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Abstract

Background: Single-cell RNA sequencing is essential for investigating cellular heterogeneity and highlighting cell
subpopulation-specific signatures. Single-cell sequencing applications have spread from conventional RNA sequencing to
epigenomics, e.g., ATAC-seq. Many related algorithms and tools have been developed, but few computational workflows
provide analysis flexibility while also achieving functional (i.e., information about the data and the tools used are saved as
metadata) and computational reproducibility (i.e., a real image of the computational environment used to generate the data
is stored) through a user-friendly environment. Findings: rCASC is a modular workflow providing an integrated analysis
environment (from count generation to cell subpopulation identification) exploiting Docker containerization to achieve
both functional and computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove
low-quality cells and/or specific bias, e.g., cell cycle. Subpopulation discovery can instead be achieved using different
clustering techniques based on different distance metrics. Cluster quality is then estimated through the new metric ”cell
stability score” (CSS), which describes the stability of a cell in a cluster as a consequence of a perturbation induced by
removing a random set of cells from the cell population. CSS provides better cluster robustness information than the
silhouette metric. Moreover, rCASC’s tools can identify cluster-specific gene signatures. Conclusions: rCASC is a modular
workflow with new features that could help researchers define cell subpopulations and detect subpopulation-specific
markers. It uses Docker for ease of installation and to achieve a computation-reproducible analysis. A Java GUI is provided
to welcome users without computational skills in R.
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Findings
rCASC: a single-cell analysis workflow designed to
provide data reproducibility

Since the end of the 90s omics high-throughput technologies
have generated an enormous amount of data, reaching today
an exponential growth phase. The analysis of omics big data is
a revolutionary means of understanding the molecular basis of
disease regulation and susceptibility, and this resource is made
accessible to the biological/medical community via bioinformat-
ics frameworks. However, owing to the increasing complexity
and the fast evolution of omics methods, the reproducibility cri-
sis [1, 2] demands that we find a way to guarantee robust and
reliable results to the research community [3].

Single-cell analysis is instrumental to understanding the
functional differences among cells within a tissue. Individual
cells of the same phenotype are commonly viewed as identical
functional units of a tissue or an organ. However, single-cell se-
quencing results [4] suggest the presence of a complex organiza-
tion of heterogeneous cell states that together produce system-
level functionalities. A mandatory element of single-cell RNA se-
quencing (RNA-seq) is the availability of dedicated bioinformat-
ics workflows.

To the best of our knowledge, rCASC is the only computa-
tional framework that provides both computational and func-
tional reproducibility for an integrated analysis of single-cell
data, from count generation to cell subpopulation identification.
It is one of the tools developed under the umbrella of the Repro-
ducible Bioinformatics project [5, 8], an open-source community
aimed at providing to biologists and medical scientists an easy-
to-use and flexible framework, which also guarantees the ability
to reproduce results independently by the underlying hardware,
using Docker containerization (computational reproducibility).
The Reproducible Bioinformatics project was founded and is
maintained by the research team of the Elixir node at the Uni-
versity of Turin. An example of stand-alone hardware/software
infrastructure for bulk RNA-seq, developed within the Repro-
ducible Bioinformatics project, was described by Beccuti et al. [9].
Indeed, it was developed following the best-practice rules for re-
producible computational research, proposed in 2013 by Sandve
et al. [6]. It is also listed within the tools developed by the Italian
Elixir node [7].

All the computational tools in rCASC are embedded in Docker
images stored in a public repository on the Docker hub. Param-
eters are delivered to Docker containers via a set of R func-
tions, part of the rCASC R github package [10]. To simplify the
use of the rCASC package for users without scripting experi-
ence, R functions can be controlled by a dedicated GUI, inte-
grated in the 4SeqGUI tool previously published by us [9], which
is also available as a github package [11]. rCASC is specifically
designed to provide an integrated analysis environment for cell
subpopulation discovery. The workflow allows the direct analy-
sis of fastq files, generated with 10X Genomics and inDrop plat-
forms, or count matrices. Therefore, rCASC provides raw data
preprocessing, subpopulation discovery via different clustering
approaches, and cluster-specific gene signature detection. The
key elements of the rCASC workflow are shown in Fig. 1, and the
main functionalities are summarized in the Methods section. A
detailed description of the rCASC functions is also available in
the vignettes section of the rCASC github [10].

The overall characteristics of rCASC were compared
with 4 other workflows for single-cell analysis (Fig. 2): (i)

simpleSingleCell, Bioconductor workflow package [12]; (ii)
Granatum, web-based single-cell RNA-seq analysis suite [13];
(iii) SCell, graphical workflow for single-cell analysis [14]; and
(iv) R toolkit Seurat [15]. The comparison was based on the
following elements: (i) supported single-cell platforms, (ii) types
of tools provided by the workflow, (iii) type of reproducibility
granted by the workflow, and (iv) tool flexibility.

rCASC is the only workflow providing support at the fastq
level because all the other packages require as input the pro-
cessed count table. Cell quality control and outlier identification
is available in all the workflows but Granatum. Association of
ENSEMBL gene IDs to gene symbols is only provided by rCASC.
All the workflows provide gene-filtering tools but simpleSingle-
Cell. All packages provide normalization procedures to be ap-
plied to raw count data. However, rCASC is the only tool pro-
viding both Seurat specific normalization [15] and count-depth
specific normalization [16]. The workflows implement different
data reduction and clustering methods. rCASC integrates 4 clus-
tering tools, i.e., Seurat [15], SIMLR [17], griph [18], and scanpy
[19], which differ in the metrics driving the clustering analysis.
Cluster stability is an important topic in clustering (for a review
see von Luxburg [20]). Stability measurement, taking advantage
of bootstrapping, was also addressed by Hennig [21]. Specifically,
Hennig uses the Jaccard index to evaluate the overall stability
of each cluster. In rCASC, we have implemented a cell stability
score (CSS), which uses the Jaccard index to estimate the sta-
bility of each cell in each cluster. The CSS provides an enhanced
description of each cluster because it allows the identification of
a subset of cells, in any cluster, that are particularly sensitive to
perturbation of the overall dataset structure, i.e., cell bootstrap-
ping. Moreover, the cluster stability measurement proposed by
Henning was included in rCASC. Specifically, we have imple-
mented the “clusterboot” function from the fpc R package [22],
which allows the evaluation of cluster stability using a personal-
ized clustering function (see Supplementary file section 5.3). To
the best of our knowledge, rCASC is the only workflow perform-
ing clustering in the presence of data perturbation, i.e., removal
of a subset of cells, and measuring cluster quality using the CSS
(a cluster quality metric developed by us, which measures the
persistence of each cell in a cluster upon data perturbation; see
Supplementary file section 5.1) and silhouette score (SS), a clus-
ter quality metric measuring the consistency within clusters of
data. In our experiments, CSS provides a better estimation of
cluster stability compared to that of SS (Fig. 2). Gene feature se-
lection approaches are implemented in a different way in the 5
workflows. Granatum is the only one providing biological infer-
ence. Granatum and Seurat implement various statistical meth-
ods to detect cluster-specific gene signatures (Fig. 3). rCASC em-
beds an ANOVA-like statistics derived from the EdgeR Biocon-
ductor package [23] and Seurat/SIMLR gene prioritization proce-
dures (see Supplementary file section 7). Visualization of gene
signatures by heat map, with cells colored on the basis of gene
expression, is only provided by rCASC (see Supplementary file
Fig. 51). Considering reproducibility, only rCASC provides both
computational and functional reproducibility. Finally, rCASC is
the only one providing both a command line interface and GUI
(Fig. 4).

Finally, rCASC was used to re-analyze the single-cell dataset
from Pace et al. [24]. In this article, the authors highlighted that
Suv39h1-defective CD8+ T cells show sustained survival and
increased long-term memory reprogramming capacity. Our re-
analysis extends the information described by Pace et al. [24],
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Figure 1: rCASC workflow. Dark gray boxes with white characters indicate preprocessing tools. Dark grey boxes with black characters define clustering tools. Light grey

box with black characters indicates gene signature tools.

Figure 2: Cell stability score vs silhouette score calculated on the dataset of Pace et al. [24] (see Supplementary file section 8) using SIMLR over a set of number of
clusters ranging between 5 and 8. A, Cell stability score violin plot. Mean value and data dispersion suggest that the best number of clusters is 5. Cells remain in the
same cluster ∼80% of the time, repeating the clustering upon random removal of 10% of the cells. B, Silhouette score (SS) violin plot. Mean value of the SS distribution
does not provide clear evidence that one clustering condition is better than another. Furthermore, the dispersion of the SS value shrinks as the number of clusters

increases.

suggesting the presence of an enriched Suv39h1-defective mem-
ory subset. A complete description of the above analysis is avail-
able in section 8 of the supplementary file.

Methods
Count table generation

The inDrop single-cell sequencing approach was originally pub-
lished by Klein et al. [25]. The authors subsequently published

the detailed protocol in 2017 [26]. In rCASC, the generation of
the count table starting from fastq files refers to version 2 of
the inDrop chemistry described in Zilionis et al. [26], which is
commercially distributed by 1CellBio. The procedure described
in the inDrop github [27] is embedded in a Docker image.
The rCASC function ”indropIndex” allows the generation of
the transcript index required to convert fastq in counts, and
the ”indropCounts” function converts reads in unique molecu-
lar identifier (UMI) counts. 10X Genomics Cellranger is packed
in a Docker image and the function ”cellrangerCount” con-
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Figure 3: Comparison of analysis features available in rCASC and in the other single-cell analysis workflows.

Figure 4: rCASC graphical interface within 4seqGUI. A, Count table generation menu: this set of functions is devoted to the conversion of fastq to a count table. B, Count
table manipulation menu: this set of functions provides inspection, filtering, and normalization of the count table. C, Clustering menu: these functions allow the use
of SIMLR, t-SNE, Seurat, griph, and scanpy to group cells in subpopulations. D, Feature selection menu: this set of functions allows the identification of cluster-specific

subsets of genes and their visualization using heat maps.

verts fastq to UMI matrix using any of the genome indexes
with the ”cellrangerIndexing” function. A detailed description
of the count table generation is available in Supplementary file
section 2.

Count table exploration and manipulation

rCASC provides various data inspection and preprocessing tools.
The ”genesUmi” function generates a plot where the num-

ber of detected genes is plotted for each cell with respect to the
number of UMI (Fig. 5A and C).

mitoRiboUmi calculates the percentage of mitochon-
drial/ribosomal genes with respect to the total number of
detected genes in each cell and plots the percentage of mito-
chondrial genes with respect to percentage of ribosomal genes.
Cell color indicates the number of detected genes (Fig. 5B and
D). mitoRiboUmi allows researchers to identify cells with low
information content, i.e., those cells with few detectable genes,
e.g., < 100 genes/cell, little ribosomal content, and high content
of mitochondrial genes, which indicate cell stress [29].

The function ”scannobyGtf” uses ENSEMBL gtf and the R
package refGenome to associate gene symbol with the EN-
SEMBL gene ID. Furthermore, scannobyGtf allows one to remove
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