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Abstract

Many bioinformatic applications require to exploit the capabilities of several
computational resources to e�ectively access and process large and distributed
datasets. In this context, Grid computing has been largely used to face unprece-
dented challenges in Computational Biology, at the cost of complex workarounds
needed to make applications successfully running. The Grid computing paradigm,
in fact, has always su�ered from a lack of exibility. Although this has been par-
tially solved by Cloud computing, the on-demand approach is way distant from
the original idea of volunteering computing that boosted the Grid paradigm. A
solution to outpace the impossibility of creating custom environments for run-
ning applications in Grid is represented by the containerization technology. In
this paper, we describe our experience in exploiting a Docker-based approach
to run in a Grid environment a novel, computationally intensive, bioinformatic
application, which models the DNA spatial conformation inside the nucleus of
eukaryotic cells. Results assess the feasibility of this approach in terms of per-
formance and e�orts to run large experiments.

Keywords: Grid Computing, Docker Containers, Data modelling, Chromatin
Conformation, Computational Biology

1. Introduction

In the last decade, Grid infrastructures had an important role in supporting
the biomedical scienti�c community to perform its compute-intensive analysis,
�nding innovative solutions for reducing computational times [1]. Nowadays,
due to the exponential availability of new biological data and considering the5

increasing complexity of bioinformatic applications, Big Data-like situations and
computational demanding problems are becoming more and more urgent in

Preprint submitted to Journal of Parallel and Distributed Computing September 11, 2019

Marco Aldinucci
Author’s copy of 
I. Merelli, F. Fornari, F. Tordini, D. D’Agostino, M. Aldinucci, and D. Cesini, “Exploiting docker containers over grid computing for a comprehensive study of chromatin conformation in different cell types,” Journal of parallel and distributed computing, vol. 134, pp. 116-127, 2019. doi:10.1016/j.jpdc.2019.08.002 �



Computational Biology [2]. Distributed infrastructures, such as those based on
the Grid and Cloud paradigms, represent one of the possible solutions to achieve
the required amount of computational power in a cost-e�ective way [3].10

Grid computing can be de�ned as a hardware and software infrastructure
that provides dependable, consistent, pervasive, and inexpensive access to high-
end computational capabilities. Many years after the spreading of this technol-
ogy, we can say that Grid is a wrapper to freely access remote multi-institutional
resources, e.g. with the EGI Foundation, formerly named the European Grid15

Infrastructure [4], for research activities. On the other hand, Cloud computing
has been de�ned as a model for enabling convenient, on-demand network access
to a shared pool of con�gurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management e�ort or service provider interaction. In contrast20

with the de�nition of Grid, we can de�ne Cloud computing as a way to deliver
on-demand, scalable, pay-per-use services, which rely on virtualized computa-
tional facilities hosted by single institution, over Internet.

Above all, Cloud infrastructures can be used for business, commercial and
research purposes, but the idea is always to have on-demand resources, working25

on a pay-per-use basis. On the other hand, Grid platforms are mainly used for
research by Virtual Organizations, that are a dynamic sets of individuals and/or
institutions that share a goal to be pursued using the Grid resources, but for
free. While the users of a Cloud infrastructure are customers, the users of a Grid
are members of one or more virtual organizations. Working for public bodies,30

we believe that the Grid computing paradigm is still important for sharing
resources, in particular in the context of large consortia oriented to speci�c
research purposes.

However, Grid-based solutions are not completely satisfactory to create re-
liable computing environments for complex tasks [5, 6]. A key issue is that a35

Grid o�ers poor chances to customise the computational environment. For ex-
ample, it is quite common in Computational Biology to make use of relational
databases and/or web-oriented tools to perform analyses, store output �les and
visualise results, which are di�cult tasks to exploit without having administra-
tion rights on the used resources. Another problem concerns the huge amount of40

bioinformatic packages available in di�erent programming languages and frame-
works (such as R, Perl and Python) that typically require many dependencies
and �ne-tuned customisations of the settings.

These are the reasons why Docker [7] represents a very appealing solution
to create a custom environment over Grid [8]. In this paper, we describe our45

experience in exploiting a Docker-based approach for a bioinformatic applica-
tion, which basically consists in modelling the DNA spatial organization, i.e.
the chromatin conformation, in the nucleus of di�erent cell types [9]. Although
many experiments to study the chromatin conformation are daily performed in
molecular biology laboratories all around the world [10, 11, 12], the interpreta-50

tion and modelling of this data is still a complex and challenging task [13, 14].
In particular we exploited a novel experimental technique, called chromo-

some conformation capture (3C) [15], which allows to measure the proximity
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of DNA strands in the nucleus. Among novel 3C-based methods, Hi-C uses
Next-Generation Sequencing (NGS) techniques to interrogate 3C experiments55

more comprehensively and with an increased throughput [16]. The \Hi" thus
stands for \high-throughput", and sometimes it is written as HT-3C. The data
produced by a Hi-C experiments are coupled reads that describe the frequency
by which two strands of DNA are close each other inside the nucleus. The out-
put of a Hi-C analysis is a list of coupled locations along chromosomes, which60

can be represented as a contact map, i.e. a square matrix Y where Yi;j stands
for the sum of read pairs matching, respectively, in position i and position j.

Contact maps are reliable while looking at the intensity of the interactions
inside a chromosome or between two chromosomes, but become unsuitable to
depict the neighbourhood of genes, as they lack the possibility to de�ne metrics65

for computing distances between two or more genes. On the other hand, graph-
based models of Hi-C data can be very useful for creating representations where
other omics data can be mapped, in order to characterise di�erent spatially
associated domains [17, 18]. By exploiting their higher level of expressiveness,
graphs permit the integration of multi-omic data and facilitate their statistical70

analysis [19, 20].
Therefore our goal is to exploit a Grid computing infrastructure for creating

a collection of graph-based models relying on a set of publicly available Hi-C
experiments performed in di�erent laboratories worldwide, in order to produce
a catalogue on which new results from di�erent multi-omic experiments can be75

modelled, analysed and interpreted. To accomplish this task a huge computa-
tional power is needed, and Grid computing perfectly suites our requirements,
if a proper execution environment can be created.

This paper is organised as follows: Section 2 discusses Related Works and
Section 3 provides a background on the biology-related topics of the application80

we considered. Section 4 gives an overview of the computational infrastructure
we exploited, Section 5 describes how the computation was performed, while
Section 6 discusses the achieved results. Section 7 concludes this work.

2. Related works

The design and e�ective deployment of reliable, scalable and portable com-85

plex computational systems is a major issue in many research and industrial
�elds [21, 22]. This is the reason why there have been signi�cant progresses in
building virtualization layers for operating systems and, more recently, software
applications [23, 24]. A �rst approach for providing such results is represented
by the full virtualization technology [25], in which each virtualized system gets90

its own subset of physical resources, with a minimal sharing and an high level of
isolation with respect to other systems running on them. Examples of platforms
supporting it are Xen [26], KVM [27] and VMware [28]. A second approach is
represented by the use of containers [29], which provide a lower level of isola-
tion, but the resulting lightweight overhead allows easily to run thousands of95

instances on a host, result that is almost impossible with the full virtualization
[30, 31].
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The most popular example of the container technology is the Docker platform
[7], which allows for the creation and con�guration of software containers for
deployment on a range of systems [32]. However, other solutions are available,100

such as rkt [33] from the Linux distributor CoreOS, LXD [29] from Canonical
Ltd. - which is the company behind Ubuntu, or OpenVZ [34], which is an
extension of the Linux kernel. Behind these core architectures, a number of
orchestrator tools are available. Among the most popular solution is worth
citing Kubernetes [35], a project released as open source by Google, or Apache105

Mesos [36]. Due to the large interest in the container technology, the most
popular Cloud providers have released solutions for dealing with systems relying
on it, which are often de�ned Container applications as a Service - CaaS [37].
An example is Amazon AWS ECS [38], a manager of Docker images, which can
store images in the accompanying ECS Registry, run Docker containers (ECS110

Runtime) and schedule / orchestrate / monitor these container instances (AWS
CloudWatch). Microsoft Azure Container Service (ACS) works together with
Docker and Apache Mesos as container orchestration engine [39]. Rancher also
supports Docker Swarm, Kubernetes and Apache Mesos [40].

Obviously there are pros and cons for both using the full virtualization or115

containers. The most important aspects are represented by security and perfor-
mance. As said before, if a system needs a full isolation and a set of guaranteed
resources, the full virtualization is the proper solution. On the contrary if it is
su�cient to isolate just processes and the purpose is to serve a large number of
them at a time, then containers have to be adopted. Moreover, a full virtualized120

system usually takes minutes to start, whereas containers take seconds.
While the use of full virtualization represents a consolidated approach in

Bioinformatics [41, 42], in the last few years several studies have begun to
focus on the use of Docker [43, 44, 45, 46] and a repository of Docker im-
ages for Biomedical applications, called BioShaDock, has also been developed125

[47]. Considering the use of Docker in distributed computing environments for
Biomedicine, some attempts have been done to combine Docker Swarm with
OpenStack [48] and to develop containerized Bioinformatic services on Cloud
[49].

Although just a few attempts have been done to run container on Grid, the130

resources available on Cloud infrastructures for researchers (such as the EGI
Federated Cloud) are still not comparable with the resources available on the
Grid. Moreover, several communities still have computing models based on the
Grid platform and hence exploiting user-level containerization techniques can
increase the exibility without re-creating from scratch their computing models.135

Considering the Desktop/Edge Grid approach, some implementations based
on Docker in combination with BIONC, the most popular middleware for volun-
teer computing, are available [50, 51]. Because of the small footprint of Docker,
the general outcome of these experiments is that using container over Desk-
top/Edge Grid provide good performance giving the applications much more140

agility [52]. Considering more traditional service based Grids, IBM has also
worked to get Docker containers running on the top of its Platform LSF sched-
uler and Adaptive Computing has just updated its Moab scheduler with Docker
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support [53]. Moreover, Docker images are available for Selenuium Grid [54],
and a Docker compliant version of HTCondor has been released by CERN [55].145

However, to the best of our knowledge, no extensive experiments have been
done or at least reported using these infrastructures. The only published ap-
plication that actually combines Docker, more precisely the Udocker version,
and Grid has been developed in the �eld of biomedical image processing [56].
This work presents a sort of parameter sweep application to identify the best150

parameters for the analysis of computer tomography data. From the technolog-
ical point of view, the tests compare two approaches for managing the software
dependencies of the code, i.e. the use of a Storage Element for the software
libraries and the use of containers for executing the jobs. Considering the simi-
larities of this work with our approach, we will compare our results with their155

ones at the end of Section 6.1.

3. Bioinformatic background

Recent advances in high throughput molecular biology techniques and Bioin-
formatics have provided insights into chromatin interactions on a genome scale
[16]. These techniques allow the description of the nucleus organization at un-160

precedented resolution, o�ering the possibility to study the structural properties
and spatial organization of chromosomes. This is of critical importance for un-
derstanding and evaluating the regulation of gene expression, DNA replication,
repair and recombination [57].

In particular, Hi-C experiments, which are the combination of high-throughput165

sequencing with 3C techniques, allows the characterization of long-range chro-
mosomal interactions. They give in fact information about DNA fragments that
are cross-linked together due to spatial proximity. This is achieved by reading
their blunting ends through a special protocol called paired-end sequencing (see
Figure 1), which provides a map containing the contact probability data that170

describe the chromosomal organization in the 3D space of the nucleus.
The resulting contact map reports the contact frequencies between a group

(or groups) of genomic bins. The contact frequency between two bins relies
on their spatial proximity, and it is expected to reect their actual physical
distance. Despite contact maps are reliable while looking at the intensity of the175

interactions inside a chromosome or between two chromosomes, they becomes
unsuitable to depict the neighbourhood of a gene, as they lack the possibility
to de�ne a metric for computing the distance between two or more genes.

Graphs have a higher level of expressiveness, since nodes represent the actors
of a process while edges identify relationships among the actors, and graph-based180

model of Hi-C data can be very useful for creating a representation where other
omic data can be mapped. Structural properties of a graph can reveal signi�cant
information on how the actors of the represented process interact, while parallel
algorithms can be employed to operate over a graph.

Some tools have been proposed to analyse Hi-C data using a graph-based185

representation, among which the most popular is probably NuChart [58, 59].

5



Figure 1: The workow of a typical Hi-C experiment. DNA strands close to each other in the
3D space of the nucleus are fragmented and cross-linked using molecular biology techniques.
Then, using paired-end sequencing, couples of fragments are identi�ed as co-localized in the
nucleus of cells and the corresponding bin count in the contact matrix is updates consequently.
The contact matrix is converted into a graph-based representation to enable more complex
analysis.

Inspired by web applications such as Google Maps, NuChart is an R package
that elaborates Hi-C information to provide a Systems Biology oriented, gene-
centric view of the three-dimensional organization of the DNA in the nucleus.
NuChart can be used to describe the DNA conformation in the neighbourhood190

of selected genes by mapping on the achieved graph genomic features that are
important for controlling gene expression at epigenetic level and of multi-omic
data on the nodes, thus facilitating statistical analysis [19, 20].

3.1. Algorithm for chromatin conformation analysis
We recall that a graph G(V;E) is a formal mathematical representation of195

a collection of vertices (V ), connected by edges (E) that model a relationship
among vertices. In this context, vertices represent genes (e.g. an ordered set
of an organism’s genes) labelled with gene names. Here we de�ne paired-ends
Hi-C reads as a connection meaning a spatial relationship between two genes
(see Figure 1). It follows that two genes g1; g2 2 V are connected if there exists200

a connection encompassing both of them. Connections corresponds to the edges
of the graph, i.e. e = (g1; g2) 2 E.

The neighbourhood graph NG(V 0; E0; w), NG � G, can be de�ned as an
undirected weighted graph where:

� V 0 � V is a set of genes;205

� E0 � E is a set of existing edges;
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� w : E ! [0; 1] is a function that assigns a probability of actual physical
proximity for each pair of adjacent genes (gi; gj) connected by means of a
paired-ends Hi-C read.

The neighbourhood graph is obtained by starting from a given root vertex v,210

which includes all vertices adjacent to v and all edges connecting such vertices,
including the root vertex. With these premises, our neighbourhood graph rep-
resents a topological map of the speci�c nucleus region to which a gene belongs.

3.1.1. Graph construction
The construction of such graphs is based on the exploration of static datasets:215

raw data resulting from Hi-C experiments are processed through the HiCUP
pipeline [60], which produces millions of paired-end reads (i.e., short DNA
sequences with start/end coordinates) written into Sequence Alignment Map
(SAM) �les. These reads represent the main input of NuChart, because they
expose the spatial information exploited by the process to infer a topological220

structure of the DNA.
NuChart evaluates reads against a reference genome that contains the coor-

dinated chromosome fragments, and a list of genes with their positions (again,
coordinates) along the DNA. The basic mechanism in the exploration stage loops
over the set of desired initial genes: for each gene, it looks for all connections225

(i.e. edges) ei 2 E (paired-ends Hi-C reads) whose �rst end encompasses the
current gene { basically comparing chromosome name and coordinates. Among
the found connections, it searches for neighbouring genes that might be located
within c’s second end. The reason for searching adjacent genes in a read’s sec-
ond end come from the way in which Hi-C (and 3C-based) experiments are230

conducted: Hi-C identi�es spatially adjacent DNA segments in terms of three-
dimensional space. If a gene is found on a read’s �rst end, a possible gene found
in the second end is likely to be spatially adjacent, unless there are sequencing
errors and biases.

If we de�ne the root of our neighbourhood graph to be at level 0, a search235

at level 1 yields all the genes directly adjacent to the root. It follows that a
search at level i returns all genes directly adjacent to any gene discovered at
level i� 1, starting from the root. The �nal graph is returned in form of a list
of edges linking couples of nodes.

The graph exploration proceeds according to a Breadth First Search (BFS)240

strategy: starting from one or more root genes (the starting node(s) of the
graph), it expands the discovered graph one level at a time, until either all the
reachable nodes have been found, or up to a chosen distance from the root.
The BFS-like graph exploration results in a data-parallel procedure, in which
any arbitrary subset of reads can be processed independently from each other,245

provided that no data dependency is involved in their manipulation. Ideally, it
can be parallelized in a seamless way by just taking the kernel of the procedure
and putting it into a parallel loop pattern [61].

The graph exploration has been organised in a level-synchronised way, and
concurrent write accesses to data structures shared between worker threads have250
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been managed. For example, each iteration of the loop builds a local graph,
and a mechanism of graph merging from local graphs to a global output graph
(actually one for each level) has been provided. Globally, this approach amounts
at providing a reduce phase after each loop step, in which per-thread local data
structures are merged into per-level global ones.255

3.1.2. Normalization
Hi-C readouts generally su�er from data biases that may lead to false-

positives or false-negatives during data analysis. These biases might result from
a number of sources, including sequencing machines’ precision and read align-
ment slips, while some might be speci�c to the Hi-C experiment protocol. In260

NuChart, particular attention is given to the detection and normalisation of
systematic biases, in order to correct them and avoid wrong data interpretation
[62].

In our vision, an edge identi�es the existence of an Hi-C read that encom-
passes two connected genes: normalising each edge using genomic features {265

which may include the DNA sequence, genes and gene order, regulatory se-
quences and other genomic structural landmarks { yields a signi�cance estimate
of fragment interactions. Such an estimate is then used as the weight of the edge,
which assumes the role of likelihood of physical proximity for the involved genes.

For each edge, a contact map (Y ) is constructed that directly models the270

read count data at the de�ned resolution. A Hi-C data matrix is symmetrical,
and thus we consider only its upper triangular part, where each point i; j of Y
denotes the intensity of the interaction between positions i and j. Using the
local genomic features that describe the chromosome, we can set up a Gener-
alised Linear Model (GLM) with Poisson regression, with which we estimate the275

maximum likelihood of the model parameters.
The model is given by the formula: e(Y ) = gXT�. Here Y is the depen-

dent variable, or rather the contact map that contains the measured contact
frequencies: the assumption of this GLM is that the measured interaction fre-
quencies are generated from a particular distribution in the exponential family,280

the Poisson distribution in our case, which is used to count the occurrences in
a �xed amount of space. X is the independent variable, which is built from
chromosome length and Guanine Cytosine content, measured for each locus of
the contact map. � denotes the parameter vector to be estimated: XT� is thus
the linear predictor, that is the quantity which incorporates the information285

about the independent variables into the model. It is related to the expected
value of the data through the link function g.

The maximum likelihood estimate for each edge is computed using the Iter-
atively Weighted Least Squares algorithm (IWLS) [63]. The best-�t coe�cients
returned by the linear regression are used to compute the �nal score of an edge,290

so that the edge contains an estimate of the physical proximity between the two
genes it links, plus the genomic information for both linked genes. The regres-
sion is run until a convergence criterion is met: in our case, we check that the
absolute value of the �2 (chi-squared) di�erence at each iteration is less than a
certain threshold � : j�2 � �2

oldj � � .295
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The edges weighing phase is again a data parallel application, where any
arbitrary subset of the edges can be processed independently from the others by
means of a parallel loop pattern. In order to fully exploit thread-level parallelism
in multi-core computers, NuChart uses a skeletal approach [64] such as the
FastFlow library [65, 66].300

4. Computational background

The Grid paradigm represents a suitable solution to achieve the compu-
tational power required by many bioinformatic tools in a cost-e�ective way.
However, most of the Grid environments present some challenges, i.e. to create
a customized computing environment and its management, that can discourage305

some users in favour of Cloud solutions [3, 67]. But some technological solution
can reduce the gap between the two paradigms, as the a Cloud-over-Grid ap-
proach [6, 68] and, more recently, the use of Docker in the Grid environment. In
this work, we considered this last approach. In �gure 2 the solution we designed
is depicted, and details are presented in the following.310

4.1. EGI Grid infrastructure
EGI is a federation of computing and storage resource providers with the

main goal to support research and development e�orts. In particular EGI fed-
erates publicly funded data centers and Cloud providers, mostly in Europe, and
give scientists access to more than 850,000 cores and 300 PetaBytes of disk stor-315

age. Its access is free for EGI members. As regards the Grid component, it relies
basically on a geographically distributed model exploiting the Uni�ed Middle-
ware Distribution (UMD) [69], which o�ers to end-users a set of services that
allow them to access and orchestrate all the available computing and storage
resources.320

The underlying architecture is composed by User Interfaces (UI), from which
it is possible to submit jobs, described using the Job Description Language
(JDL), to a Resource Broker (RB), a Grid Service able to �nd the most suit-
able computational resources for each job using di�erent matching criteria [70].
Through the JDL �le it is possible to specify a small �le to be sent to the Grid325

resource, through the mechanism of the InputSandBox, a small �le to retrieve,
the so called OutputSandBox, and a number of global identi�ers that refer to
large �les, previously allocated on the Grid distributed �le system, that must
be accessed during the computation. Moreover, the JDL �le speci�es the �rst
command to launch on the grid, once the job is started.330

Each computational site is accessed through a speci�c Grid services, the
Computing Element (CE), which is an abstraction layer for the batch queue
system installed on the site to handle the Worker Nodes (WNs), which are the
actual resources where the computations are run. Concerning a Grid site, we
can see the front-end CE as the master node of a cluster, and the WNs as the335

computing farm. On the other hand, each Grid site is completed by a Storage
Element (SE), which stores the large �les that are required for/produced by
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Figure 2: Schema of the proposed application. Due to the speci�c environment of the Working
Nodes, the User is not able to run the bioinformatic application directly on Grid. On the other
hand, using Docker and preparing a suitable Linux image for the application, the user is able
to exploit the computational power of the Grid.

the computations. The network of the SEs, integrated by a File Metadata Ser-
vice (FMS), implements a full distributed �le systems, able to manage multiple
replicas of each �le.340

Relying on this distributed infrastructure, the main steps performed by each
job on the Grid sites are:

� download the executables from the InputSandBox and the input �les from
the closest available SE;

� run the simulation according to what is speci�ed in the JDL �le;345

� send the output data back to the UI through the OutputSandBox.

On the UI, a job control facility monitors the status of the production,
querying the proper Grid tools and orchestrating the productions triggering re-
submission when needed. It also takes care of the data management of the �nal
result. Security is demanded to the Grid Security Infrastructure (GSI), which350

relies on X.509 certi�cates for authentication on the computational and storage
resources.

4.2. Udocker
Udocker is a python2-based tool that can execute Docker containers in user-

space, without requiring root privileges [71]. It enables basic download and355

execution of Docker containers by non-privileged users in Linux systems were
the Docker server is not available. It can be used to access and execute the
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content of Docker containers in Linux batch and interactive clusters that are
managed by other entities, such as Grid infrastructures. Udocker is an open
source tool developed within the INDIGO-DataCloud European H2020 project360

[72] and has python2 as only prerequisite.
Udocker is a wrapper around several tools that mimic a subset of the Docker

capabilities, including pulling images and running them with minimal function-
ality. The current implementation uses PRoot to emulate chroot without re-
quiring privileges. This feature permits to use some tools that do not require365

root privileges, but still check the actual user id. For instance, software instal-
lation using rpm, yum or dnf inside the container is possible.

The containers data are unpacked and stored in the user home directory or
other location of choice. Therefore, the containers data will be subject to the
same �lesystem protections as other �les owned by the user. If containers have370

sensitive information, �les and directories should be adequately protected by
the user.

5. Experiment description

The analysis process performed by NuChart takes SAM �les as input, which
contain the sequences aligned against the reference genome. In the present375

tests we used anonymized human data from a public experiment [16], which do
not present security issues. These �les normally reach considerable sizes (order
of GigaBytes), which are prohibitive for data movement across WNs through
the InputSandBox. Therefore we exploited remote SEs to dispose a number of
replicas for each �le, as described in the following Section.380

To perform a statistical analysis of the Grid performance in terms of input
data size, we de�ned six classes, according to the sizes of the experiments we
considered:

1. SAM � 500MB
2. 750MB < SAM � 1:0GB385

3. 1:5GB < SAM � 2:0GB
4. 3:0GB < SAM � 4:0GB
5. 6:0GB < SAM � 8:0GB
6. 12:0GB < SAM � 16:0GB

Output results are relatively small �les that describe the chromosome confor-390

mation of the cell, basically a network in which nodes are genes and connections
describe their proximity in the nucleus, and are sent back to the UI by using
the OutputSandBox.

The application has been run on the Grid resources in a parallel fashion,
using 4 cores and 16 GB of RAM, the same number of cores and RAM of our395

reference computer, which is equipped with a modern o�-the-shelf Intel i5-7400
processor.
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5.1. Set up of Storage Elements
Considering that we used �les having a size up to 16 GB we had to make

use of the SE, because it is not possible for these �les to travel with the job400

through the InputSandBox of the dispatching service. In order to avoid the
overloading of remote SEs and to increase the availability of data �les, we dis-
tributed them across multiple locations using the FMS functionalities. Through
simple experiments (i.e hundreds of downloads of the same �le) we evaluated
the download e�ciency and decided to set the replica multiplicity to a factor of405

6. In fact, increasing the number of replicas above 6 had no signi�cant e�ect on
data management e�ciency (greater than 90%), in terms of failed downloads
(and hence failed jobs). About 10% of failures can be solved through multiple
trials using di�erent locations.

For what concerns the execution times, our experiment reported that, using410

6 replicas, 90% of the downloads for 1 GB �les took about 3 minutes, and we
considered this number acceptable if compared with the scheduling and execu-
tion time of the application on the computational infrastructure, as discussed in
Section 6. A time-out of 8 minutes was set on the job to consider the download
failed and trigger a new trial using a di�erent location. For the purposes of the415

work reported in this paper, we considered hundreds of concurrent downloads a
reasonable scale. The jobs where instrumented to try as default SE the closest
one to the site where they have been scheduled, and to randomly choose another
replica in case of failure. Replicas are discovered dynamically by querying the
Grid Logical File Catalogue (gLite-LFC ).420

5.2. Jobs set up
The computation launched through the UI is actually executed on the WN

and it is composed by the following sequence of steps:

1. Sanity checks of the environment, in particular the presence of the /tmp
directory with proper permissions.425

2. Download of the corresponding SAM �le from the closest SE if available,
otherwise choose another replica and download from there. Repeat until
download completion { a �xed number of trials (10, to have a higher
probability to try all 6 replicas) was set before labelling the download as
failed. The SAM �le is automatically mounted and available to the Docker430

image. Indeed, using Udocker, users can mount any host directory inside
the container, although this is not a real mount but a chroot, and the
directories will be visible inside the container.

3. Download the NuChart Docker image from Docker Hub. No multiple trials
enabled. This is done, as usually for Docker, using di�erent layers (in our435

case starting from a CentOS distribution).

4. Start the NuChart computation within the Udocker image and create the
graph using all cores requested by the Grid job (set to 4 in our case).
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Figure 3: Jobs owchart: job life cycle management framework running on the User Interface
(on the left); once submitted jobs are routed to a suitable CE and eventually executed on a
WN (center); main steps performed by the job on the WN (on the right).

5. Pack the output to reduce bandwidth usage during the upload.

6. Send back the output, report successful execution and exit.440

In each step, entire job re-submission was triggered via standard Grid direc-
tives (JDL Retry and ShallowRetry options), in case of unrecoverable failures.

5.3. The NuChart Container and Experiment management
We created a custom Docker image with an ad hoc installation of R equipped

with all the add-on packages required to run NuChart, beside some mandatory445

system libraries such as the latest boost library, the GNU Scienti�c Library
gsl and FastFlow. The necessity of using a custom R environment and some
speci�c system libraries is the main reason why Grid cannot be exploited in a
straightforward way for this application. Indeed, the installation of a custom
R environment takes a lot of time, while the installation of system libraries450

requires root privileges.
The image is available at https://hub.docker.com/r/imerelli/nuchart/

and, since it has been tagged as latest, it can be simply launched in Docker using
the command docker pull imerelli/nuchart. Since Udocker is a very small
application, it can be sent using the InputSandBox. On the other hand, the455

Udocker image is downloaded every time from the Docker repository. The only
requirement is that the temporary directory (i.e. /tmp) of the server should be
accessible and mounted without the noexec and nosuid ags, in order to make
Udocker able to start.
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As for any Grid computation, it is necessary to automate the creation of460

the JDL �les that describe each job of the computational challenge. Then, the
framework used to manage the computation launches each job, monitors their
status, and �nally works to collect the results. Due to the high number of
jobs required, it is essential to develop the tools that perform all this process
automatically, since it is not feasible to do it manually. This has been managed465

using a Python-based framework developed by us.
Figure 3 shows the owchart of the jobs’ life cycle management, whose steps

consist in the creation of the JDL �les, which results from the combination
of all the input parameters, followed by the instructions for triggering all the
jobs, monitoring their status and the retrieval of the results, when jobs are470

completed. For what concerns jobs distribution and monitoring, our submission
framework exploits the gLite Workload Management System (WMS), while data
management on the client side is based on the lcg-utils [73]. The framework
needs to be executed on a standard gLite UI, while the initial data management
(i.e., replica distribution of SAM �les and Docker image uploads) have been475

completed before launching all the jobs.

6. Results and Discussion

Results achieved in this work are twofold. From one side, we tested the pos-
sibility of using Udocker to run on the EGI Grid infrastructure a bioinformatic
application, describing the achievable performance and scalability �gures. On480

the other hand, we analyzed the bioinformatic results, i.e. the contact maps
describing the organization of the DNA in the nucleus for many di�erent Hi-C
experiments.

6.1. Udocker over Grid Performance
Each experiment we performed consists in the submission of 100 jobs for485

each of the 6 input types, for a total of 600 jobs. Submitting 100 jobs to the
WMS using a single thread on the UI took a negligible time (in the order of
2 minutes) with respect to the time needed to complete the full analysis, so
as reference time for the performance evaluation we considered the time when
all the jobs where dispatched to the WMS (i.e., job state = Submitted). Other490

possible state for the jobs are: Ready (the job can be sent to the site batch
system), Scheduled (the job is waiting on the batch system queue), Running
(the job is executing), Done (the job completed) and Aborted (the job failed
after all the re-submission trials). The Udocker version 1.1.1 has been used.

In order to compare the e�ciency of Grid resources, in this work we per-495

formed two complete set of experiments, for a total of 1200 jobs. In the �rst
simulation we restricted the number of sites eligible to run our jobs to a very
limited set of trusted resources, named selected resources. They correspond to
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2 CA, one in Padua1 and the other in Naples2. They have been selected ac-
cording to high job successful execution rate and low queue occupancy (in order500

to shorten waiting time as much as possible), and they have been very well
tested before launching the jobs of the experiment. In the second simulation
we used all the EGI sites accessible by our Virtual Organization gridit3, named
free resources. They correspond to 20 sites with 32 Computing Elements (i.e.,
di�erent batch system queues) and 15 Storage Elements.505

Moreover, we repeated the two complete set of experiments 5 times, in dif-
ferent days and time in order to increase the statistical power of our analysis, for
a total of 6,000 jobs. In fact, using a production infrastructure, high variations
can be observed due to the di�erent level of usage of the communities having
access to it.510

Figure 4 shows the average queue time on the remote resources, the average
input �le download time, the average Docker setting time, and the average exe-
cution times of all the jobs for varying input size, considering both the selected
resources and the free resources. Numerical data about lifetime cycle (average
times and relative standard deviations) are reported Tables 1 and 24.515

It can be observed that for small SAM �les, the time that the jobs remain
in the Scheduled state, and the time required to perform the data download is
greater than the time required for the execution of the NuChart application.
However, when increasing the size of the problem, the application requires more
time, reaching the maximum for the largest SAM �les. Considering only jobs520

that come to a successful completion, we have quite similar lifetime cycles.
High standard deviations are explained by the fact that our tests were run
in a production environment, where the incidental infrastructure load, due to
community usage, is out of our control and heavily inuences the progression of
jobs execution.525

Regarding the data download time, we notice that the average time remains
quite similar for all input data, regardless of the size of the �les to be down-
loaded. This seems to indicate that the inuence of the number of jobs that
download the same �le is greater than the size of the �le. The pull time of
the Docker image from Docker Hub and the creation of the required container530

is relatively small in comparison with the application running time, becoming
progressively negligible as the analyzed datasets increase in size.

Moreover, the running time of the algorithm depends on the number of
connections identi�ed in the SAM �le. Although for larger �les it is possible
to forecast more connections, this is not always true. Therefore, it is di�cult535

to estimate the execution time in each possible case. For instance, when the
graph has few edges, the waiting time and download time can be greater than

1http://operations-portal.egi.eu/vapor/resources/GL2ResSummaryServicesDetail?
site=INFN-PADOVA&country=italy

2http://operations-portal.egi.eu/vapor/resources/GL2ResSummaryServicesDetail?
site=GRISU-UNINA&country=italy

3 https://operations-portal.egi.eu/vo/view/voname/gridit
4Full results are available at https://github.com/imerelli/GridDocker
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Table 1: Lifetime for selected resources, in minutes, waiting to be executed (WT), for down-
loading the data (DT), for the set up of the Docker execution environment (ST) and for the
execution (ET))

Class Dimension WT DT ST ET
1 SAM � 500MB 24.7 � 28.5 3.9 � 1.0 5.0 � 1.0 10.0 � 1.0
2 750MB < SAM � 1GB 24.2 � 30.0 5.0 � 1.0 5.0 � 1.0 17.0 � 1.0
3 1.5GB < SAM �2.0 GB 27.5 � 32.1 5.1 � 1.0 4.0 � 1.1 24.9 � 2.0
4 3.0GB < SAM �4.0 GB 23.5 � 32.5 5.0 � 1.0 5.0 � 1.0 31.9 � 2.0
5 6.0GB < SAM �8.0 GB 23.1 � 34.9 8.0 � 1.1 4.0 � 1.0 32.7 � 9.5
6 12.0GB < SAM �16.0 GB 22.9 � 34.7 10.0 � 1.0 4.0 � 1.0 40.5 � 10.6

Table 2: Lifetime for free resources, in minutes, waiting to be executed (WT), for downloading
the data (DT), for the set up of the Docker execution environment (ST) and for the execution
(ET))

Class Dimension WT DT ST ET
1 SAM � 500MB 41.5 � 43.7 3.9 � 1.0 5.1 � 1.0 10.0 � 1.0
2 750MB < SAM � 1GB 39.1 � 45.6 4.9 � 1.0 5.0 � 1.0 17.0 � 1.0
3 1.5GB < SAM � 2GB 40.5 � 47.4 5.0 � 1.1 4.0 � 1.0 25.0 � 2.0
4 3.0GB < SAM � 4GB 40.8 � 44.0 5.0 � 1.0 4.0 � 1.0 31.9 � 2.1
5 6.0GB < SAM � 8.0GB 44.5 � 44.8 8.0 � 1.0 5.0 � 1.0 32.2 � 9.6
6 12.0GB < SAM � 16.0GB 44.2 � 44.6 10.1 � 1.0 5.0 � 1.0 40.3 � 10.7

the execution time. However, observing the time statistics we can conclude that
the execution times corresponding to the application are generally much longer
than the download time.540

Figure 5 shows the number of completed jobs after the �rst job is completed,
in the run that achieved median performances for each class of �les. Even if
relevant di�erences can be observed in runs on the same dataset executed in
di�erent times due to the infrastructure load, the time needed to analyze a single
class of �les (100 jobs for each class) varies from 100 � 20 to 165 � 20 minutes545

in the selected resources case, while is about 2.0/2.4 times greater in the free
resources simulation, depending on the datasets. For this kind of application,
and given the Grid resources load at the time of the test, the strategy that tries
to maximize the job e�ciency is also the one that minimizes the total duration
of the production, and hence should be preferred.550

E�ciency (overall percentage of jobs reported as successfully �nished) and
re-submissions (number of tries to achieve a successful job outcome) are two
key parameters from a Grid computation and these are reported in Table 3,
both for the selected resources and the free resources. In the free resources case
we maximize the concurrency of the jobs (more jobs run in parallel) penalizing555

the job e�ciency (i.e., more job re-submission after a failure are needed before
having the job Done), while using the selected resources we maximize the job
e�ciency, but we have less concurrency, as reported in Table 3. In particular, we
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Figure 4: Average Jobs Lifetime, considering waiting time, input �le download time, Docker
setting time and running time. On the top panel the average job lifetime on the selected
resource, on the bottom panel the average job lifetime on the whole Grid.

can see that we have a large number of failed jobs, due to the mis-con�guration
of some Grid sites, both in relation to the computational and storage resources,560

which causes errors in job submission and in data transfer respectively. The
re-submissions number is particularly high in the case of the largest dataset
(16GB) due to download timeout e�ects on the slower sites. This is in line with
what has been reported so far [74, 75, 76]. On the other hand, basically all the
computations are successful when jobs are dispatched to suitable CEs.565

The crunching factor, which is de�ned (similarly to the speed up for parallel
computations) as the expected single-CPU time required for the computations
divided by the real computational time achieved on the distributed platform, is
presented in Table 4, both for selected resources and free resource. Moreover, we
reported the peak number of concurrent jobs (see Table 4), which is higher in the570

free resources because of its larger dimension compared to the selected resources,
which nonetheless achieved a better scalability. Therefore these numbers show
that the best result in terms of the execution time of the full experiment is likely
to be achieved using a well tested - even if smaller infrastructure, due to the
minimization of re-submissions.575

The comparison with the results achieved by the previously published work
[56], although relying on a di�erent application, highlights three major points.
First, in both the experiments, the pull time of the Docker image from Docker
Hub and the creation of the required container is relatively small and basi-
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Figure 5: Progression of the challenge after the end of the �rst job for one of the performed run
for each dataset. On the top panel the progression on the selected resources, on the bottom
panel the progression on the whole Grid. This is shown for all input datasets considered in
this work. We performed the same simulation �ve times for each dataset. High variations on
the progression can be experienced depending on the infrastructure load. Details on average
times and standard deviations for the job lifetime cycle are reported in the text and tables.
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Table 3: E�ciency and Re-submissions

E�ciency (%) Re-submissions (#)
Class Dimension Selected Free Selected Free
1 SAM � 500MB 100 90 � 5 0 25 � 3
2 750MB < SAM � 1GB 100 78 � 5 0 50 � 15
3 1.5GB < SAM � 2GB 100 86 � 7 0 44 � 10
4 3.0GB < SAM � 4GB 100 92 � 6 0 32 � 10
5 6.0GB < SAM � 8.0GB 100 75 � 6 0 53 � 7
6 12.0GB < SAM � 16.0GB 100 60 � 8 0 120 � 15

Table 4: Crunching factor (CF) and peak number of concurrent jobs (PNJ). Average on
multiple simulation performed in di�erent times

Average CF Average PNJ
Class Dimension Selected Free Selected Free
1 SAM � 500MB 7.6 � 1.4 6.5 � 1.3 35 � 10 75 � 5
2 750MB < SAM � 1GB 17.2 � 2.6 10.2 � 2.0 30 � 12 76 � 6
3 1.5GB < SAM � 2GB 24.3 � 3.5 14.0 � 2.7 31 � 7 73 � 4
4 3.0GB < SAM � 4GB 26.2 � 3.5 15.8 � 2.7 32 � 8 74 � 5
5 6.0GB < SAM � 8.0GB 19.2 � 3.0 16.5 � 3.0 40 � 11 88 � 8
6 12.0GB < SAM � 16.0GB 18.4 � 2.9 7.5 � 2.6 35 � 7 86 � 6

cally negligible in comparison with the computational time. Second, it can be580

determined that, despite the generation of a delay due to the necessary data
download and queuing time, this overhead is not exceedingly large, in particu-
lar while using selected resources, so it is still pro�table to carry out the study in
the Grid platform instead of being carried out on a local machine. In particular,
considering our experiments, this claim is supported by the evaluation of the585

crunching factor, that shows a good scalability even for this small/medium data
challenge. Third, in contrast with what has been previously reported, we did
not experience an increase in the execution time. This was justi�ed assuming
that a Docker container is slower than the bare CE, but our data do not support
this hypothesis.590

6.2. Chromatin Conformation
By using this Grid environment, we computed the graph-based represen-

tation for many public available Hi-C experiments. As an example, we show
the results achieved analyzing data from the experiments of Lieberman-Aiden
[16], which consist in four lines of karyotypically normal human lymphoblastoid595

cell line (GM06990) sequenced with Illumina Genome Analyzer, compared with
two lines of K562 cells, an erythroleukemia human cell line with an aberrant
karyotype.

The idea was to study the Philadelphia translocation, which is a speci�c chro-
mosomal abnormality associated with chronic myelogenous leukemia (CML).600
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The presence of this translocation is a highly sensitive test for CML, since 95%
of people with CML have this abnormality, although occasionally it may oc-
cur in acute myelogenous leukemia (AML). The result of this translocation is
that a fusion gene created from the juxtaposition of the ABL1 gene on chro-
mosome 9 (region q34) to part of the BCR (breakpoint cluster region) gene605

on chromosome 22 (region q11). This is a reciprocal translocation, creating an
elongated chromosome 9 (called der9), and a truncated chromosome 22 (called
the Philadelphia chromosome).

In this experiments, by using our graph-based approach, we compared the
distance of some couples of genes that are known to create DNA translocations610

in CML/AML. The very interesting result is that ABL1 and BCR are likely to
be distant 1 or 2 contacts (p < 0:05) in sequencing runs concerning GM06990,
while they are directly in contact (p < 0:05) in sequencing runs related to K-562.
Therefore, there is a perfect agreement between the positive and the negative
presence of Hi-C interactions and cytogenetic data (see Figure 6).615

Figure 6: Example of graph computed during this analysis

7. Conclusions and Future Directions

This work presents the performance achieved by a compute-intensive bioin-
formatic study exploiting a new modelling approach for representing the chro-
mosome conformation inside the nucleus using the Grid infrastructure provided
by EGI and the container technology. Containers in fact extend the usability of620

Grid environments, since this technology allows users to make use of software
that would not be executed without root permissions.

The key contribution is represented by the assessment of the feasibility of
the use of Docker relying on an image which includes a previous installation of

20



the used application and libraries in the Grid in terms of execution time and625

e�orts to develop the container. The code of the application in fact has been
adapted for its execution in this environment and the necessary tools have been
developed for launching and monitoring the required jobs.

The achieved results show that the use of containers on the Grid, enabled
by tools such as Udocker, can represent a fundamental advantage to make this630

paradigm accessible and suitable for many more users, that otherwise will rely
on smaller, local clusters or possibly expensive Cloud infrastructures.

After assessing the feasibility of the Grid platforms with containers, the
future directions of our work is represented by the development of an optimised
version of the application using speci�c libraries that make a more e�cient use635

of matrices. In this way, we would not have to perform a static compilation
of the program to make it work in any CE: we could just compile it inside the
Docker container, which is an even easier and powerful approach. Beside this,
we plan to implement new containers for other bioinformatic applications and
con�rm the general validity of our �ndings.640
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