pulsed emission in the observation on 07 August 2016
is too weak to be detected independently, but with knowledge of the
phase and profile shape, the flux density can be estimated.)

For PSR J1744−7619, we performed two long observations using an
identical observational setup and themultibeam system.We performed
a similar search over DM (up to 800 pc cm−3) and found no pulsed emis-
sion. Restricting consideration to DM < 200 pc cm−3, we smoothed the
fully averaged profile at each trial DMwith a top hat of width 12.5% and
recorded themaximum flux density. The results dependmodestly on the
baseline subtractionmethodused, and taking the average of twomethods
gives 95% confidence flux density upper limits of 0.031 and 0.032 mJy, re-
spectively, for the two observations and 0.023 mJy for their coadded sum.

Combined with our estimated distance upper limit of d < 1 kpc, we
found an upper limit on the pseudo-luminosity of PSR J1744−7619 of
L1400 < 0.023 mJy kpc2. Only two known MSPs with both reliable flux
density measurements and DM-independent distance estimates have
lower pseudo-luminosities, PSR J1400−1431 with L1400 = 0.01 mJy kpc2

(28) and PSR J2322−2650 with L1400 = 0.008 mJy kpc2 (29). Of the
164 remainingMSPs in the ATNFCatalogue with reported flux density
measurements and distance estimates (including those inferred from
DMmeasurements), only two have apparent pseudo-luminosities below
that of PSR J1744−7619. For one of these, PSR J0922−52, the reported flux
density is only a lower boundbecause of anunknownpointing offset in its
discovery observation (52). For the other, PSR J1745−0952, the YMW16
distance estimate (0.23 kpc) strongly disagrees with that from NE2001
Table 2. Summary of dedicated follow-up radio observations with the
Parkes radio telescope.
Target
 Date
 Duration
(min)
Receiver
 S1400
(mJy)
PSR J1035−6720
 09 June 2016
 188
 H-OH
 0.052 ± 0.0064
07 August 2016
 164
 H-OH
 0.023 ± 0.0064
24 August 2016
 169
 H-OH
 0.039 ± 0.0061
26 September 2016
 232
 H-OH
 0.045 ± 0.005
19 March 2017
 180
 Multibeam
 —
PSR J1744−7619
 19 March 2017
 180
 Multibeam
 < 0.031
10 April 2017
 163
 Multibeam
 < 0.032
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(1.8 kpc). This pulsar lies toward theGalactic Loop I bubble,withinwhich
the YMW16 distance for the closest pulsar with an independently esti-
mated distance (PSR J1744−1134, angular separationDq =1. 7° fromPSR
J1745−0952) was seen to be underestimated by a factor of 2.6 [parallax
distance d = 0.395 kpc and DM distance dDM = 0.148 kpc; (24)]. In com-
binationwith the extremely low apparent pseudo-luminosity, this suggests
that the DM distance estimate is unreliable in this case.

X-ray observations
The fields of PSRs J1035−6720 and J1744−7619 were observed by
XMM-Newton for 25 ks (obsids 692830101 and 692830201) with the
aim of detecting x-ray counterparts to possible radio-quiet MSPs in un-
identified LAT sources (21). These gamma-ray sources were selected
before the pulsation discoveries, because their gamma-ray properties in-
dicated a probable pulsar nature.

Plausible x-ray counterparts for both pulsars were detected with a
significance greater than 10s at locations consistent with the newly dis-
covered pulsars’ timing positions. Their x-ray unabsorbed flux in the
0.3- to 10-keV energy range is 3:06þ0:96

�0:50 � 10�14 erg cm−2 s−1 for PSR
J1035−6720 and 1:92þ0:59

�0:39 � 10�14 erg cm−2 s−1 for PSR J1744−7619.
See table 11 of Saz Parkinson et al. (21) for additional information. We
computed the probability that the associationbetween the x-ray source and
theMSP is due to a chance coincidence usingP= 1− exp(prr2), where r is
thematching radius (in our case, the x-ray source error radius) and r is the
density of x-ray objects in the XMM−Newton EPIC (European Photon
Imaging Camera) field, regardless of their flux. We estimated P ~ 1.3 ×
10−4 for PSR J1035–6720 (r = 2″ and r ~ 0.038 arc min−2) and P ~ 1.4 ×
10−4 for PSR J1744–7619 (r= 1. 9″ and r ~ 0.046 arcmin−2), whichmake
a chance positional coincidence unlikely. In addition, the gamma-ray–
to–x-ray flux ratios of the two likely x-ray counterparts (~700 and ~1100)
were consistent with an MSP nature (30), confirming their associations
with PSRs J1035–6720 and J1744−7619.

Gamma-ray pulse profile modeling
Tomodel the gamma-ray emission geometry of the MSPs, we fit simu-
lated pulse profiles to the observed photon phases, using the fitting tech-
nique described by Johnson et al. (31). We considered three emission
models: an OGmodel, a TPCmodel, and a PSPCmodel. These are also
described in the study of Johnson et al. (31) and references therein, and
briefly summarized here. In the first two models, particle acceleration
takes place in narrow “gaps” in the magnetosphere, where the plasma
charge density deviates from the force-free configuration. In both
models, these gaps border the last-closed magnetic field lines. In the
OG model, the lower bound of the gap is defined by the “null-charge
surface,” where the plasma charge density changes sign. In the TPC
model, the gap begins at the pulsar surface and extends to the light cyl-
inder. The PSPC model is valid for low-E

�

pulsars, where pair creation
may be insufficient to reach the force-free configuration, allowing for
particle acceleration throughout the regions of open field lines. We as-
sumed a hollow-cone model (16) for the radio beams.

We used simulated rotation periods of 2.5 and 4.5 ms, respectively,
and a simulated period derivative of 1 × 10− 20 s s−1 for both. Instead of a
Poisson likelihood, we used a c2 statistic to fit the weighted-counts light
curves, using 60 bins for bothMSPs, with background levels and uncer-
tainties calculated as in the study of Abdo et al. (9). The best-fit param-
eters (the angle between spin axis and magnetic dipole, a; the angle
between the spin axis and the line-of-sight, z; and the estimated beam
correction factor, fW) for each model are given in Table 3, with 95%
confidence-level uncertainties estimated as described by Johnson et al.
Clark et al., Sci. Adv. 2018;4 : eaao7228 28 February 2018
(31). The best-fitting light curves from all models for each pulsar are
shown in Fig. 5. It should be noted that, as pointed out by Pierbattista
et al. (53), fitting only the gamma-ray light curves with these toymodels
can lead to systematic biases in the best-fit parameters of ~ 10°.We also
note that no model considered here successfully reproduces the broad
double-peaked pulse profile of PSR J1035−6720.
Table 3. Best-fit parameters from gamma-ray pulse profile modeling.
For each pulsar, we report the best-fitting magnetic inclination angles (a),
viewing angles (z), and beam correction factors (fW), according to the OG,
TPC, and PSPC models.
Parameter
 PSR J1035−6720
 PSR J1744−7619
Model
 OG
 TPC
 PSPC
 OG
 TPC
 PSPC
−ln(L)
 84.5
 78.9
 72.0
 84.6
 58.1
 72.7
a (deg)
 9þ1
�2
 7þ2

�1
 51þ4
�3
 67þ2

�2
 62þ1
�2
 62þ5

�1
z (deg)
 75þ1
�1
 70þ1

�1
 78þ3
�3
 32þ2

�2
 44þ3
�3
 74þ5

�3
fW
 0:22þ0:25
�0:04
 0:62þ0:08

�0:11
 0:98þ0:12
�0:04
 0:94þ0:05

�0:10
 0:89þ0:03
�0:09
 1:14þ0:15

�0:09
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Fig. 5. Gamma-ray pulse profiles of the newly detected MSPs. The overlaying
curves are the best-fitting pulse profiles predicted by fits to OG, TPC, and PSPC
gamma-ray emission models. The black dashed line is the estimated background
level, derived from the photon weights as in the study of Abdo et al. (9). Predicted
radio pulse profiles (with arbitrary baseline and normalization) are shown by
dashed-dotted lines. The three models are shown in separate rotations for clarity.
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The PSPC model for PSR J1035−6720 predicted a phase offset
between the gamma-ray and radio pulses that was reasonably
consistent with that observed. However, the uncertainty in DM led to
an additional uncertainty in the radio pulse phase of 0.15 rotations, pre-
cluding a joint fit of the radio and gamma-ray pulse profiles as is nor-
mally possible for other gamma-ray MSPs.

For themodels that did not predict radio emission (TPC andOG for
PSR J1035−6720 and OG for PSR J1744−7619), the lines of sight barely
missed the edges of the emission cones at 300 MHz, suggesting that
these MSPs might appear brighter at even lower frequencies.
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