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Abstract. Climate variability is one of the greatest risks for farmers. The ongo-
ing increase of natural calamities suggests that insurance strategies have to be 
more dynamic than previously.  In this work a remote sensing based service 
prototype is presented aimed at supporting insurance companies with the aim 
of defining an operative tool to objectively calibrate insurance annual fares, 
tending to cost reduction able to attract more potential customers. Methodol-
ogy was applied to the whole Piemonte region (NW Italy) that is greatly devot-
ed to agriculture. MODIS MOD13Q1-v6 image time series were used for this 
purpose. MODIS data were used to figure out the ongoing climate change 
trends at regional scale, looking at the NDVI time series ranging from 2000 to 
2018; the average phenological behaviour of the main agriculture classes in 
the area (CORINE Land Cover classes Level 3, CLC2012) was considered looking 
at the yearly average NDVI value trend in the analysed period. This analysis 
was intended to describe the yearly tuning of the average insurance risk factor 
and fares in respect of the reference year (2000). A patch level investigation 
comparing the NDVI average value of a single CLC2012 patch with its reference 
class was differently used to map local differences of crops performance, 
aimed at locally tuning insurance risk and fares around the average one as re-
sulting from the previous step. Proposed methodology proved to be able to 
describe the average temporal evolution of crop classes performances and to 
locally tune, at single field and crop type level, the agronomic performances of 
insured areas.  
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1 Introduction 

Crops may be classified as “subsistence crops” if they will support producers (person-

ally or their livestock),  or “income crops” if they will be sold for profit. The latter, 

which will be sold immediately after the harvest, have a financial potential that de-

pends on the yearly growing season, when plants are constantly exposed to various 

types of threats, included the weather conditions. The current agricultural manage-

ment model is hardly sustainable in the long term  because of the climate changes that 

occurred in the recent years, which determined higher average temperatures, anoma-

lous distributions of rainfall and lower accumulations of water reserves [1]. Ecosys-



 

tem response to climate change and its impact on plants have been extensively ana-

lyzed [2–4]. Only recently, however, evidences of the effects of climate change on 

crop production have been documented [5–7]. Climate change damages on crops can 

determine a significant impact on human activities especially in those countries where 

the Gross Domestic Product (GDP) is largely dependent on agricultural activities [8, 

9]. Crop monitoring at national or supranational, level is therefore needed to measure 

the production exposure to adversity. Insurance companies are currently looking at 

remote sensing from satellite missions as a promising tool to support their insurance 

strategies in the agriculture compart. Remote sensing, based on long image time se-

ries, has been thought to satisfy two types of requirements: one related to the ex-post 

estimation of damages from extreme weather events e.g. droughts, floods and hail  

[10, 11]; another related to the ex-ante quantification and mapping of risk related to a 

potential reduction of crop production determined by long term climate change 

trends.  Italy has been within the first countries to tackle the issue of risk management 

in agriculture, introducing since the 1970s with the National Solidarity Fund (FSN), 

the principle of solidarity for companies suffering damages caused by natural disas-

ters. The goal of the FSN is to promote prevention and measures in the areas affected 

by natural disasters, with the aim of promoting the economic and productive recovery 

of the damaged companies. In the insurance sector the remote sensing is expected to 

map spatial and temporal differences to better and more consciously calibrate the 

insurance premiums, longing for their reduction and the consequent easier approach 

from farmers. Presently,  insurance companies must operate a ground survey to evalu-

ate each compensation request; in a not too far future, remote sensing systems should 

explore circumstantially the entire territorial context highlighting anomalies, thus 

targeting appraisals to quantify possible losses. Economic and management strategies 

supported by this new type information will increase competitiveness and business 

income of insurance companies. Satellite-based remote sensing is often used wherever 

a large-scale mapping of vegetation is needed [12, 13], making possible land cover 

classification by a wide variety of strategies. Natural disasters related economy, e.g. 

insurance strategies, greatly long for low cost tools for risk assessment, possibly ap-

plicable everywhere over the world [14–16]. Global data sets, like satellite images 

archives, available for free or at very competitive prices, may be a good starting point 

to assess large areas, especially if jointly used with ground data able to correctly  ad-

dress deductions [17].  Governments and international donors currently promote 

‘Climate Insurance’, generic term to indicate a series of financial checks for the pur-

pose of making payments following meteorological events. The G7 (Group of Sev-

en)‘InsuResilience’ initiative is meant to significantly increase the insurance cover of 

low income people against negative impact of extreme weather events induced by 

climate change within the next 5 years. These initiative provides funds to govern-

ments in order to stabilize and foster the recovery of a large part of the affected popu-

lation. For instance, InsuResilience  pledged USD 400 million at the Paris climate 

conference [18], and the Global Index Insurance Facility has a portfolio of 148 mil-

lion US dollars [19]. A rough approximation can be made upon the global volume of 

agricultural insurance premiums, which are estimated at USD 5 billion in emerging 

markets. The World Bank estimates that 44 percent of agricultural insurance premi-



ums consist of subsidies  [20]. Despite the lack of more recent data, these combined 

figures suggest an annual volume of subsidies to agricultural insurance (not just index 

insurance) in emerging markets of two billion dollars. This estimate has been verified 

with personal communications with several experts. The technologically innovative 

insurance programs, are heralded as promising strategies for decreasing poverty and 

improving climate risk management and resilience in developing countries that are 

heavily dependent on smallholder agriculture. These programs may be defined as 

particularly ‘index insurance’ linking payouts to environmental proxy variables rather 

than measured losses [21]. With the growth of interest from governments and donors 

in these insurance programs , a large number of pilot studies are ongoing worldwide 

[22–24]. In the Italian agriculture context, the risk prevention insurances policies, are 

mainly managed collectively at district level, through the so called “agricultural de-

fense consortia”. Consortia contracts with insurance companies mainly to cover yield 

losses of their associated. The Italian Government contributes to a part of the premi-

um paid by the farmer. In particular the Ministry of Agriculture decree n. 28405/17 

regulates contributions to agricultural insurance premiums defining a yearly 

plan.  The plan aims at extending insurance coverages by means of  facilitated poli-

cies covering crop, facilities and livestock damages from adverse climatic conditions. 

Annex 1 of the above mentioned decree defines crops, corporate structures and types 

of insurable cattle. Crops such as corn, wheat and grass fall into this list. Insurance 

policies can also cover production losses permitting different insurance choices in 

respect of both type and quantity of crops. Definition of insurance parameters can be 

found in Annex 5 of the 28405/17 decree, but can be summarized as it follows.  

Revenue policies are contracts that cover the loss of revenue from the insured produc-

tion. Loss is intended as a combination of yield reduction due to both seasonal adver-

sities and market price reduction with the following definitions: - yield reduction is 

the difference between the actual yield at the time of harvest and the insured yield. 

The latter can be assumed equal to:  a) the average production of the previous three 

years; b) the average production of the previous five years excluding the years with 

the lowest and highest production; c) the actual obtainable production of the insurance 

year, if lower; - price reduction is the difference between market reference price, as 

determined by the Institute of Services for the Agricultural Market (ISMEA), in re-

spect of the third quarter of the year of collection of the insured product, and the price 

determined by law; - effective yield is the one determined with reference to the time of 

harvest from the period of the insurance company that took charge of the risk.  

Indexed policies are insurance contracts that cover the loss of production insured for 

damage in quantity and quality as a result of adverse weather conditions, identified by 

a positive or negative variance from a biological and/or meteorological index. The 

relative damage will be recognized based on the actual difference with respect to the 

value of the aforesaid index. The following indices can be considered: - meteorologi-

cal index identifies a meteorological event recorded based on a predefined parameter, 

such as the sum of average daily temperatures and/or cumulated precipitations, refer-

ring to a determined period of cultivation development, potentially harmful for agri-

cultural production in a specific production area; - biological index identifies a biotic 

event registered on a predefined parameter, such as for example the lost biomass re-



 

ferred to a determined period of cultivation development, potentially harmful for the 

agricultural production in a specific production area; - adverse climatic trend index is 

used to take care about the ongoing climatic trend as described by some selected pa-

rameters like rainfall and/or cumulated temperatures (in the cultivation period or in 

part of it) which deviate significantly from the optimal trend for a certain crop in a 

given phenological phase generating negative effects on production that can be meas-

ured with biological indices. In this work free satellite data from NASA (National 

Aeronautics and Space Administration) MODIS (Moderate Resolution Imaging Spec-

tro-radiometer) sensor, on board of the TERRA satellite [5, 25, 26], have been used to 

draw a possible operational tool to calibrate agricultural insurance strategies with 

revenue policies in the Piemonte region (NW Italy), with special concern about in-

dexed policies. Even if the proposed methodology have been tested in Piemonte, it is 

thought with a global perspective, that it can be easily adapted to any other part of the 

world.  

2 Materials and Methods 

2.1 Study area 

The study area is located in the Piemonte region (NW Italy, fig. 1). It sizes 25388 

km2 and well fits size requirements for moderate resolution satellite imagery. It well 

represents the northern Italian agricultural context with a typically temperate climate 

having a continental character, where NW Alps gradually determines a temperature 

reduction while altitude rises.  

 

2.2 Available Data 

A NDVI (Normalized Difference Vegetation Index, [27]) image time series composed 

of 432 images covering the period 2000 – 2018, was generated from the MOD13Q1-

v6 dataset available from the NASA LPDAAC collection [28]. Data were obtained in 

TIF format, WGS84 geographic reference frame from the AppEEARS system [29].  

The MOD13Q1 Version 6 product provides a Vegetation Index (VI) value at a per 

pixel basis. NDVI is referred to as the continuity index to the existing National Oce-

anic and Atmospheric Administration-Advanced Very High Resolution Radiometer 

(NOAA-AVHRR) derived NDVI. The grid consists of 4800 rows and 4800 columns 

of 250 meter pixels. The algorithm chooses the best available pixel value from all the 

acquisitions from the 16 day period. The criteria used is low clouds, low view angle 

and the highest NDVI/EVI value. Along with the Vegetation layers and the two QA 

layers, the HDF file will have MODIS Reflectance bands 1 (Red), 2 (NIR), 3 (Blue), 

and 7 (MIR), as well as four observation layers (Didan 2015). Pixel reliability (PR) 

and CDOY layers, supplied with the MOD13Q1-v6, were considered for NDVI TS 

calibration. Pixel Reliability layer (PR) defines the overall quality of the NDVI value 

of each pixel, giving information about its status, as explained in Table 1. This infor-

mation was used in TIMESAT [30, 31] to weigh NDVI values according to their qual-



ity: the lower the weight, the less the NDVI value affects the estimation of the func-

tion fitting parameters since a greater uncertainty is assigned to it [31]. 

 

Composite day of the year layer 

(CDOY) contains, for each pixel of 

the image, the day of the year in 

which reflectances used in the VIs 

computation were acquired; this 

information is needed to properly 

build NDVI time series (TS) placing 

NDVI values at the right dates for 

each pixel. 

According to Leprieur [32] NDVI is 

a vegetation index designed for 

retrieval of vegetation canopy bio-

physical properties, and according 

to Turvey [33] that can be used in 

Index-Based crop insurance design. 

 

 
Tab. 1. MOD13Q1/A1 Pixel Reliability 

Rant  Key Summary QA Description 

-1 Fill/No Data Not Processed 

0 Good Data Use with confidence 

1 Marginal data Useful, but look at other QA information 

2 Snow/Ice Target covered with snow/ice 

3 Cloudy  Target not visible, cover with cloud 

 

NDVI is computed according to eq. 1: 

 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
    (1) 

 

where NIR and RED are the NIR and RED at-the ground reflectance, respectively, at 

that pixel location. Many studies proved that NDVI appears to be a good predictor of 

the agricultural production and that can be related to insurance premiums in agricul-

ture [34-35]. The CORINE Land Cover dataset, release 2012, level 3 (hereinafter 

CLC2012), was used to map cultivated areas over Piemonte. CLC was born at a Eu-

ropean level specifically for the detection and monitoring of land cover and use, with 

particular attention to environmental protection requirements. The CORINE Land 

Cover (CLC) inventory was initiated in 1985 (reference year 1990). Updates have 

been produced in 2000, 2006, 2012, and 2018. It consists of an inventory of 44 land 

cover classes organized in 4 hierarchical levels of meaning. In the following work 

used the Level 3 2012 CLC classes. Technical features of the CLC2012 dataset are 

reported in table 2. Agricultural classes from CLC2012 considered for this work are 

reported in table 3.  

 

Fig. 1. the study area is located in Piemonte, NW 

Italy (Reference frame: WGS 84 UTM 32N). 



 

An administrative boundaries vector map (hereinafter called AB, 1:100000 map scale, 

2012 updated), mapping municipalities (1181) over the whole Piemonte Region, was 

used to compute statistics of cultivated areas at municipality level. It was obtained for 

free from the Regional Geoportal. 

 
Tab. 2.  CLC2012 technical features 

Technical feature Value 

Satellite data source IRS P6 LISS III and RapidEye 

Time consistency 2011-2012 

Geometric Accuracy (satellite data) ≤ 25 m 

Geometric Accuracy (CLC) Better than 100 m 

Thematic Accuracy ≥ 85% 

Minimum Mapping Unit/width 25 ha/ 100 m 

Access to the data free 

Number of countries involved 39 

 
Tab. 3. Agricultural classes according to CLC 20122. 

 

Level 2 Level 3 Content of the classes 

2.1 
2.1.1. Non-irrigated arable land 

2.1.3. Rice fields 

2.2 
2.2.1. Vineyards 

2.2.2. Fruit trees and berry plantations 

2.3 2.3.1. Pastures 

2.4 

2.4.2. Complex cultivation patterns 

2.4.3. 
Land principally occupied by agriculture, with significant areas 

of natural vegetation 

 

MODIS NDVI Time Series Analysis 

The whole Piemonte Region resulted to be imaged by 432 NDVI maps, 16 days regu-

larly distributed. PR layers, supplied in the same number of NDVI maps, were used 

for a first selection of “good” observations (PR = 0 or 1) along the NDVI temporal 

profile of each pixel. All other observations were excluded from computation. This 

determined that native regularly spaced NDVI time series were turned into irregularly 

spaced one. Remaining observations were therefore interpolated by spline with ten-

sion (value = 10) with reference to the correspondent DOY, from the associated DOY 

layer, obtaining a new 5 days spaced NDVI profile (time series was densified from 23 

to 73 image per year). A further refinement was achieved only for vegetated pixels 

that were found within the image by testing that the yearly NDVI maximum value 

was over 0.5.  The refinement was intended to remove anomalous, but “good”, NDVI 

values along the expected phenological trend of vegetated areas (e.g. late snow, soil 

flooding, etc.). Consequently, the previously interpolated NDVI image time series 

was filtered using an FFT (Fast Fourier Transform) approach on year basis. The year-

ly NDVI temporal profile of each pixel was transformed into the frequency domain. 

The three most powerful frequency components were retained, while all the other 

ones were filtered out. Consequently, a reverse FFT was applied to return back to the 



NDVI domain determining the final NDVI profile that was analysed. For each of the 

available years and for each image vegetated pixel, the annual mean NDVI value was 

computed between the Starting of the Season, SOS, and the End of the Season, EOS 

([Testa,testa]). SOS and EOS were placed along the pixel NDVI profile in the mo-

ment when the local NDVI value became higher (SOS) and lower (EOS) of 0.4, forc-

ing research within the middle of February and the middle of November. For not-

vegetated pixel (yearly NDVI maximum < 0.5) the yearly NDVI mean local value 

was calculated simply excluding bad observations (PR ≠ 0) with no further refine-

ment. A new stack of 19 NDVI maps NDVI(x,y,t) was therefore obtained (t=2000-

2018) by averaging at year level, the filtered/interpolated pixel NDVI temporal pro-

file. 

 

NDVI Statistics at Municipality Level for Cultivated Areas 

CLC2012 and AB vector maps were intersected by ordinary Geoprocessing tools 

available in QGIS 2.18.4 to get crossed information needed to investigate crops yearly 

performances as detectable by NDVI annual mean value at municipality and agricul-

tural class level. A new regional tessellation scheme was therefore obtained, generat-

ing 7017 patches from the original 2997 ones (from CLC2012 Level 3 map).  Zonal 

statistics from the above mentioned NDVI(x,y,t) maps were computed, making possi-

ble to yearly qualify each patch in respect of the average vegetative behaviour that its 

agricultural part expressed.  According to the 19 NDVI(x,y,t) maps, the annual mean 

NDVI value of each agricultural CLC2012 Level 3 class was computed and the time 

trend approximated with a 1st order polynomial by Ordinary Least Squares (OLS) 

estimation. Resulting time-dependent lines were assumed as driving rules to derive an 

insurance risk factor (hereinafter called “discount rate”, ki(t)) useful to tune the aver-

age insurance premium in respect of the reference year, that, for this work, was decid-

ed to be the first one (2000).  The discount rate (hereinafter called K) was computed 

according to eq. 2. 

 

𝑘𝑖(𝑡) = (
𝛼𝑖+𝛽𝑖

𝛼𝑖∙𝑡+𝛽𝑖
) ∙ 100   (2) 

 

where αi and βi are the trend line coefficients estimated by OLS according to the 

NDVI annual mean values of the CLC2012-Level 3 for the i-th class;  t is the progres-

sive year count from the starting one (2000 is t=1).  A k value higher than 100 means 

that the insurance premium has to be augmented in respect of the reference one (at the 

year 2000); on the contrary, a k value lower than 100 mean that the premium must be 

reduced accordingly. The underlying criterion is that an increase of the annual aver-

age NDVI value of a certain agricultural class determines a reduction of the risk relat-

ed to crop production, making possible a refinement of premiums required to farmers.  

A further step was done trying to relate premiums not only to the average annual 

NDVI value of the agricultural CLC2012 Level3 classes where a certain insured crop 

can be included, but also in respect of the local conditions. For this purpose authors 

computed annual NDVI patches’ anomalies (PAi) according to eq. 3. 



 

 

𝑃𝐴𝑖(𝑡) =
𝜇𝑖(𝑡)

𝜇𝑐𝑗(𝑡)
     (3) 

 

where 𝜇𝑖(𝑡) is the average NDVI of the i-th patch and 𝜇𝑐𝑗(𝑡) the NDVI average value 

of the cj class that the patch i-th belongs to, at the t year.  For each of the investigated 

years a map of PA(t) was therefore generated to make possible to locally  tune (at 

patch level) the average class premium in the considered year.  Patches having PA > 1 

indicates that the insurance premium for fields falling in that patch can be somehow 

reduced in respect of the average one for that class in that year; PA < 1 means that the 

insurance premium for fields falling in that patch has to be somehow increased in 

respect of the average one for that class in that year, since expected yield could be 

lower the class average one. 

3 Results and discussion 

A first investigation concerned the qualification of the area in terms of main land use 

classes (according to CLC2012 Level2 classification). Results of this analysis are 

reported in table 4 showing that about the 35% of Piemonte region is specifically 

devoted to agriculture, making the area a good benchmark to test new insurance strat-

egies. 

 
Tab. 4. Distribution of Land Cover Classes in Piemonte (CLC2012 L3 dataset). 

  

Coverage class Number class Area (ha)  Area (%) 

Permanent crops 2.2 77313 2 

Inland waters 5.1 30878 1 

Pastures  2.3 37451 1 

Arable land 2.1 697702 20 

Heterogeneous agricultural areas 2.4 441183 13 

Open areas with little or no vegetation 3.3 218068 6 

Scrub and/or herbaceous vegetation associations 3.2 424397 12 

Forest 3.1 1417750 41 

Industrial, commercial and transport units 1.2 25631 1 

Urban fabric 1.1 84307 2 

Other  - 8358 1 

Total  - 3463038 100 

 

Concerning MOD13Q1 NDVI time series processing, to perceptively demonstrate the 

effectiveness of the adopted data filtering strategy based on the selective application 

of the FFT, a profile of a sample vegetated pixel is reported in figure 2 with reference 

to the 2000 year. 

Concerning time trend of class annual average NDVI values, according to the 

CLC2012 Level 3 classification, results of table 5 were obtained. After removal of 

evident outliers related to the 2007 and 2013 years, NDVI trends were modelled by a 



class specific 1st order polynomial, whose coefficients are reported in table 6 together 

with the correspondent coefficient of determination (R2). 

 

According to table 6 all classes 

proved to suffer from a positive 

trend of NDVI values in the consid-

ered period, suggesting that climate 

conditions are moving towards a 

more favourable conditions for agri-

culture in the area (i.e. a decreasing 

of the risk associated to yield reduc-

tion). The strongest correlation be-

tween time and NDVI average class 

value was found for class 243, the 

only one containing a natural vege-

tation component, that, since not 

managed, mostly emphasizes the 

effects of medium term climate 

effects. This suggests that, probably, 

when testing such features, natural 

vegetation can represent a better 

witness of ongoing phenomena. Vineyards (class 221) showed the most significant 

positive trend with a good correlation, too. Pastures (class 231) scored the second 

highest R2 value confirming that, natural and semi-natural vegetation are better indi-

cators of climate changes.  

Tab. 5: NDVI annual mean values for the agricultural CLC2012-Level 3 classes in the area. 

 

Year 
CLC2012 – Level 3 classes 

211 213 221 222 231 242 243 

2000 0.54 0.46 0.58 0.64 0.68 0.59 0.65 

2001 0.54 0.45 0.58 0.63 0.67 0.59 0.65 

2002 0.57 0.47 0.62 0.67 0.7 0.62 0.67 

2003 0.5 0.42 0.54 0.61 0.65 0.56 0.63 

2004 0.53 0.46 0.57 0.63 0.66 0.57 0.64 

2005 0.56 0.47 0.6 0.65 0.68 0.61 0.66 

2006 0.55 0.45 0.59 0.64 0.67 0.59 0.65 

2007 - - - - - - - 

2008 0.56 0.47 0.6 0.66 0.68 0.61 0.66 

2009 0.53 0.45 0.6 0.64 0.68 0.59 0.66 

2010 0.56 0.46 0.62 0.66 0.7 0.61 0.67 

2011 0.53 0.45 0.58 0.59 0.67 0.57 0.65 

2012 0.55 0.45 0.61 0.66 0.68 0.6 0.66 

2013 - - - - - - - 

2014 0.59 0.49 0.64 0.67 0.72 0.64 0.69 

2015 0.57 0.47 0.63 0.67 0.71 0.62 0.69 

2016 0.57 0.46 0.61 0.65 0.7 0.61 0.68 

2017 0.54 0.45 0.57 0.62 0.67 0.58 0.65 

2018 0.58 0.5 0.64 0.68 0.71 0.63 0.69 

 
Fig. 2. Black line represents the FFT filtered NDVI 

profile of a sample pixel (year 2000). Dotted line 

represents the spline function interpolating “good” 

observations (Pixel Reliability = 0 or 1). Triangles 

represent raw data before filtering. DOY is the Day 

of the Year ranging between 0 and 365. 



 

It is worth to remind that not all the variations in NDVI values can be assumed as 

significant, since: a) in literature, it was proved that averagely the accuracy in NDVI 

computation from remotely sensed data is about 0.02 NDVI points (ref Borgogno); b) 

NDVI class mean value assumed as index of yearly crop performance variations 

should have to be compared with the correspondent NDVI class standard deviation. 

Authors are working to improve these remaining weaknesses in the proposed method-

ology. 
 

Tab. 6: gain (α), offset (β) and coefficient of determination (R2) values of the 1st order poly-

nomial approximating the time trend of the annual average class NDVI values. Underlined 

values are discussed in the text. 

 

CLC2012  Class Code α β R2 

211 0.0016 0.5360 0.2 

213 0.0009 0.4522 0.1 

221 0.0023 0.5762 0.26 

222 0.0011 0.6352 0.07 

231 0.0017 0.6675 0.27 

242 0.0017 0.5830 0.2 

243 0.0019 0.6425 0.39 

 

To translate the modelled trends into computation of insurance premiums, the annual 

discount rate values were calculated for all the CLC2012 Level 3 classes with refer-

ence to the 2000 year. Results are reported in table 7 and graphically represented in 

figure 3. It can be noticed that expectation is that insurance premium average costs, in 

19 years, would have had to  be reduced from the 3% up to the 7% of the 2000 aver-

age cost. Maximum expected reduction was related to vineyards (221), minimum to 

fruit trees and berry plantations (222). 

According to eq. 3, for each of the analyzed years, a map of PA(t) was generated at 

patch level (figure 4), permitting to locate, in the whole region, where cultivated areas 

were supposed to perform over, or under, the expected average class NDVI (i.e. ex-

pected yield). This further information, translated to the insurance operational com-

part, could permit to better calibrate, around the class average premium, the one spe-

cifically designed for the field for which a farmer is paying  its fee. The difference 

1.0-PA(t) determines values lower than 0 for those areas that tend to behave better 

than their own class mean.  

 
Tab. 7: Discount rate values computed for the agricultural CLC2012 Level3 classes along the 

time series. 

CLC2012 Level 3 

Year 
Discount rate (%, reference = year2000) 

211 213 221 222 231 242 243 

2000 100 100 100 100 100 100 100 

2001 99.7 99.8 99.6 99.8 99.7 99.7 99.7 

2002 99.4 99.6 99.2 99.7 99.5 99.4 99.4 

2003 99.1 99.4 98.8 99.5 99.2 99.1 99.1 

2004 98.8 99.2 98.4 99.3 99 98.8 98.8 

2005 98.5 99 98 99.2 98.7 98.5 98.5 



2006 98.2 98.8 97.6 99 98.5 98.2 98.2 

2007 97.9 98.6 97.3 98.8 98.3 98 97.9 

2008 97.6 98.4 96.9 98.7 98 97.7 97.7 

2009 97.4 98.2 96.5 98.5 97.8 97.4 97.4 

2010 97.1 98 96.1 98.3 97.5 97.1 97.1 

2011 96.8 97.8 95.8 98.2 97.3 96.8 96.8 

2012 96.5 97.6 95.4 98 97 96.6 96.5 

2013 96.2 97.4 95 97.8 96.8 96.3 96.2 

2014 96 97.2 94.7 97.7 96.6 96 96 

2015 95.7 97 94.3 97.5 96.3 95.7 95.7 

2016 95.4 96.8 94 97.3 96.1 95.5 95.4 

2017 95.1 96.6 93.6 97.2 95.9 95.2 95.1 

2018 94.9 96.4 93.3 97 95.6 94.9 94.9 

 

 

 
 

Fig. 3. Time trends of NDVI annual mean values (continuous line) and of the discount rate 

(dotted line) averaged over the agricultural CLC2012 Level 3 classes (reported in each graph). 



 

 
Fig. 4: Map of NDVI anomalies computed according to the 

CLC2012 level 3 classes for the period 2000 – 2018 (Geo-

graphic Reference system is WGS-84, EPSG: 4326). 

 

 

 

 

 

 

 

 

 

4 Conclusion 

In the crop insurance sector remote sensing is expected to support premiums defini-

tion, longing for such a reduction that could attract more farmers. Presently, insurance 

companies must operate a ground survey to evaluate each compensation request; in a 

not too far future, remote sensing systems should circumstantially explore the entire 

territorial context locating those anomalies useful to better target appraisals to quanti-

fy losses. Economical and management strategies, supported by this new type of in-

formation, is expected to increase competitiveness and business income of insurance 

companies. Optical images from MODIS sensor, obtainable for free, in spite of their 

reduced geometric resolution, proved to effectively support investigation of climate 

change effects onto crops in the medium period. NDVI time series showed that crop 

performances, supposed to be directly related to the average annual vigour, could be 

reasonably described through a linear increasing trend, whose strength depends on the 

investigated crop type. In general it was observed that low managed crops (from the 

water supplying point of view), like vineyards and orchards, are more conditioned by 

changing climate conditions.   

It is surprising that even in highly fragmented agricultural areas like the Italian ones, 

derivable information from a long NDVI time series can operationally support inter-

pretation of crops dynamics useful to address insurance policies. It should be remem-

bered that remote sensing approaches do not exclude accurate ground surveys, that, 

oppositely, are needed to precisely interpret signals in respect of occurring events and 

crop management operations making  agronomic practices simplest, fastest and most 

effective, in a precision farming general context. 
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