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1 Introduction

In recent years the technique of localization [1] has provided access to a host of exact results

in supersymmetric field theories defined on certain curved backgrounds. This method can

be used to compute a number of observables in strongly coupled field theories. These

in general depend on the background geometry, leading to a richer structure than in flat

space. In this paper we will consider the supersymmetric Casimir energy, introduced in [2]

and further studied in [3–5]. We will focus on four-dimensional N = 1 theories with an R-

symmetry, defined on manifolds S1 ×M3, with M3 a compact three-manifold. These arise

as rigid supersymmetric backgrounds admitting two supercharges of opposite R-charge,

which are ambi-Hermitian, with integrable complex stuctures I± [6, 7]. Moreover, the

backgrounds are equipped with a complex Killing vector field K of Hodge type (0, 1) for

both complex structures. Denoting this as K = 1
2(ξ − i∂τ ), where τ ∈ [0, β) parametrizes

S1 = S1
β , ξ is a nowhere zero vector on M3 (the Reeb vector field), generating a transversely

holomorphic foliation. When all orbits of ξ close, this means that M3 is a Seifert fibred

three-manifold, with ξ generating the fibration.

On such a background, one can consider the partition function of an N = 1 theory

with supersymmetric boundary conditions for the fermions. As is familiar from finite

temperature field theory, this computes

ZS1
β×M3

= Tr e−βHsusy , (1.1)

where the Hamiltonian Hsusy generates time-translations along ∂τ . Supposing this has a

spectrum of energies {Ei}i∈I , with Hsusy |i〉 = Ei |i〉, then the minimum energy is E0 ≡
Esusy where evidently

Esusy = − lim
β→∞

d

dβ
ZS1

β×M3
. (1.2)

Thus the supersymmetric Casimir energy is given by Esusy = 〈 0|Hsusy|0〉, where |0〉 is

the vacuum state. Unlike the usual Casimir energy on S1 × M3 (proportional to the

integral of the energy-momentum tensor Tττ over M3), this has been argued to be a well-

defined observable of the theory, i.e. it is scheme-independent, in any supersymmetric

regularization [4].

We will be interested in computing 〈Hsusy〉 = Esusy via canonical quantization. This

approach was initiated in [3] for the conformally flat S1×S3 background, and further elab-

orated on in [4]. One can dimensionally reduce the one-loop operators on M3 to obtain a

supersymmetric quantum mechanics on Rτ , where the β →∞ limit effectively decompacti-

fies the circle S1
β . Most of the modes of the one-loop operators are paired by supersymmetry,

and these combine into long multiplets that do not contribute to 〈Hsusy〉 in the supersym-

metric quantum mechanics [4]. In this paper we will show that the unpaired modes are

certain (twisted) holomorphic functions on R ×M3, where there is one set of modes for

each of the two complex structures I±. More precisely, here we will restrict attention to the

contribution of the chiral multiplet. We expect that the vector multiplet contributions will
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also arrange into short multiplets, and will similarly be related to (twisted) holomorphic

functions. However, we will not perform this analysis in this paper.

When R×M3
∼= X \{o} is the complement of an isolated singularity o in a Gorenstein

canonical singularity X, one can elegantly solve for these unpaired modes that contribute

to the supersymmetric Casimir energy. These include of course M3 = S3, as well as

M3 = L(p, 1) = S3/Zp (i.e. a Lens space), for which X = C2 and X = C2/Zp is an Ap−1

singularity, previously studied in the literature; but this construction also includes many

other interesting three-manifolds. A large class may be constructed from homogeneous

hypersurface singularities. Here X comes equipped with a C∗ action, which is generated

by the complex vector field K, and X \{o} fibres over a compact orbifold Riemann surface

Σ2. Then X+
∼= X− ∼= X are isomorphic as complex varieties, but the relative sign of the

complex structures on fibre and base are opposite in the two complex structures I±. We

will show that the modes that contribute to the supersymmetric Casimir energy in a chiral

matter multiplet take the form

Φ± =

∣∣∣∣P±Ω±

∣∣∣∣±k±/2 F± , (1.3)

where P± are the globally defined nowhere zero (2, 0)-forms defined by the Hermitian

structures for I±, while Ω± are the globally defined nowhere zero holomorphic (2, 0)-forms

of definite Reeb weight under ξ, that exist because X+
∼= X− is Gorenstein. Furthermore,

k± denote the R-charges of the relevant fields; in particular, k+ = r − 2, k− = r, where

r ∈ R is the R-charge of the top component of a chiral multiplet. These correspond

to fermionic (Φ+) and bosonic (Φ−) modes, respectively. The essential point in (1.3) is

that F± are simply holomorphic functions on X±. More precisely, in general the path

integral (1.1) splits into different topological sectors, labelled by flat gauge connections,

and for the trivial flat connection F± are holomorphic functions; more generally they are

holomorphic sections of the associated flat holomorphic bundles. For example, for quotients

of M3
∼= S3, such as the Lens spaces L(p, 1) = S3/Zp, the relevant holomorphic modes may

be obtained as a projection of the holomorphic functions on the covering space.

The supersymmetric Casimir energy is computed by “counting” these holomorphic

functions according to their charge under the Reeb vector ξ. As such, Esusy is closely

related to the index-character of [8]. In this reference, it was shown that the volume of

a Sasakian manifold Y can be obtained from a certain limit of the equivariant index of

the ∂̄ operator on the associated Kähler cone singularity X = C(Y ). In a similar vein,

here we will show that the supersymmetric Casimir energy is obtained from a limit of an

index-character counting holomorphic functions on R ×M3. In the case of M3
∼= S3, this

explains a conjecture/observation made in [5], where it was proposed that Esusy may be

computed using the equivariant anomaly polynomial.

The rest of the paper is organized as follows. In section 2 we review and expand on

the relevant background geometry, emphasizing the role of the ambi-Hermitian structure.

In section 3, after recalling how the supersymmetric Casimir energy arises, we formulate

the conditions for (un-)pairing of modes on R ×M3. In section 4 we discuss the index-

character counting holomorphic functions, and make the connection with [5] in the case
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of primary Hopf surfaces. Extensions to secondary Hopf surfaces, and more general M3

realized as links of homogeneous hypersurface singularities, are discussed in section 5. We

conclude in section 6. We have included an appendix A, where we discuss the relation of

the index-character to the supersymmetric index [9] and its generalizations.

2 Supersymmetric backgrounds

2.1 Background geometry

We are interested in studying four-dimensional N = 1 theories with an R-symmetry on

M4 = S1×M3, where M3 is a compact three-manifold. In Euclidean signature, the relevant

supersymmetry conditions are the two independent first-order differential equations

(∇µ ∓ iAµ)ζ± + iVµζ± + iV ν(σ±)µνζ± = 0 , (2.1)

where ζ± are spinors of opposite chirality. Here we use the spinor conventions1 of [7],

in which ζ± are two-component spinors with corresponding Clifford algebra generated by

(σ±)a = (±~σ,−i12), where a = 1, . . . , 4 is an orthonormal frame index and ~σ = (σ1, σ2, σ3)

are the Pauli matrices. In particular the generators of SU(2)± ⊂ Spin(4) = SU(2)+ ×
SU(2)− are

(σ±)ab =
1

4

(
σa±σ

b
∓ − σb±σa∓

)
. (2.2)

The field Vµ is assumed to be a globally defined one-form obeying ∇µVµ = 0, and will not

play a role in this paper. The field Aµ is associated to local R-symmetry transformations,

with all matter fields being charged under this via appropriate covariant derivatives.

The Killing spinors ζ± equip M4 with two commuting integrable complex structures2

(I±)µν ≡ −
2i

|ζ±|2
ζ†±(σ±)µνζ± . (2.3)

The metric gM4 is Hermitian with respect to both I±, but where the induced orientations

are opposite, which means the geometry is by definition ambi-Hermitian. This structure

also equips M4 with a complex Killing vector field

Kµ ≡ ζ+σ
µ
+ζ− . (2.4)

This has Hodge type (0, 1) for both complex structures, and satisfies KµKµ = 0. We

assume that K commutes with its complex conjugate K∗, [K,K∗] = 0.3 It then follows

1Differently from previous literature, we denote the Killing spinors and associated complex structures

with ± subscripts. This emphasizes the fact that the two spinors and complex structures are on an

equal footing.
2We adopt the same sign conventions as [10, 11] for the complex structures. Our main motivation for

this choice of convention is that the modes that contribute to the supersymmetric Casimir energy will turn

out to be (twisted) holomorphic, whereas if we reversed the signs of the complex structures they would be

(twisted) anti-holomorphic.
3If [K,K∗] 6= 0 the metric is locally isometric to R× S3 with the standard round metric on S3 [7].
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that we may write K = 1
2(ξ − i∂τ ), where τ ∈ [0, β) parametrizes S1 = S1

β and ξ is a

nowhere zero vector field on M3.

Following [2], we assume the metric on M4 = S1 ×M3 to take the form

gM4 = Ω2
(
dτ2 + gM3

)
, (2.5)

where the local form of the metric on M3 may be written as

gM3 = (dψ + a)2 + c2dzdz̄ . (2.6)

Here ξ = ∂ψ generates a transversely holomorphic foliation of M3, with z a local transverse

complex coordinate. Since ∂τ and ∂ψ are both Killing vectors the positive conformal

factor is Ω = Ω(z, z̄), while c = c(z, z̄) is a locally defined non-negative function and

a = az(z, z̄)dz + āz̄(z, z̄)dz̄ is a local real one-form. Notice that any Riemmanian three-

manifold admitting a unit length Killing vector ξ = ∂ψ may be put into the local form (2.6).

Notice also that this geometry is precisely the rigid three-dimensional supersymmetric

geometry of [12, 13], for which there are two three-dimensional supercharges of opposite

R-charge.

We shall refer to ξ = ∂ψ as the Reeb vector field. Globally the foliation of M3 that it

induces splits into three types: regular, quasi-regular and irregular. In the first two cases

all the leaves are closed, and hence ξ generates a U(1) isometry of M3. If this U(1) action

is free, the foliation is said to be regular. In this case M3 is the total space of a circle

bundle over a compact Riemann surface Σ2, which can have arbitrary genus g ≥ 0. The

local metric c2dzdz̄ then pushes down to a (arbitrary) Riemannian metric on Σ2, while

the one-form a is a connection for the circle bundle over Σ2. More generally, in the quasi-

regular case since ξ is nowhere zero the U(1) action on M3 is necessarily locally free, and

the base Σ2 ≡ M3/U(1) is an orbifold Riemann surface. Topologically this is a Riemann

surface of genus g, with some number M of orbifold points which are locally modelled on

C/Zki , ki ∈ N, i = 1, . . . ,M. The induced metric on Σ2 then has a conical deficit around

each orbifold point, with total angle 2π/ki. The three-manifold M3 is the total space of

a circle orbibundle over Σ2. Such three-manifolds are called Seifert fibred three-manifolds,

and they are classified.

In the irregular case ξ has at least one open orbit. Since the isometry group of a

compact manifold is compact, this means that M3 must have at least U(1)×U(1) isometry,

with ξ being an irrational linear combination of the two generating vector fields. Notice

that M3 is still a Seifert manifold, by taking a rational linear combination, and that the

corresponding base Σ2 inherits a U(1) isometry. There are then two cases: either this U(1)

action is Hamiltonian, meaning there is an associated moment map, or else π1(Σ2) is non-

trivial. In the first case Σ2
∼= WCP2

[p,q] is necessarily a weighted projective space [14], while

in the second case instead Σ2
∼= T 2. In particular in the first case M3 is either S1 × S2, or

it has finite fundamental group with simply-connected covering space S3.

In addition to the local complex coordinate z, we may also introduce

w ≡ ψ − iτ + P (z, z̄) , (2.7)
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where P (z, z̄) is a local complex function. Taking this to solve

∂zP = az , (2.8)

where recall that a is the local one-form appearing in the metric (2.6), and defining

h = h(z, z̄) ≡ −2i ∂zImP , (2.9)

the metric (2.5) may be rewritten as

gM4 = Ω2
[
(dw + hdz)(dw̄ + h̄dz̄) + c2dzdz̄

]
. (2.10)

In these complex coordinates we have the complex vector fields

K = ∂w̄ , Y =
s

Ω2c
(∂z̄ − h̄∂w̄) . (2.11)

Here s is a complex-valued function which appears in the Killing spinors ζ±, where the

vector Y , like K in (2.4), is defined as a spinor bilinear via

Y µ ≡ 1

2|ζ−|2
ζ†−σ

µ
−ζ+ . (2.12)

Following [10], we also define

K ≡ 1

Ω2
∂w =

1

Ω2
K∗ , Y ≡ 1

sc
(∂z − h∂w) , (2.13)

which again have natural expressions as bilinears. The dual one-forms to K and Y are

K[ = Ω2(dw + hdz) , Y [ = sc dz . (2.14)

These both have Hodge type (1, 0) with respect to I+, showing that z and w are local

holomorphic coordinates for this complex structure. In fact K[, Y [ form a basis for Λ1,0
+ .

On the other hand K[, (Y [)∗ form a basis for Λ1,0
− . It follows that K generates a complex

transversely holomorphic foliation of M4, where the transverse complex structure has op-

posite sign for I±, while the complex structure of the leaves is the same for both I±. In

other words, z is a transverse holomorphic coordinate for I+, but it is z̄ that is a transverse

holomorphic coordinate for I−. In the quasi-regular and regular cases, this means that

the induced complex structure on the (orbifold) Riemann surface Σ2 = M3/U(1) has the

opposite sign for I±.

Finally, let us introduce the complex two-form bilinears

P± ≡
1

2
ζ±(σ±)µνζ± dxµ ∧ dxν . (2.15)

These are nowhere zero sections of Λ2,0
± ⊗L2

±, where L± ∼= (Λ2,0
± )−1/2 are spinc line bundles

for the Killing spinors ζ±. We shall consider a class of geometries in which the background

Abelian gauge field Aµ that couples to the R-symmetry is real. In this case we may write

P+ = (det gM4)1/4s (dw + hdz) ∧ dz = Ω3c e−iω dw ∧ dz ,

P− = (det gM4)1/4 Ω2

s
(dw + hdz) ∧ dz̄ = Ω3c eiω (dw + hdz) ∧ dz̄ , (2.16)

– 6 –
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where (det gM4)1/4 = Ω2c and s = Ω e−iω, with ω real [2]. Notice that the latter implies

Y = Y ∗ in (2.13), where the star denotes complex conjugation. By definition

dP± = −iQ± ∧ P± , (2.17)

where Q± are the associated Chern connections. We calculate

Q± = dc± log(Ω3c)± dω , (2.18)

where dc± ≡ i(∂̄± − ∂±). The background Abelian gauge field Aµ is then

A = −1

2
Q+ =

1

2
Q− . (2.19)

It follows that ±A is a connection on K−1/2
± , where K± ≡ Λ2,0

± is the canonical bundle

for the I± complex structure. Notice that dA in fact has Hodge type (1, 1) for both I±,

and thus K± are both holomorphic line bundles (with respect to their relevant complex

structures).

2.2 Hopf surfaces

In most of the paper we will focus on backgrounds M4 = S1 × M3, where the three-

manifold M3 has finite fundamental group. This means that the universal covering space

of M3 is a three-sphere S3, and moreover M3
∼= S3/Γ, where Γ ⊂ SO(4).4 These so-

called spherical three-manifolds are classified: Γ is either cyclic, or is a central extension

of a dihedral, tetrahedral, octahedral, or icosahedral group. The cyclic case corresponds

to Lens spaces L(p, q), with fundamental group Γ ∼= Zp. Another particularly interesting

case is when Γ is the binary icosahedral group: here M3 is the famous Poincaré homology

sphere. Being a homology sphere means that Γ is a perfect group (equal to its commutator

subgroup), and hence has trivial Abelianization. In fact π1(M3) ∼= Γ has order 120, while

H1(M3,Z) is trivial. Of course our three-manifold M3 also comes equipped with extra

structure, and M4 = S1 ×M3 must be ambi-Hermitian with respect to I±. As we shall

see, one can realise such supersymmetric S1 ×M3 backgrounds as Hopf surfaces, at least

for Γ ⊂ SU(2) ⊂ U(2) ⊂ SO(4).

2.2.1 Primary Hopf surfaces

Let us first describe this structure in the case when M3
∼= S3. Here M4 is by definition a

primary Hopf surface — a compact complex surface obtained as a quotient of C2 \ {0} by

a free Z action. These were studied in detail in [2], and in what follows we shall review

and extend the analysis in this reference.

In the I+ complex structure global complex coordinates (z+
1 , z

+
2 ) on the covering space

C2\{0} are expressed in terms of the local complex coordinates z, w defined in the previous

subsection via

z+
1 = e|b1|(iw−z) ,

z+
2 = e|b2|(iw+z) . (2.20)

4This is Thurston’s elliptization conjecture, now a theorem.
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The Hopf surface M4 = S1 × S3 is the quotient of C2 \ {0} by the Z action generated by

(z+
1 , z

+
2 ) → (p+z

+
1 , q+z

+
2 ) , (2.21)

where the complex structure parameters are p+ ≡ eβ|b1|, q+ ≡ eβ|b2|.5 Notice that we may

equivalently reverse the sign of the generator in (2.21), with (z+
1 , z

+
2 )→ (p−z

+
1 , q−z

+
2 ) and

p− ≡ p−1
+ , q− ≡ q−1

+ .

We may further express these complex coordinates in terms of four real coordinates

%, τ, ψ1, ψ2 via

w =
1

2|b1|
ψ1 +

1

2|b2|
ψ2 − iτ − iQ(%) , z = u(%)− i

(
1

2|b1|
ψ1 −

1

2|b2|
ψ2

)
, (2.22)

where in the notation of section 2.1 we have that Q = iP is real. We have introduced a

polar coordinate % ∈ [0, 1] on S3, so that the real functions u = u(%), Q = Q(%); these obey

equations that may be found in [2], although their precise form won’t be relevant in what

follows.6 We then have

z+
1 = e|b1|τe|b1|(Q−u)eiψ1 ,

z+
2 = e|b2|τe|b2|(Q+u)eiψ2 , (2.23)

and the quotient by (2.21) simply sets τ ∼ τ + β, with τ a coordinate on S1 = S1
β . In [2]

a general class of metrics on M3
∼= S3 was studied, with U(1)×U(1) isometry. The latter

has standard generators ∂ψ1 , ∂ψ2 , and the Reeb vector field is

ξ = ∂ψ = |b1|∂ψ1 + |b2|∂ψ2 . (2.24)

The complex structure I− also equips M4 = S1 × S3 with the structure of a Hopf

surface. Global complex coordinates on the covering space C2 \ {0} are now

z−1 = e−|b1|[i(w+2iQ)+z̄) = e−|b1|τe|b1|(Q−u)e−iψ1 ,

z−2 = e−|b2|[i(w+2iQ)−z̄) = e−|b2|τe|b2|(Q+u)e−iψ2 . (2.25)

In particular notice in these coordinates the complex structure parameters are p− ≡
e−β|b1| = p−1+ , q− ≡ e−β|b2| = q−1+ . Notice also that w + 2iQ and z̄ are local complex

coordinates for I−, the former following from dw + 2idQ = (dw + hdz) + 2i∂z̄Qdz̄, both

of which have Hodge type (1, 0) with respect to I−. The fact that (z−1 , z
−
2 ) cover C2 \ {0}

follows from an analysis similar to that in [2] for the I+ complex structure.

Another fact that we need from [2], that will be particularly important when we come

to solve globally for the modes in section 4, is that

ω = −ψ1 − ψ2 . (2.26)

5For a general primary Hopf surface these parameters may be complex.
6Compared to reference [2] we have defined ψi = sgn(bi)ϕi, i = 1, 2, and recall from footnote 2 that we

have also reversed the overall sign of the two complex structures I± compared with that reference, meaning

that z±i |here= z±i |there.
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Recall here that s = Ω e−iω, which for example enters the Chern connections (2.18), and

hence the background R-symmetry gauge field (2.19). This choice of phase in s is fixed

uniquely by requiring that A is a global one-form on M3
∼= S3. The Killing spinors ζ±

are then globally defined as sections of trivial rank 2 bundles over M4 = S1 × S3. Gauge

transformations A→ A+ dλ of course shift ω → ω − 2λ.

2.2.2 Secondary Hopf surfaces

More generally, if M3 has finite fundamental group Γ then M4 = S1 ×M3 is a quotient of

a primary Hopf surface by Γ. These are examples of secondary Hopf surfaces.

Let us first look at cyclic Γ ∼= Zp. In order that the quotient by Γ preserves super-

symmetry, in particular s must be invariant. In terms of either I± complex structures,

this means that Γ ∼= Zp ⊂ U(1) ⊂ SU(2), with SU(2) acting on C2 in the standard two-

dimensional representation 2. The generator of this U(1) subgroup of the isometry group

U(1) × U(1) is the Killing vector χ = ∂ψ1 − ∂ψ2 , and from (2.26) we see that Lχs = 0. It

follows that M4 = S1×M3 is isomorphic to the secondary Hopf surface (C2\{0})/(Z×Zp),
in both complex structures. The three-manifold M3 is the Lens space L(p, 1) in this case.

Notice that χ commutes with the Reeb vector field ξ, and hence |b1|, |b2| (which determine

the complex structure parameters p±, q±) can be arbitrary.

We may also realise supersymmetric backgrounds with non-Abelian fundamental

groups. Here we may take Γ ⊂ SU(2) to act on C2 in the representation 2. In order for Γ to

act isometrically we assume the isometry group to be enlarged to U(2) ∼= U(1)×Z2 SU(2),

with the Reeb vector embedded along U(1). This means |b1| = |b2|. The metric on M3
∼= S3

is then that of a Berger sphere

ds2
M3

= dθ2 + sin2 θdϕ2 + v2(dς + cos θdϕ)2 , (2.27)

where v > 0 is a squashing parameter, and ς = ψ1 + ψ2, ϕ = ψ1 − ψ2. This special case

of a Hopf surface background was studied in appendix C of [2], and has b1 = −b2 = 1/2v,

and I+ complex coordinates

z+
1 =

√
2 e

τ
2v cos

θ

2
eiψ1 , z+

2 =
√

2 e
τ
2v sin

θ

2
eiψ2 . (2.28)

In particular |z+
1 |2+|z+

2 |2 = 2eτ/v is invariant under SU(2). The I− complex coordinates are

(z−1 , z
−
2 ) = e−

τ
v (z+

1 , z
+
2 )∗ , (2.29)

meaning that the SU(2) group acts in the complex conjugate representation 2̄ in the I−
complex structure. As is well known, 2 ∼= 2̄, and thus again M4 = S1 ×M3 is isomorphic

to the secondary Hopf surface (C2 \ {0})/(Z × Γ) in both complex structures. Of course

finite subgroups Γ ⊂ SU(2) have an ADE classification, where the A series are precisely

the Abelian Γ ∼= Zp quotients of primary Hopf surfaces described at the beginning of this

subsection, while the D and E groups are the dihedral series and tetrehedral E6, octahedral

E7 and icosahedral E8 groups, respectively.
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We may also describe the complex geometry of the associated Hopf surfaces alge-

braically. Consider the polynomials

fAp−1 = Zp1 + Z2
2 + Z2

3 , fDp+1 = Zp1 + Z1Z
2
2 + Z2

3 , (2.30)

fE6 = Z3
1 + Z4

2 + Z2
3 , fE7 = Z3

1 + Z1Z
3
2 + Z2

3 , fE8 = Z3
1 + Z5

2 + Z2
3 ,

on C3 with coordinates (Z1, Z2, Z3). The zero sets

X ≡ {f(Z1, Z2, Z3) = 0} ⊂ C3 , (2.31)

have an isolated singularity at the origin o of C3. These are all weighted homoge-

neous hypersurface singularities, meaning they inherit a C∗ action from the C∗ action

(Z1, Z2, Z3)→ (qw1Z1, q
w2Z2, q

w3Z3) on C3, where wi ∈ N are the weights, i = 1, 2, 3, and

q ∈ C∗. For example, fAp−1 has degree d = 2p under the weights (w1, w2, w3) = (2, p, p),

while fE8 has degree d = 30 under the weights (w1, w2, w3) = (10, 6, 15). The smooth

locus X \ {o} ∼= R × M3, where M3 = S3/ΓADE , while the quotients (X \ {o})/Z are

precisely the ADE secondary Hopf surfaces described above. Here Z ⊂ C∗ is embedded as

n → qn for some fixed q > 1. The Reeb vector field action is quasi-regular, generated by

q ∈ U(1) ⊂ C∗. The quotient Σ2 = M3/U(1) is in general an orbifold Riemann surface of

genus g = 0.

2.3 Flat connections

The path integral of any four-dimensional N = 1 theory with an R-symmetry on one of

the supersymmetric backgrounds S1×M3 of section 2.1 localizes. In particular, the super-

charges generated by ζ± localize the vector multiplet onto instantons and anti-instantons,

respectively [2], which intersect on the flat connections. In the Hamiltonian formalism for

computing the supersymmetric Casimir energy, we will then need to study flat connections

on the covering space R ×M3. The two spaces S1 ×M3 and R ×M3 have respectively τ

periodic with period β, and τ ∈ R.

Recall that flat connections on M4 with gauge group G are in one-to-one correspon-

dence with

Hom(π1(M4)→ G)/conjugation . (2.32)

In particular a flat G-connection is determined by its holonomies, which define a homo-

morphism % : π1(M4) → G, while gauge transformations act by conjugation. In the path

integral on M4 = S1 ×M3 we have π1(M4) ∼= Z × π1(M3), with π1(S1) ∼= Z. A flat con-

nection is then the sum of pull-backs of flat connections on S1 and M3, and we denote the

former by A0. On the other hand in the Hamiltonian formalism instead M4 = R ×M3,

so that π1(M4) ∼= π1(M3), and a flat connection on M4 is simply the pull-back of a flat

connection on M3.

When π1(M3) is finite, which is the case for the primary and secondary Hopf surfaces

in section 2.2, the number of inequivalent flat connections on M3 is also finite. The path

integral on S1 ×M3 correspondingly splits into a finite sum over these topological sectors,
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together with a matrix integral over the holonomy of A0. In the Hamiltonian formalism on

R×M3, instead for each flat connection on M3 we will obtain a different supersymmetric

quantum mechanics on R.

A matter multiplet will be in some representation R of the gauge group G. In the

presence of a non-trivial flat connection on M4 = R ×M3, this matter multiplet will be

a section of the associated flat vector bundle, tensored with K−k/2+ if the matter field has

R-charge k. The latter follows since recall that the background R-symmetry gauge field A

is a connection on K−1/2
+

∼= K+1/2
− . For the Hopf surface cases of interest this will always

be a trivial bundle, albeit with a generically non-flat connection, and we hence suppress

this in the following discussion. Concretely then, composing % : π1(M4) → G with the

representation R of G determines a corresponding flat connection in the representation R,

and the scalar field in the matter multiplet is a section of the vector bundle

Vmatter = (M̃4 × V )/π1 . (2.33)

Here M̃4 is the universal cover of M4 (which is R × S3 for Hopf surfaces), π1 = π1(M4)

is the fundamental group, V ∼= CM is the vector space associated to R, and the action

of π1 on V is determined by the flat R-connection described above. The scalar field in

the matter multiplet is then a section of the bundle (2.33), which is a CM vector bundle

over M4.

To illustrate, let us focus on the simplest non-trivial example, namely the Lens space

M3 = S3/Zp = L(p, 1). For a G = U(1) gauge theory the flat connections on R×M3 may

be labelled by an integer 0 ≤ m < p, which determines the holonomy

exp

(
i

∫
γ
A
)

= e2πim/p . (2.34)

Here A is the dynamical U(1) gauge field, while the circle γ generates π1(R ×M3) ∼= Zp.
The associated homomorphism % : Zp → U(1) is generated by %(ωp) = ωmp , where ωp ≡
e2πi/p is a primitive pth root of unity. For a U(N) gauge theory the flat connections are

similarly labelled by 0 ≤ mi < p, where i = 1, . . . , N runs over the generators of the

Cartan U(1)N subgroup of U(N). These are permuted by the Weyl group, so without

loss of generality one may choose to order m1 ≤ m2 ≤ · · · ≤ mN , and label the flat

U(N) connection by a vector m = (m1, . . . ,mN ). Now % : Zp → U(N) is generated by

%(ωp) = diag(ωm1
p , . . . , ωmNp ) ∈ U(N).

An irreducible representation of U(1) is labelled by the charge σ ∈ Z, soR = Rσ. In the

presence of the flat connection (2.34), a matter field in this representation becomes a section

of the line bundle L over R×L(p, 1) with first Chern class c1(L) ∈ H2(R×L(p, 1),Z) ∼= Zp
given by c1(L) ≡ σm mod p. Equivalently, on the universal covering space M̃4

∼= R×S3 ∼=
C2 \{0}, the relevant sections of Vmatter may be identified with functions on M̃3 which pick

up a phase e2πic1(L)/p under the generator of the Zp action. More generally, for a U(N)

gauge group we may decompose the representation R = ⊕ρVρ into weight spaces, with

weights ρ. This then essentially reduces to the line bundle case above, with the part of

the matter field in Vρ now being a section of L with c1(L) ≡ ρ(m) mod p. For example,

the fundamental representation of U(N) has weights ρi(m) = mi, i = 1, . . . , N , the adjoint

representation has weights ρij = mi −mj , etc.
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3 Supersymmetric Casimir energy

In this section we review the two approaches to define the supersymmetric Casimir energy

Esusy, involving the path integral formulation on a compact manifold S1 ×M3, and the

Hamiltonian formalism on its covering space R × M3, respectively. We also present a

geometric interpretation of the shortening conditions previously discussed in [4, 10].

3.1 Path integral formulation

On general grounds [11], the localized path integral of a four-dimensional N = 1 theory with

an R-symmetry on M4 = S1×M3 is expected to depend on the background geometry only

via the complex structure(s) of M4. For example, for the primary Hopf surfaces described

in section 2.2.1 the complex structure parameters are p± = e±β|b1|, q± = e±β|b2|, which

may equivalently be thought of as specified by the choice of Reeb vector field ξ in (2.24)

(together with β). For a secondary Hopf surface S1 ×M3, the localized partition function

also carries information about the finite fundamental group Γ = π1(M3). Of course the

partition function will also depend on the choice of N = 1 theory, through the choice of

gauge group, matter representation, and in particular on the R-charges of the matter fields.

In analogy with the usual zero point energy of a field theory, the supersymmetric

Casimir energy was defined in [2] as a limit of the supersymmetric partition function

Zsusy
S1
β×M3

, namely the path integral with periodic boundary conditions for the fermions

along S1
β . More precisely,

Esusy ≡ − lim
β→∞

d

dβ
logZsusy

S1
β×M3

. (3.1)

This may be computed using localization. As already mentioned in section 2.3, the vector

multiplet localizes onto flat connections for the gauge group G, while at least for primary

Hopf surfaces the matter multiplet localizes to zero. The localized partition function com-

prises the contributions of one-loop determinants for the vector and chiral multiplets of

the theory, evaluated around each such BPS locus, and one then integrates/sums over the

space of flat connections. For primary Hopf surfaces (M3
∼= S3), the only non-trivial gauge

field holonomy is for the flat connection A0 along S1
β [2]. On the other hand, if π1(M3) is

non-trivial one should also sum or integrate over flat connections on M3, in the cases that

π1(M3) is finite, or infinite, respectively [15].

For primary Hopf surfaces the partition function factorises Zsusy
S1
β×S3 = e−βEsusy(|b1|,|b2|)I,

where I is a matrix integral over the gauge field holonomies on S1
β , known as the super-

symmetric index [9]. The latter does not contribute to the limit (3.1), and thus in order to

compute Esusy one can effectively set the gauge field A0 = 0 in the one-loop determinants.

The regularization of these determinants is rather delicate and it was proved in [4] that

regularizations respecting supersymmetry give rise to a partition function with large and

small β limits consistent with general principles [16]. See appendix C of [4].

For secondary Hopf surfaces the partition function is a sum of contributions over

sectors with a fixed flat connection on M3. Let us label these sectors as α ∈Mflat. Recall

that in the special case that M3 = L(p, 1) = S3/Zp is a Lens space and G = U(N) we
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may identify Mflat with the space of vectors m = (m1, . . . ,mN ), where 0 ≤ mi < p and

m1 ≤ m2 ≤ · · · ≤ mN . Then from the definition (3.1) it is clear that the supersymmetric

Casimir energy is given by

Esusy = min
α∈Mflat

{Esusy, α} , (3.2)

where for each α we have defined a “supersymmetric Casimir energy in the sector α” as

Esusy, α = − lim
β→∞

d

dβ
logZα . (3.3)

In the Lens space case M3 = L(p, 1) = S3/Zp the partition functions Zα, which include

the Casimir contributions Esusy, α, have been computed in [15].

3.2 Hamiltonian formulation

Because the geometries of interest are of the form M4 = S1 ×M3, with ∂τ the Killing

vector generating translations on S1, we can consider the theories on the covering space

M4 = R ×M3, employing the Hamiltonian formalism.7 These two approaches have been

shown to yield equivalent results for both the supersymmetric Casimir energy, as well as

the index I, for primary Hopf surfaces, M3
∼= S3. It was argued in [9] that the super-

symmetric index cannot depend on continuous couplings of the theory or the RG scale,

and therefore may be computed in the free limit (assuming this exists). We return to dis-

cussing the supersymmetric index in appendix A. The supersymmetric Casimir energy can

also be obtained as the vacuum expectation value of the supersymmetric (Weyl ordered)

Hamiltonian Hsusy, and again it can be reliably computed in a free theory [4]. This can be

further Kaluza-Klein reduced on M3 to give a supersymmetric quantum mechanics on R,

with an infinite number of fields, organised into multiplets of one-dimensional supersym-

metry. Then Esusy = 〈Hsusy〉, where Hsusy is the total Hamiltonian for this supersymmetric

quantum mechanics. If supersymmetric regularizations are employed, then this definition

has been shown to agree with (3.1) in the primary Hopf surface case M3
∼= S3 [4].

This formalism can also be utilised when π1(M3) is non-trivial (and finite), as we will

see in more detail later in the paper. In this case there is a supersymmetric quantum

mechanics for each flat connection on M3. This leads to a definition of “supersymmetric

Casimir energy in the sector α” that will depend on the flat connection α ∈Mflat, thus

Esusy, α = 〈Hsusy, α〉 . (3.4)

We will see that this quantum-mechanical definition of Esusy, α coincides with the path

integral definition given previously, in any sector α = m, for Lens space secondary Hopf

surfaces with M3 = L(p, 1) = S3/Zp. Of course, the actual supersymmetric Casimir energy

of the theory will be given by the minimum Esusy, α among all flat connections.

7On M4 = R ×M3 one usually works in Lorentzian signature. In this paper, however, we will always

remain in Euclidean signature. One can then take the point of view that the Wick rotation (t = iτ) to pass

from Euclidean to Lorenztian signature can be done after the reduction to one dimension. In practice, we

will never need to perform this last step.
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In the simplest case, where M3 = S3
round, the Hamiltonian formalism can be used to

obtain explicitly all of the modes and their eigenvalues [3, 4, 17]. Only a subset of unpaired

modes contribute to Esusy [3]. These modes where shown in [4] to correspond to short

1d supersymmetry multiplets (chiral and Fermi multiplets). This feature extends to more

general geometries, where the unpaired modes obey shortening conditions taking the form

of linear first order differential equations [10].

3.3 Twisted variables

In what follows we will focus attention on a chiral multiplet. Using a set of “twisted

variables” [10], the fermion of a chiral multiplet can be replaced by a pair of anticommuting

complex scalar fields B and C. Thus such a multiplet comprises the four scalar fields

(φ,B,C, F ), with R-charges (r, r − 2, r, r − 2), respectively. There is also a set of tilded

fields (φ̃, B̃, C̃, F̃ ) with opposite sign R-charges, that are eventually simply related to the

untilded fields by complex conjugation. The localizing deformation8 in these variables takes

the simple form

Lloc = 4φ̃∆bosφ+ 2Ψ̃∆ferΨ− F̃F , (3.5)

where Ψ̃ = (B̃, C̃), Ψ = (B,C)T , and we have defined the operators

∆bos ≡ −(L̂KL̂K + L̂Y L̂Y ) , ∆fer ≡ i

(
L̂K L̂Y
−L̂Y L̂K

)
, (3.6)

with the first order operators

L̂U = Uµ(∂µ − ikAµ − iAµ) . (3.7)

Here U is one of the four complex vector fields K,K, Y, Y , defined in section 2.1, k is the

R-charge of the field on which the operator is acting, and Aµ denotes the localized flat

gauge connection, acting on the field in the appropriate representation R. As discussed in

section 2.3, such matter fields may equivalently be identified with functions on the covering

space that transform appropriately under the action of π1 = π1(M3) determined by the

flat connection Aµ. This action commutes with K and K̄, as was necessary to preserve

supersymmetry. We note the following relations

[L̂K , L̂K ] = 0 , [L̂K , L̂Y ] = 0 , [L̂K , L̂Y ] = 0 . (3.8)

These were proven in [10] in a fixed (local) R-symmetry gauge where s = s(z, z̄) (and

without the flat connection), although it is obvious that they are valid in any gauge.

In particular they are valid in the unique global non-singular gauge (2.26), relevant for

Hopf surfaces.

The unpaired modes were shown in [10] to satisfy the shortening conditions

L̂Y B̌ = 0 , iL̂KB̌ = λBB̌ ,

L̂Y φ̌ = 0 , iL̂K φ̌ = λφφ̌ , (3.9)

8This coincides with the standard chiral multiplet Lagrangian for a particular choice of the parameter κ.
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where we have denoted the modes B̌, φ̌, to distinguish them from the closely related

modes to be introduced momentarily. It is worth emphasizing that these equations are

valid both on S1 ×M3 and on R ×M3; however, the eigenvalues λB, λφ are different in

the two cases. In particular, on S1×M3 one expands all fields in Kaluza-Klein modes over

S1 [2], thus Φ̌(τ, xi) = Φ̌(xi) e−inτ , where n ∈ Z and xi, i = 1, 2, 3 are coordinates on M3.

Correspondingly we have λΦ = − i
2n+ λΦ

ξ , where λΦ
ξ ∈ R is the Reeb charge of the modes

on M3:

iL̂ 1
2
ξΦ̌(xi) = λΦ

ξ Φ̌(xi) . (3.10)

On the other hand, using the equations (3.9) in the context of the Hamiltonian formalism

on R×M3 [4], one has effectively to set n = 0, and therefore in this case λΦ = λΦ
ξ .

In order to compute Esusy in principle one should consider the Hamiltonian canoni-

cally conjugate to (3.5), insert all modes obeying their (free) equations of motion, and then

reduce the problem to one dimension [3]. Alternatively, one can focus on the unpaired

modes, giving rise to short 1d multiplets, and determine their Σ-charge, for example by

analysing the reduced supersymmetry transformations [4]. Here Σ is the Hermitian oper-

ator appearing in the one-dimensional supersymmetry algebra

{Q,Q†} = 2(Hsusy − Σ) , Q2 = 0 ,

[Hsusy, Q] = [Σ, Q] = 0 . (3.11)

Then Esusy is determined using the fact that for every multiplet 〈Hsusy〉 = 〈Σ〉 [4].

3.4 Unpaired modes on R × M3

In the path integral formalism, localization reduces the problem to computing the one-

loop determinant associated to (3.5). Correspondingly, in the Hamiltonian formulation, we

consider modes obeying the equations of motion following from (3.5), namely

∆bosφ = 0 , ∆ferΨ = 0 . (3.12)

It is simple to show that modes satisfying the equations in (3.12) are paired by supersym-

metry. Indeed, if φ is a bosonic zero mode, ∆bosφ = 0, one can check using (3.8) that

Ψ = (L̂Y φ,−L̂Kφ)T is a fermionic zero mode, so ∆ferΨ = 0. Conversely, if (B,C)T is a

fermionic zero mode, ∆fer(B,C)T = 0, one can check that φ ≡ C is a bosonic zero mode,

so ∆bosφ = 0. Modes that are paired this way form long multiplets that do not contribute

to the supersymmetric Casimir energy. Notice that a fermionic zero mode satisfies

L̂Y C = −L̂KB , L̂KC = L̂YB . (3.13)

The net contribution to Esusy comes from unpaired modes. These are bosonic/fermionic

zero modes for which the putative fermionic/bosonic partner is identically zero. Thus these

are fermionic (B, 0) modes satisfying (using (3.13))

L̂YB = 0 = L̂KB , (3.14)

– 15 –



J
H
E
P
0
8
(
2
0
1
6
)
1
1
7

and bosonic φ modes satisfying

L̂Y φ = 0 = L̂Kφ . (3.15)

Recalling the definition (3.7) and using the preliminaries in section 2.1, one recognises

the two operators L̂Y and L̂K as the components of the twisted ∂̄+
A,A differential. This

denotes the (0, 1)+ part of d − ikA − iA, where the twisting is determined by the R-

symmetry connection A in (2.19) and flat connection A. In particular, the unpaired B

modes in (3.14) obey

∂̄+
A,AB = 0 , (3.16)

and are therefore (twisted) holomorphic in the I+ complex structure. Similarly, one can

show the unpaired φ modes in (3.15) satisfy

∂̄−A,Aφ = 0 , (3.17)

where ∂̄−A,A denotes the (0, 1)− part of d−ikA−iA, and are therefore (twisted) holomorphic

in the I− complex structure. Notice that more precisely the unpaired B and φ modes are

sections of Vmatter ⊗ K−(r−2)/2
+ and Vmatter ⊗ Kr/2− , respectively, where Vmatter is the flat

matter vector bundle (2.33).

It is simple to see that the above holomorphic modes may be decomposed into modes

on M3 which have definite charge under the (twisted) Reeb vector field iL̂ 1
2
ξ. In particular,

writing a mode as

Φ(τ, xi) = e−2λΦ
ξ τ Φ̌(xi) , (3.18)

and using iL̂K = L 1
2
∂τ

+ iL̂ 1
2
ξ, one sees that

L̂KΦ(τ, xi) = 0 ⇐⇒ iL̂ 1
2
ξΦ̌(xi) = λΦ

ξ Φ̌(xi) . (3.19)

This shows that the modes on R×M3 defined by (3.9) were indeed independent of τ , and

therefore defined on M3, as already remarked below equation (3.9). Thus we can think of

the modes (3.18) as the “lifting to the cone” of the modes in the previous section. In fact

setting r = e−τ one sees that the metric on R×M3 is conformally related to the metric on

the cone C(M3): gC(M3) = dr2 + r2gM3 . Notice also that upon the Wick rotation t = iτ ,

these become Φ(t, xi) = e2iλΦ
ξ tΦ̌(xi), as expected for modes solving the free equations of

motion on R×M3 in Lorentzian signature [3]. These have to be contrasted with the modes

on S1 ×M3 discussed earlier, namely Φ̌(τ, xi) = e−inτ Φ̌(xi).

Recall that the supersymmetry algebra acting on fields contains the anti commutation

relation [7]

{δζ+ , δζ−} = 2iL̂K = 2
(
L 1

2
∂τ

+ iL̂ 1
2
ξ

)
, (3.20)

where δζ± denote supersymmetry variations with respect to the ζ± Killing spinors, respec-

tively. Comparing this with the anti-commutator in (3.11), one can identify the eigen-

values of the quantum mechanical operators Hsusy and Σ with those of the operators9

9After performing the Wick rotation t = iτ to go to Lorentzian signature.
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L 1
2
∂τ

and −iL̂ 1
2
ξ, acting on the classical modes, respectively. Therefore, the condition

L̂KΦ = 0 obeyed by the holomorphic modes (on the cone) may be interpreted as showing

that the Hamiltonian eigenvalues are equal to their Reeb charge, and is the counterpart of

〈Hsusy〉 = 〈Σ〉 in the supersymmetric quantum mechanics.

To summarise, the supersymmetric Casimir energy is computed by summing the Reeb

charges of (twisted) holomorphic modes on R ×M3, with fermionic and bosonic modes

corresponding to each complex structure I±, respectively.

4 Primary Hopf surfaces

In this section we re-examine the supersymmetric Casimir energy for the primary Hopf

surfaces S1 × S3 in the above formalism. This was first defined and computed in the path

integral approach in [2]. Since M3
∼= S3 there are no flat connections on M3.

4.1 Solving for the unpaired modes

Recall that the unpaired B and φ modes, that contribute to the supersymmetric Casimir

energy, are zero modes on C2 \ {0} of the twisted holomorphic differentials ∂̄+
A , ∂̄−A , re-

spectively, where the background R-symmetry gauge field A is given by (2.19) and the

operators are understood to act on fields of R-charge k. The curvature of A has Hodge

type (1, 1) with respect to both I±, and thus both differentials are nilpotent.

Using the global complex coordinates defined in section 2.2.1, it is straightforward to

solve explicitly for these zero modes. In what follows we assume that we are working in a

weight space decomposition of the matter representation R, so that for a fixed weight ρ we

have B = Bρ is a single scalar field. For the unpaired B modes we first note from (2.19)

that the (0, 1)+ part of A is

A(0,1)+
= − i

2
∂̄+ log(Ω3c)− 1

2
∂̄+ω . (4.1)

The equation ∂̄+
AB = 0 may thus be rewritten as

∂̄+
[
(Ω3c)−k/2|z+

1 z
+
2 |
k/2B

]
= 0 . (4.2)

In particular notice that we have used

(z+
1 z

+
2 )k/2 = |z+

1 z
+
2 |
k/2 e−i(k/2)ω , (4.3)

where ω = −ψ1 − ψ2. Recall that Ω is globally a nowhere zero function, while near the

complex axes (i.e. z+
1 = 0 and z+

2 = 0) the real function c behaves to leading order as

|c| ∼ |z+
1 |, |c| ∼ |z

+
2 |, respectively. This is required for regularity of the metric [2]. It

follows that the factor in front of B inside the square bracket in (4.2) is a real nowhere

zero function on C2 \ {0}. A basis of regular solutions is hence

B = Bn1,n2 ≡
(

Ω3c

|z+
1 z

+
2 |

)k/2
(z+

1 )n1(z+
2 )n2 , (4.4)

where n1, n2 ∈ Z≥0.
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One may similarly solve for the unpaired φ zero modes. Since from (2.19) we now have

A(0,1)− =
i

2
∂̄− log(Ω3c)− 1

2
∂̄−ω , (4.5)

and one obtains a basis of regular solutions given by

φ = φn1,n2 ≡
(

Ω3c

|z−1 z
−
2 |

)−k/2
(z−1 )n1(z−2 )n2 . (4.6)

The prefactors in front of the holomorphic monomials in the modes (4.4), (4.6) also

have a simple geometric interpretation. Recall that the Hermitian structure (gM4 , I+)

equips C2 \ {0} with the (2, 0)+-form

P+ ≡
1

2
ζ+(σ+)µνζ+ dxµ ∧ dxν = Ω3c e−iωdw ∧ dz . (4.7)

On the other hand, C2 has the global holomorphic (2, 0)+-form10

Ω+ ≡
1

2|b1||b2|
dz+

1 ∧ dz+
2 = iz+

1 z
+
2 dw ∧ dz , (4.8)

where we have used (2.20). Then

Ω3c

|z+
1 z

+
2 |

=

∣∣∣∣P+

Ω+

∣∣∣∣ , (4.9)

is simply the modulus of the ratio of these two canonically defined (2, 0)+-forms. A similar

computation shows that

Ω3c

|z−1 z
−
2 |

=

∣∣∣∣P−Ω−

∣∣∣∣ , (4.10)

where we define

Ω− ≡
1

2|b1||b2|
dz−1 ∧ dz−2 = iz−1 z

−
2 (dw + hdz) ∧ dz̄ . (4.11)

To summarize: the unpaired B modes are |P+/Ω+|k/2 times a holomorphic function on

C2 with respect to the I+ complex structure, while the unpaired φ modes are |P−/Ω−|−k/2

times a holomorphic function on C2 with respect to the I− complex structure. Here k = r−2

for B, while k = r for φ, where r is the R-charge of the matter multiplet.

As discussed in section 3.4, the contributions of these modes to the supersymmetric

Casimir energy is determined by their eigenvalues under iL̂ 1
2
ξ, where recall that acting on

scalars

iL̂ 1
2
ξ =

i

2
Lξ +

k

2
γ , (4.12)

where

γ ≡ −L 1
2
ξω =

1

2
(|b1|+ |b2|) . (4.13)

10This is not to be confused with the conformal factor Ω, especially in the following formulae.
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The eigenvalues are then easily computed:

iL̂ 1
2
ξBn1,n2 =

1

2
[−n1|b1| − n2|b2|+ kγ]Bn1,n2 = λBn1,n2

Bn1,n2 ,

iL̂ 1
2
ξφn1,n2 =

1

2
[n1|b1|+ n2|b2|+ kγ]φn1,n2 = λφn1,n2

φn1,n2 , (4.14)

where we have used that the Reeb vector is given by (2.24), and hence

Lξz±i = ±i|bi|z±i , i = 1, 2 . (4.15)

We may now further reinterpret the eigenvalues λB, λφ, using our earlier description of

the holomorphic volume forms Ω±. Recall that A is a connection on K−1/2
+ , so that ∂̄+

A acts

on sections of K−k/2+ . In the case at hand K+
∼= Λ2,0

+ is a trivial bundle over C2\{0}, but the

holomorphic section Ω+ of K+ leads to a canonical lifting of the U(1) × U(1) action, with

generators ∂ψ1 , ∂ψ2 , to the fibre. Specifically, since Ω+ satisfies L∂ψiΩ+ = iΩ+, i = 1, 2, the

generators (q1, q2) ∈ U(1)× U(1) acting on C2 = C⊕ C as (z+
1 , z

+
2 )→ (q1z

+
1 , q2z

+
2 ) act as

multiplication by q1q2 on Ω+. With this understanding, the eigenvalue λB is the eigenvalue

of the ordinary Lie derivative iL 1
2
ξ acting on holomorphic sections of K−k/2+ . Here the action

on the fibre contributes precisely −k
2 (−γ) = k

2γ to iL 1
2
ξ, since iL 1

2
ξΩ+ = −γΩ+.

A similar reasoning applies to the φ modes. Here −A is a connection on K−1/2
− , so

that ∂̄−A acts on sections of Kk/2− . Again the canonical bundle is trivial, but the action of

(q1, q2) ∈ U(1) × U(1) above on the fibre is now (q1q2)−1. This follows from the relative

minus signs in the phases in (2.23), (2.25). The action on the fibre then again contributes

precisely k
2γ to iL 1

2
ξ, since now iL 1

2
ξΩ− = γΩ− .

Notice that with these definitions K+
∼= (K−)−1 as equivariant holomorphic line bun-

dles under U(1)×U(1).

4.2 The character

The supersymmetric Casimir energy is (formally, before regularization)

Ematter
susy =

∑
n1,n2∈Z≥0

λBn1,n2
+

∑
n1,n2∈Z≥0

λφn1,n2
, (4.16)

where the eigenvalues are those on the right hand side of (4.14). Here we have introduced

the superscript “matter” to emphasize that in what follows we focus on the contribution

of a single weight ρ in a weight space decomposition of the chiral matter representation

R. We have seen that the eigenvalues in (4.16) are precisely Reeb charges, under iL 1
2
ξ, of

holomorphic sections of K−k/2+ and Kk/2− , respectively, where k = r−2 for the B modes and

k = r for the φ modes. Thus it is natural at this point to introduce the index-character

of [8] that counts such holomorphic sections according to their U(1) × U(1) charges. We

take the U(1)×U(1) generators to be (q1, q2), which act as

(z±1 , z
±
2 ) → (q±1

1 z±1 , q
±1
2 z±2 ) . (4.17)
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For the B modes we have the associated index-character

C(∂̄K−k/2+

, (q1, q2)) =
∑

n1,n2≥0

(q1q2)−k/2 · qn1
1 qn2

2 . (4.18)

The left hand side is defined as the trace of the action of (q1, q2) on the zero modes of the

operator ∂̄K−k/2+

. The right hand side of (4.18) is a divergent series for |q1| = |q2| = 1, but

by analytically continuing to |q1|, |q2| < 1 the series converges to give

C(∂̄K−k/2+

, (q1, q2)) =
(q1q2)−k/2

(1− q1)(1− q2)
. (4.19)

This then effectively regularizes the eigenvalue sum. Indeed, setting q1 = et|b1|, q2 = et|b2|

and formally expanding (4.18) in a Taylor series around t = 0, the coefficient of −t is

precisely 2λBn1,n2
= −n1|b1| − n2|b2| + kγ. Recalling that the B modes have k = r − 2,

we hence see that according to this “character regularization” their contribution to the

supersymmetric Casimir energy is

EBsusy =
1

2

 (q1q2)−(r−2)/2

(1− q1)(1− q2)

∣∣∣∣∣
q1 = et|b1|, q2 = et|b2|


coefficient of −t

=
1

96|b1||b2|
(|b1|+ |b2|)(r − 1)

[
(|b1|+ |b2|)2(r − 1)2 − (b21 + b22)

]
=

1

2
· 4u3 − (b21 + b22)u

24|b1||b2|

∣∣∣∣
u= (r−1)γ

, (4.20)

where the second equality is by a simple direct computation. This is indeed the correct

contribution of the unpaired B modes to the supersymmetric Casimir energy!

The φ modes work similarly. The relevant character is now

C(∂̄Kk/2−
, (q1, q2)) =

∑
n1,n2≥0

(q1q2)−k/2 · q−n1
1 q−n2

2 . (4.21)

Summing the series for |q1|, |q2| > 1 we obtain

C(∂̄Kk/2−
, (q1, q2)) =

(q1q2)−k/2

(1− q−1
1 )(1− q−1

2 )
=

(q1q2)−(k−2)/2

(1− q1)(1− q2)
. (4.22)

Recalling that φ has R-charge r, we see that their contribution is also precisely the right

hand side of the first line of (4.20). Thus they contribute equally to the supersymmetric

Casimir energy, as expected, Eφsusy = EBsusy.

4.3 Zeta function versus heat kernel regularization

At first sight the result just obtained is somewhat remarkable, because we regularized

the eigenvalue sum (4.16) using the index-character (via analytic continuation to a simple

geometric series), while in previous work the sum in (4.16) is regularized using the Barnes

double zeta function. The two regularization schemes lead to the same result.
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This may be explained as follows. In order to regularize each sum in (4.16) in a

supersymmetric fashion one should replace11∑
n

λn →
∑
n

λn f(λn, t) , (4.23)

with f(x, t) a function chosen so that the sum converges. Requiring that f(x, 0) = 1, the

value of the regularized sum is given by the finite part in the limit that the parameter t→ 0.

Indeed, supersymmetric counterterms exist that may be added to remove divergences ap-

pearing as poles in t−2 and t−1. However, the fact that finite supersymmetric counterterms

do not exist [18] implies that the finite part is unambiguous, and therefore independent

of the details of the regularization. There are two natural choices. Picking f(λn, t) = λ−tn
leads to the spectral zeta function regularization, while the choice f(λn, t) = e−tλn leads

to the heat kernel regularization, which as we shall see is the “character regularization” we

have used above. It is well known that these two are related to each other via the Mellin

transform.

In the case of interest the sums in (4.16) were regularized in [4] using the Barnes double

zeta function, defined as

ζ2(t; |b1|, |b2|, x) ≡
∑

n1,n2∈Z≥0

(|b1|n1 + |b2|n2 + x)−t , (4.24)

where x = rγ for the physical case of interest. Here we have focused on the φ modes. The

sum in (4.24) converges for Re t > 1 and one analytically continues to t = −1 obtaining [19]

Ematter
susy =

u3

6|b1||b2|
− (b21 + b22)u

24|b1||b2|
, (4.25)

where we have defined u = (r − 1)γ = x− γ. Note that

1

2
ζ2 (−1; |b1|, |b2|, u+ γ) = −1

2
ζ2 (−1; |b1|, |b2|,−u+ γ) , (4.26)

so that the contributions to Ematter
susy of the modes φ and B are indeed identical.

Alternatively, in the heat kernel regularization we are led to consider

S(t; |b1|, |b2|, x) ≡
∑

n1,n2∈Z≥0

e−t(|b1|n1+|b2|n2+x) , (4.27)

and we extract Ematter
susy from the coefficient of −t in a series around t = 0. This is precisely

the character regularization we introduced above. Concretely,

S(t; |b1|, |b2|, x) =
e−tx

(1− e−t|b1|)(1− e−t|b2|)

=
(q1q2)−r/2

(1− q−1
1 )(1− q−1

2 )

∣∣∣∣∣
q1 = et|b1|, q2 = et|b2|

, (4.28)

where recall that x = rγ, and in the second line we have precisely the character (4.22) for

the φ modes.

11Below n denotes a multi-index.
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4.4 Rewriting as a Dirac character

In the above discussion we saw that both the B and φ unpaired modes lead to the same

contribution to the supersymmetric Casimir energy. However, the discussion is not quite

symmetric because B has R-charge k = r − 2, while φ has R-charge k = r. One can put

these on the same footing, with overall R-charge r − 1, by effectively further twisting the

∂̄ operators, thus viewing them as (part of) a Dirac operator.

Let us begin with the φ zero modes. The relevant operator is

∂̄Kr/2−
∼= ∂̄K1/2

− ⊗L−
, (4.29)

where we have defined

L− ≡ K(r−1)/2
− . (4.30)

Let us denote the weight on L− as λ = (q1q2)−(r−1)/2. Then the relevant character is

C(∂̄Kr/2−
, (q1, q2)) =

(q1q2)−1/2

(1− q−1
1 )(1− q−1

2 )
λ =

(q1q2)1/2

(1− q1)(1− q2)
λ , (4.31)

where the (q1q2)−1/2 in the numerator comes from the twisting by K1/2
− .

Similarly for the B zero modes the operator is

∂̄K−(r−2)/2
+

∼= ∂K1/2
+ ⊗L+

, (4.32)

where

L+ ≡ K−(r−1)/2
+ . (4.33)

Notice that the weight on L+ is also λ = (q1q2)−(r−1)/2, and indeed L+
∼= L−. Thus the

relevant character is

C(∂̄K−(r−2)/2
+

, (q1, q2)) =
(q1q2)1/2

(1− q1)(1− q2)
λ . (4.34)

This makes manifest that the two modes have the same character. In both cases the

operator is ∂̄± twisted by K1/2
± ⊗L±, which may be viewed as part of a Dirac-type operator

twisted by L±. From this point of view, the explicit (q1q2)1/2 factors come from the fact

that the modes transform as spinors under the U(1) ×U(1) action.

We may thus define

C(Dirac, (q1, q2, λ)) ≡ (q1q2)1/2

(1− q1)(1− q2)
λ . (4.35)

Setting q1 = et|b1|, q2 = et|b2|, λ = e−tu, we may expand in a Laurent series around t = 0

as above:

C(Dirac, (q1, q2, λ)) =
1

|b1||b2|t2
− u

|b1||b2|t
+

(
u2

2!|b1||b2|
− b21 + b22

24|b1||b2|

)
−
(

u3

3!|b1||b2|
− (b21 + b22)u

24|b1||b2|

)
t (4.36)

+

(
u4

4!|b1||b2|
− (b21 + b22)u2

24 · 2!|b1||b2|
+

7(b21 + b22)− 4b21b
2
2

5760|b1||b2|

)
t2 +O(t3) .
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We immediately see that the divergent “index”, which is given by setting t = 0, arises as

a second order pole, while the coefficient of the linear term in −t precisely reproduces the

regularized supersymmetric Casimir energy (setting u to its physical value of u = (r−1)γ).

Of course this is simply equivalent to the computation in (4.20), although now the equal

contribution of the B and φ modes is manifest.

The appearance of the A-roof class in the expansion (4.36) is explained by the following

identity:

Â(iθ1, iθ2)

χ(iθ1, iθ2)
=

1

(q
1/2
1 − q−1/2

1 )(q
1/2
2 − q−1/2

2 )
=

(q1q2)1/2

(1− q1)(1− q2)
, (4.37)

where q1 = eiθ1 , q2 = eiθ2 . Here the numerator on the left hand side is the A-roof class,

which in general is defined as

Â(x1, . . . , xn) =

n∏
i=1

xi

exi/2 − e−xi/2
=

n∏
i=1

xi
2 sinhxi/2

, (4.38)

while the denominator is the Euler class

χ(x1, . . . , xn) =
n∏
i=1

xi . (4.39)

In the usual index theorem the xi would be the first Chern classes of the line bundles that

arise on application of the splitting principle. In the equivariant setting these are replaced

by xi + iθi, where the group action on the complex line fibre is multiplication by eiθi .

The Euler class cancels against the numerator of (4.38), which leads to the first equality

in (4.37). The A-roof class may be expanded as

Â = 1− 1

24
p1 +

1

5760
(7p2

1 − 4p2) + · · · , (4.40)

where the Pontryagin classes pI are the Ith elementary symmetric functions in the x2
i .

Thus in particular for complex dimension n = 2 we have p1 = x2
1 + x2

2, p2 = x2
1x

2
2. These

comments of course explain the structure of the right hand side of (4.36). Analytically

continuing q1 = et|b1|, q2 = et|b2| amounts to sending iθi → t|bi| above. Then (4.36) may be

rewritten as

C(Dirac, (q1, q2, λ)) =
e−tu

4 sinh(t|b1|/2) sinh(t|b2|/2)
(4.41)

=
1

|b1||b2|t2

(
1− b21 + b22

24
t2 +

7(b21 + b22)2 − 4b21b
2
2

5760
t4 + · · ·

)
e−tu .

The middle term in brackets is the contribution from the A-roof class. This of course

explains the observation in [5] that the supersymmetric Casimir energy on the primary

Hopf surface is obtained (formally) by an equivariant integral on R4 associated to the

Dirac operator. This arises naturally in the way we have formulated the problem. Here

the supersymmetric Casimir energy is the coefficient of −t in an expansion of the index-

character of the Dirac operator, where the latter is regularized by analytically continuing

a divergent geometric series into its domain of convergence. Mathematically, this arises as

a heat kernel regularization, as opposed to a (Barnes) zeta function regularization.
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5 Secondary Hopf surfaces and generalizations

5.1 Lens spaces

The simplest way to generalize the primary Hopf surfaces studied in the previous section is

to take a Γ ∼= Zp quotient. These secondary Hopf surfaces were described at the beginning

of section 2.2.2. With respect to either complex structure I± the Zp action is generated by

(z1, z2) → (e2πi/pz1, e
−2πi/pz2), where zi = z±i , i = 1, 2. This action preserves the Killing

spinors ζ±, and hence in particular the function s and holomorphic volume forms on C2.

The quotient M3 = S3/Zp = L(p, 1) is then a Lens space.

Since π1(M3) ∼= Zp, the space R ×M3 now supports non-trivial flat connections. As

discussed in section 3, the localized partition function on S1 ×M3 splits into associated

topological sectors, which are summed over. In the Hamiltonian approach, each such

sector leads to a distinct supersymmetric quantum mechanics on R. Following the end

of section 2.3, here we consider a U(N) gauge theory with matter in a representation R
in a weight space decomposition. The modes B = Bρ, φ = φρ then become sections of

K−k/2+ ⊗ L and Kk/2− ⊗ L, respectively, where the line bundle L over R × L(p, 1) has first

Chern class c1(L) ≡ ρ(m) mod p. In the Hamiltonian approach, and for fixed topological

sector m, we thus want to compute a twisted character, which counts holomorphic sections

of K−k/2+ ⊗L and Kk/2− ⊗L according to their U(1)×U(1) charges (where as usual k = r−2

for B and k = r for φ).

Recall that holomorphic functions on C2 are counted by

C(∂̄, (q1, q2),C2) =
1

(1− q1)(1− q2)
. (5.1)

The Dirac index-character (4.35) is constructed from this by multiplying by (q1q2)1/2λ,

which takes account of the lifting of the U(1) × U(1) action to K∓k/2± . More generally,

holomorphic sections of L over C2/Zp, where c1(L) ≡ ν mod p, are counted by the twisted

character

C(∂̄L, (q1, q2),C2/Zp) =
qν1 (1− (q1q2)p−ν) + qp−ν2 (1− (q1q2)ν)

(1− (q1q2))(1− qp1)(1− qp2)
. (5.2)

Here ν is understood to lie in the range 0 ≤ ν < p, and as usual one expands the denom-

inator in a geometric series, for |q1|, |q2| < 1. Perhaps the simplest way to derive (5.2) is

via an appropriate projection of (5.1). Recall that the Zp action on C2 is generated by

(z1, z2)→ (ωpz1, ω
−1
p z2), where ωp ≡ e2πi/p. The twisted character is then

C(∂̄L, (q1, q2),C2/Zp) =
1

p

p−1∑
j=0

ω−jνp

(1− ωjpq1)(1− ω−jp q2)
. (5.3)

One easily verifies that this may be simplified to give (5.2). For zero twist, meaning ν = 0,

we are simply counting holomorphic functions on C2/Zp, and (5.2) reads

C(∂̄, (q1, q2),C2/Zp) =
(1− (q1q2)p)

(1− (q1q2))(1− qp1)(1− qp2)

=
1 + q1q2 + (q1q2)2 + · · ·+ (q1q2)p−1

(1− qp1)(1− qp2)
. (5.4)

This is the index-character of an Ap−1 = C2/Zp singularity.
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Thus the contribution of a matter field, for weight ρ and fixed flat connection m, leads

to a supersymmetric Casimir energy (in the sector α = m ∈Mflat) given by the character

(q1q2)1/2
[
qν1 (1− (q1q2)p−ν) + qp−ν2 (1− (q1q2)ν)

]
(1− (q1q2))(1− qp1)(1− qp2)

λ . (5.5)

As in section 4, the Casimir energy is obtained by substituting q1 = et|b1|, q2 = et|b2|,

λ = e−tu, and extracting the coefficient of −t in a Laurent series around t = 0. This is

easily done, and we find

Ematter
susy,m =

1

24|b1||b2|p
[
4u3 − (b21 + b22 − 2|b1||b2|(p2 − 6νp+ 6ν2 − 1))u

+2|b1||b2|(|b1| − |b2|)ν(ν − p)(2ν − p)
]
, (5.6)

where ν = ρ̂(m). Here the hat indicates that ν is understood to lie in the range 0 ≤ ν < p,

and thus ρ(m) ∈ Z should be reduced mod p to also lie in this range. Recall that we fixed

the convention that 0 ≤ mi < p, and ordered m1 ≤ · · · ≤ mN . As usual we should also put

u = (r − 1)γ, where γ = (|b1| + |b2|)/2. This is the contribution from the weight ρ; one

should of course then sum over weights to get the total contribution of the matter field, in

the sector m.

The partition function on S1×L(p, 1) has been computed in [15], and fixing the sector

m one can check that indeed

Ematter
susy,m = − lim

β→∞

d

dβ
logZmatter

m . (5.7)

See equations (5.32)–(5.34) of [15]. Thus the Hamiltonian approach does indeed correctly

reproduce the supersymmetric Casimir energy, defined in terms of the partition function,

for each topological sector.

5.2 Fixed point formula

In [8] it was explained that the index-character may be computed for a general isolated

singularity by first resolving the singularity, and using a fixed point formula. In the case

at hand C2/Zp = Ap−1 is well-known to admit a crepant resolution, meaning that the

holomorphic (2, 0)-form extends smoothly to the resolved space, by blowing up p− 1 two-

spheres. The action of U(1) × U(1) on C2/Zp extends to the resolution, which is hence

toric, with p isolated fixed points. Each such fixed point is of course locally modelled by

C2, and the general formula in [8] expresses the index-character of C2/Zp = Ap−1 in terms

of a sum of the index-characters for C2, for each fixed point. Labelling the fixed points by

j = 0, . . . , p− 1, explicitly we have

C(∂̄, (q1, q2),C2/Zp) =

p−1∑
j=0

1

(1− qu
(j)
1

1 q
u

(j)
2

2 )(1− qv
(j)
1

1 q
v

(j)
2

2 )

. (5.8)

Here the action of U(1) × U(1) on each fixed origin of C2 is specified by the two vectors

u(j) = (u
(j)
1 , u

(j)
2 ),v(j) = (v

(j)
1 , v

(j)
2 ) ∈ Z2 as

(z1, z2) → (q
u

(j)
1

1 q
u

(j)
2

2 z1, q
v

(j)
1

1 q
v

(j)
2

2 z2) . (5.9)
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One finds (for example using toric geometry methods) that

u(j) = (p− j,−j) , v(j) = (−p+ j + 1, j + 1) , (5.10)

and (5.8) reads

C(∂̄, (q1, q2),C2/Zp) =

p−1∑
j=0

1

(1− qp−j1 q−j2 )(1− q−p+j+1
1 qj+1

2 )
, (5.11)

which one can verify agrees with (5.4).

Let us define the matter contribution to the supersymmetric Casimir energy for S3 as

Ematter
susy [S3; b1, b2] =

4u3 − (b21 + b22)u

24b1b2
. (5.12)

Then (5.8) leads to the following fixed point formula for the Casimir for S1×L(p, 1) (with

trivial flat connection):

Ematter
susy [L(p, 1); b1, b2] =

p−1∑
j=0

Ematter
susy [S3; b

(j)
1 , b

(j)
2 ]

=
4u3 − [(|b1|+ |b2|)2 − 2|b1||b2|p2]u

24|b1||b2|p
. (5.13)

Here we have defined

b
(j)
1 ≡ p|b1| − j(|b1|+ |b2|) , b

(j)
2 ≡ −p|b1|+ (j + 1)(|b1|+ |b2|) . (5.14)

In fact (b
(j)
1 , b

(j)
2 ), j = 0, . . . , p− 1, are precisely the Reeb weights at the p fixed points. In

this precise sense, we may write the supersymmetric Casimir energy for the secondary Hopf

surface (S1 × S3)/Zp as the sum of p Casimir energies for primary Hopf surfaces S1 × S3,

where each fixed point contribution has a different complex structure, determined by (5.14).

This data is in turn determined by the equivariant geometry of the resolved space.

5.3 More general M3

In section 2.2.2 we discussed more general classes of secondary Hopf surfaces, realised as

Γ = ΓADE ⊂ SU(2) quotients of primary Hopf surfaces. The A series is precisely the

Lens space case discussed in the previous subsection, while the D and E series result in

non-Abelian fundamental groups. The formalism we have described gives a prescription

for computing the supersymmetric Casimir energy Esusy (or at least the matter contri-

bution Ematter
susy ) for such backgrounds. One first needs to classify the inequivalent flat G-

connections on M3 = S3/Γ, via their corresponding homomorphisms % : Γ → G. A given

matter representation R of G then gives a corresponding flat R-connection, from which

one constructs the matter bundle (2.33). For each such flat connection one then needs to

compute the index-character of this bundle, namely one counts holomorphic sections via

their Reeb charges. The supersymmetric Casimir energy, in this topological sector, is then

obtained as a limit of this index-character.
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5.3.1 Poincaré Hopf surface

In practice, one thus first needs to understand the representation theory of the relevant non-

Abelian groups, before one can compute the associated index-characters. An interesting but

simple example is provided by the exceptional group Γ = ΓE8 : this is the binary icosahedral

group, which has order 120. The quotient M3 = S3/Γ is the famous Poincaré sphere, which

has the homology groups of S3, despite the very large fundamental group. This follows

since ΓE8 is equal to its commutator subgroup, and hence its Abelianization (which equals

H1(M3,Z)) is trivial. Related to this fact is that consequently any homomorphism into

an Abelian group is necessarily trivial. This is easy to see: since any group element

g ∈ Γ may be written as g = hvh−1v−1, then for any homomorphism % : Γ → G we

have %(g) = %(h)%(v)%(h)−1%(v)−1 = identity, where in the last step we used that G is

Abelian. This shows that, for example, any flat U(1) connection over the Poincaré sphere

is necessarily trivial. Because of this, to compute the supersymmetric Casimir energy we

need only the index-character of C2/Γ. But this is easily computed by realizing the latter

as a homogeneous hypersurface singularity

C2/ΓE8
∼= {fE8 ≡ Z3

1 + Z5
2 + Z2

3 = 0} ⊂ C3 . (5.15)

Here the polynomial fE8 has degree d = 30 under the weighted C∗ action on C3 with

weights (w1, w2, w3) = (10, 6, 15). From the general formula in [20] we thus compute the

index-character

C(∂̄, q,C2/ΓE8) =
1− q30

(1− q6)(1− q10)(1− q15)
= 1 + q6 + q10 + q12 + q15 + . . . .(5.16)

Here q ∈ C∗ acts diagonally on C2/ΓE8 as (z1, z2)→ (q1/2z1, q
1/2z2). Notice that the centre

of ΓE8 is Z2, which acts as multiplication on (z1, z2) by −1. The holomorphic (2, 0)-form

thus has weight q under the C∗ action, and the supersymmetric Casimir energy for an

Abelian gauge theory on the “Poincaré Hopf surface” is

Ematter
susy =

[
q1/2λ · 1− q30

(1− q10)(1− q6)(1− q15)

∣∣∣∣
q= et|b|, λ= e−tu

]
coefficient of −t

=
4u3 + 539b2u

720b2
. (5.17)

The Reeb vector field acting on (z1 = |z1|eiψ1 , z2 = |z2|eiψ2) is

ξ = ∂ψ =
|b|
2

(∂ψ1 + ∂ψ2) , (5.18)

while for a matter multiplet of R-charge r we have u = (r − 1)|b|/2.

5.3.2 Homogeneous hypersurface singularities

For an Abelian gauge theory on the Poincaré Hopf surface just discussed, any flat connec-

tion over S3/ΓE8 is trivial, and thus the index-character that counts holomorphic functions

on C2/ΓE8 is sufficient to compute the supersymmetric Casimir energy. However, more

– 27 –



J
H
E
P
0
8
(
2
0
1
6
)
1
1
7

generally we may easily extend the above discussion to compute Esusy for Z quotients of

homogeneous hypersurface singularities in the sector with trivial flat connection. These are

compact complex surfaces of the form M4 = S1×M3, where M3 is the link of the singularity.

Consider a general weighted homogeneous hypersurface singularity in C3. Here the

weighted C∗ action on C3 is (Z1, Z2, Z3) → (qw1Z1, q
w2Z2, q

w3Z3), where wi ∈ N are the

weights, i = 1, 2, 3, and q ∈ C∗. The hypersurface is the zero set X ≡ {f = 0} ⊂ C3 of a

weighted homogeneous polynomial f = f(Z1, Z2, Z3), where

f(qZ1, qZ2, qZ3) = qdf(Z1, Z2, Z3) , (5.19)

which defines the degree d ∈ N. We assume that f is such that X \ {o} ∼= R ×M3 is

smooth, where o is the origin Z1 = Z2 = Z3 = 0. The associated compact complex surface

is obtained as a free Z quotient of X \ {0}, where Z ⊂ C∗ is embedded as n→ qn for some

fixed q > 1. The Reeb vector field action is quasi-regular, generated by q ∈ U(1) ⊂ C∗, and

the quotient Σ2 = M3/U(1) is in general an orbifold Riemann surface. This construction of

course includes all the spherical three-manifolds in section 2.2.2, for which M3
∼= S3/ΓADE

and Σ2 has genus g = 0, but it also includes many other Seifert three-manifolds. For

example, taking weights (w1, w2, w3) = (1, 1, 1) and f to have degree d, then M3 is the

total space of a circle bundle over a Riemann surface Σ2 of genus g = (d− 1)(d− 2)/2.

Such homogeneous hypersurface singularities are Gorenstein canonical singularities,

meaning they admit a global holomorphic (2, 0)-form Ω0, defined on the complement of

the isolated singularity at Z1 = Z2 = Z3 = 0. With respect to the I+ complex structure,

so that we identify Ω0 = Ω+, we may then write

Ω0 = κ dz ∧ dw , (5.20)

where z and w are the local coordinates defined by supersymmetry on R×M3, defined in

section 2.1, and κ = κ(z, w) is a local holomorphic function. The argument in section 4.1

then generalizes to give that the unpaired B modes that contribute to the supersymmetric

Casimir energy are

B =

∣∣∣∣P+

Ω+

∣∣∣∣k/2 F , (5.21)

where |P+/Ω+| = Ω3c/|κ| is a real, globally defined, nowhere zero function on X \{o} , and

F is a holomorphic function on X. This follows since P+ and Ω+ are both globally defined,

and being both (2, 0)-forms are necessarily proportional. The holomorphic functions F on

X are spanned by monomials Zn1
1 Zn2

2 Zn3
3 , where ni ∈ Z≥0, modulo the ideal generated by

the defining polynomial f . The index-character that counts such holomorphic functions

according to their weights under q ∈ C∗ is

C(∂̄, q,X) =
1− qd

(1− qw1)(1− qw2)(1− qw3)
. (5.22)

The φmodes work similarly, with respect to the second complex structure I−. This may

be defined globally in this setting as follows. The singularity X may be viewed as a complex
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cone over the orbifold Riemann surface Σ2 = M3/U(1). Here R ×M3 may be identified

with a (orbifold) C∗ fibration over Σ2, with the isolated singularity arising by contracting

the whole space to a point. In terms of the coordinates defined by supersymmetry, the

C∗ action is generated by the complex vector field K. The I− complex structure is then

obtained by reversing the sign of the complex structure on the base Σ2, while keeping that

of the C∗ fibre. This leads to the same complex manifold, although of course the map

between the two copies is not holomorphic. As for the primary Hopf surfaces in section 4,

the unpaired φ modes then give an identical contribution to the B modes above.

It follows that the relevant character is

C(q, λ,X) ≡ q(−d+
∑3
i=1 wi)/2λ · C(∂̄, q,X) , (5.23)

where C(∂̄, q,X) is the index-character (5.22). Here the power of q is precisely 1
2 the

charge of the holomorphic (2, 0)-form (arising as usual since A is a connection on K−1/2
+ ),

and q ∈ C∗ is the generator of the C∗ action. The supersymmetric Casimir energy in this

case is obtained as usual by setting q = et|b|, λ = e−tu, and extracting the coefficient of

−t in a Laurent series about t = 0. A simple calculation shows that this leads to the

supersymmetric Casimir energy

Ematter
susy =

4du3 − (w2
1 + w2

2 + w2
3 − d2)db2u

24b2w1w2w3
. (5.24)

Here u = (r− 1)γ for a matter multiplet of R-charge r, where now 1/2 the Reeb charge of

the holomorphic (2, 0) form is γ = (−d+
∑3

i=1wi)|b|/2. For example, the Lens space case

L(p, 1) in sections 5.1, 5.2 is w1 = 2, w2 = w3 = p, d = 2p (with |b1| = |b2| = |b|), while

the Poincaré Hopf surface in section 5.3.1 is w1 = 10, w2 = 6, w3 = 15, d = 30. We stress

again that (5.24) gives the matter contribution to the supersymmetric Casimir energy in

the topological sector with trivial flat gauge connection. For non-trivial flat connections

one would instead need to compute the index-character of the relevant (flat) matter bundle.

5.4 Full supersymmetric Casimir energy

As in much of the previous literature, in this paper we have focused attention on the

contribution of a matter multiplet to the supersymmetric Casimir energy. However, we

expect that the vector multiplet contribution will also arrange into short multiplets, and

will similarly be related to (twisted) holomorphic functions. At least for primary Hopf

surfaces, and secondary Hopf surfaces with M3 = L(p, 1), previous results in the literature

imply that the contribution of a vector multiplet to the supersymmetric Casimir energy is

(formally) obtained from the contribution of a matter multiplet by (i) setting the R-charge

r = 0 (since the dynamical gauge field has zero R-charge), (ii) replacing weights ρ by roots

α of the gauge group G, and finally (iii) reversing the overall sign. In this subsection we

will simply conjecture this is true more generally, at least in the sector with trivial flat

connection on which we focus.

Given this conjecture, it is straightforward to combine the matter multiplet re-

sult (5.24) for a general homogeneous hypersurface singularity with the vector multiplet
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result, and sum over relevant weights/roots. Remarkably, we find the following simple

formula for the total supersymmetric Casimir energy

Esusy =
2|b|
27

dc3
1

w1w2w3
(3c− 2a) +

|b|
3

dc1

w1w2w3
(c2

1 − c2)(a− c) . (5.25)

Here we have defined

c1 ≡ −d+

3∑
i=1

wi , c2 ≡ −d2 +

3∑
i=1

w2
i , (5.26)

which depend on the weights (w1, w2, w3) and degree d of the hypersurface singularity,

while a and c denote the usual trace anomaly coefficients,

a =
3

32
(3TrR3 − TrR) =

3

32

[
2|G|+

∑
ρ

(
3(rρ − 1)3 − (rρ − 1)

)
|Rρ|

]
, (5.27)

c =
1

32
(9TrR3 − 5TrR) =

1

32

[
4|G|+

∑
ρ

(
9(rρ − 1)3 − 5(rρ − 1)

)
|Rρ|

]
,

with R being the R-symmetry charge, and the trace running over all fermions.

By setting (w1, w2, w3) = (2, p, p), d = 2p, which correspond to Ap−1 singularities with

corresponding secondary Hopf surfaces S1 × L(p, 1), one sees that (5.25) reduces to

Esusy =
16|b|
27p

(3c− 2a) +
4|b|p

3
(a− c) . (5.28)

This agrees with the β → ∞ limit of the partition function in [15], and reproduces the

original primary Hopf surface result of [2] when p = 1.

One can make a number of interesting observations about the general formula (5.25).

Firstly, it depends on the choice of supersymmetric gauge theory only via a and c. Secondly,

the coefficient of the term (3a− 2c) is related to the Sasakian volume of M3 via

vol(M3) =
d

w1w2w3
· 1

|b|2
· vol(S3) . (5.29)

Here vol(S3) = 2π2 is the volume of the standard round metric on the unit sphere, and the

Reeb vector is normalized as ξ = |b|ζ, where ζ generates the canonical U(1) ⊂ C∗ action on

the hypersurface singularity. M3 is the link of this singularity, and any compatible Sasakian

metric on M3 has volume given by (5.29), as follows from the general formula in [20]. The

metric on M3 is not in general Sasakian, but the point is that M3 is equipped in general with

an (almost) contact one-form η = dψ + a. The corresponding contact volume 1
2

∫
M3

η ∧ dη

depends only on the Reeb vector, and thus agrees with the Sasakian volume. We shall

briefly comment further on this in the discussion section. We also note that in (5.25)

c1 = −d+
∑3

i=1wi is the first Chern class (number) of the (orbifold) anti-canonical bundle

of the orbifold Riemann surface Σ2 = M3/U(1) (more precisely, global sections of K−1
Σorb are

given by weighted homogeneous polynomials of degree c1). Thirdly, we have suggestively

denoted c2 = −d2 +
∑3

i=1w
2
i . Of course this is not supposed to suggest the second Chern

class/number of a line bundle, which is zero, but rather is a quadratic invariant of the

singularity that takes a similar form to c1. It would be interesting to understand the

geometric interpretation of the second term, proportional to (a− c), in (5.25).
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6 Discussion

In this paper we have shown that the supersymmetric Casimir energy Esusy of four-

dimensional N = 1 field theories defined on S1 × M3 is computed by a limit of the

index-character counting holomorphic functions on (or more generally holomorphic sec-

tions over) the space R×M3. In particular, the latter is equipped with an ambi-Hermitian

structure, and the short multiplets contributing to the supersymmetric Casimir energy are

in one-to-one correspondence with (twisted) holomorphic functions, with respect to either

complex structure. As examples of Seifert three-manifolds M3 we considered S3, as well

as the links S3/ΓADE of ADE hypersurface singularities in C3. For M3
∼= S3 our analysis

explains the relation of the supersymmetric Casimir energy to the anomaly polynomial,

pointed out in [5]. In the case of M3
∼= L(p, 1) we obtained formulas that may inde-

pendently be derived using the path integral results of [15]; while, to our knowledge, the

formulas for the D and E singularities have not appeared before. We have also presented

a formula (5.25) for the supersymmetric Casimir energy when M3 is the link of a general

homogeneous hypersurface singularity, in the trivial flat connection sector, and assuming

a conjecture for the vector multiplet contribution.

Our analysis can be extended in various directions. The localization results of [2, 15]

strongly suggest that in the supersymmetric quantum mechanics the contributions of the

vector multiplet will also also arrange into short multiplets. One should show explicitly

that these are indeed related to (twisted) holomorphic functions, and therefore ultimately

to the index-character we have studied (and in particular hence prove (5.25)). In this paper

we have explained how to incorporate the contributions of discrete flat connections on M3,

considering M3
∼= L(p, 1) as concrete example. It may be interesting to work out more

examples. Moreover, here we have not addressed the role of continuous flat connections

arising when π1(M3) is infinite. Ultimately, the complete supersymmetric Casimir energy of

a theory should be obtained by appropriately minimizing over the set of all flat connections,

and it would be nice to see whether this quantity may be used as a new test of dualities

between different field theories and/or geometries.

Using the formulas presented in appendix A one can also easily obtain new supersym-

metric indices for theories defined on S1 ×M3, where M3 is the Seifert link of the D and

E type hypersurface singularities. It would be interesting to explore their properties, as

they involve a generalization of the elliptic gamma function appearing for M3
∼= S3 [2] and

M3
∼= L(p, 1) [15, 23, 24].

We close our discussion by recalling that it is not clear how to reproduce the super-

symmetric Casimir energy with a holographic computation in a supergravity solution, even

for M3 = S3
round. See for example [28, 29] for some attempts and further discussion. Let

us point out that the formula (5.25) shows that in the large N limit the supersymmet-

ric Casimir energy (in the trivial flat connection sector) is proportional to N2 · vol(M3).

We expect that it should be possible to reproduce this result from a dual holographic

computation, and indeed we will report on this in [30].
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A Supersymmertic index from the character

In this appendix we return to the supersymmetric index I [9], clarifying its relation to the

index-character, that is the main subject of this paper.

A.1 Primary Hopf surfaces

We begin with the case M3
∼= S3 and consider the modifications needed for the extension

to more general M3 in the next subsection. Following [9], we can work on M4 = R ×
S3

round, with the complex structure parameters of the Hopf surfaces emerging as fugacities

associated to two commuting global symmetries [2, 11]. The supersymmetric index may

be defined quite generally for any theory that admits the superalgebra (3.11), in terms of

a trace over states in the Hilbert space, as

I(x) = Tr(−1)F xΣ , (A.1)

where F is the fermion number. A standard argument then shows that the net contribution

to the trace arises from states obeying Ξ ≡ Hsusy−Σ = 0. As this quantity does not depend

on continuous parameters it can be computed in the free theory, where it takes the form

of a plethystic exponential

I(x) = Pexp (f(x)) ≡ exp

( ∞∑
k=1

1

k
f(xk)

)
. (A.2)

Physically, this is the grand-canonical partition function written in terms of the single

particle partition function f(x), counting single particle states (annihilated by Ξ) of the

free theory. In practice, the operator Σ appearing in the superalgebra is given by Σ =

−(2JL3 + R), where R is the R-symmetry and JL3 is the angular momentum associated to

rotations in U(1) ⊂ SU(2)L ⊂ SU(2)L × SU(2)R. One can introduce a second fugacity

y conjugated to the angular momentum JR3 associated to rotations in U(1) ⊂ SU(2)R ⊂
SU(2)L × SU(2)R. After changing variables,12 setting p1 = xy and p2 = x/y, the single

particle index for a chiral multiplet is given by [21]

fmatter(p1, p2) =
(p1p2)

r
2 − (p1p2)

2−r
2

(1− p1)(1− p2)
, (A.3)

and the contribution of a chiral multiplet to the supersymmetric index then reads

Imatter(p1, p2) =

∞∏
n1,n2≥0

1− (p1p2)−r/2pn1+1
1 pn2+1

2

1− (p1p2)r/2pn1
1 pn2

2

= Γ((p1p2)r/2; p1, p2) , (A.4)

where Γ(z; p1, p2) is the elliptic gamma function.

12In this section we will denote p1, p2 the variables in which the index is written naturally in terms of

elliptic gamma functions. We will later make contact with the variables q1, q2 used in the previous sections.
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It was noticed in [2, 22] that the supersymmetric Casimir energy can be extracted

from the single particle index by setting p1 = et|b1|, p2 = et|b2|, and taking the finite part

of the limit

Esusy(|b1|, |b2|) =
1

2
lim
t→0

d

dt
f(p1, p2) . (A.5)

Below we will clarify the reason why this limit reproduces the supersymmetric Casimir

energy by relating fmatter(p1, p2) to the index-character counting holomorphic functions.

For the computation of fmatter(p1, p2) we can use the ingredients worked out in [3, 17].

In particular, the expressions for the operators Hsusy, R, J
L
3 , J

R
3 can be found in these

references,13 written in terms of bosonic and fermionic oscillators. For example, writing

Ξ = Ξbos + Ξfer, we have

Ξbos =
1

2

∞∑
`=0

`
2∑

m,n=− `
2

Ξa`m

(
a`mna

†
`mn + a†`mna`mn

)
+ Ξb`m

(
b`mnb

†
`mn + b†`mnb`mn

)
, (A.6)

and

Ξfer =
1

2

∞∑
`=0

`
2∑

n=− `
2

`
2∑

m=− `
2
−1

Ξc`m

(
c`mnc

†
`mn − c

†
`mnc`mn

)

− 1

2

∞∑
`=1

`
2∑

n=− `
2

`
2
−1∑

m=− `
2

Ξd`m

(
d`mnd

†
`mn − d

†
`mnd`mn

)
, (A.7)

with

Ξa`m = `+ 2 + 2m , Ξb`m = `+ 2m,

Ξc`m = − (`+ 2 + 2m) , Ξd`m = − `+ 2m,

and similar expressions for the other operators. There are four types of single particle

states in the Fock space, namely |a`,m,n〉 = a†`mn|0〉, |b`,m,n〉 = b†`mn|0〉, |c`,m,n〉 = c†`mn|0〉,
and |d`,m,n〉 = d†`mn|0〉. However, the only zero-modes of Ξ are

|b`,− `
2
,n〉 , |c`,− `

2
−1,n〉 , (A.8)

while there are no zero-modes of the a-type and d-type states. These have m = − `
2 and

m = − `
2 − 1, respectively, which are precisely the shortening conditions obeyed by the φ

and B modes, in the special case of the round three-sphere [4]. These two sets of modes are

contributing non-trivially to (A.3). Let us now show this explicitly. From the definition

fmatter(x, y) = tr(−1)FxΣy2JR3 = fbos(x, y)− ffer(x, y) , (A.9)

13We use the notation of [3]. For simplicity, and to make contact with [21], we are setting the parameters

κ, ε in [3] to κ = −1, ε = 1.
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where here the trace is over the single particle states in (A.8), and we have

fbos(x, y) =

∞∑
`=0

xr+`

`
2∑

n=− `2

y2n =
xr

(1− xy)(1− x
y )
,

ffer(x, y) =

∞∑
`=0

x`−r+2

`
2∑

n=− `2

y2n =
x2−r

(1− xy)(1− x
y )

. (A.10)

To derive these we used14

Σ |b`,− `
2
,n〉 = (r + `)|b`,− `

2
,n〉 , Σ |c`,− `

2
−1,n〉 = −(r − 2− `)|c`,− `

2
−1,n〉 , (A.11)

and

JR3 |b`,− `
2
,n〉 = n|b`,− `

2
,n〉 , JR3 |c`,− `

2
−1,n〉 = n|c`,− `

2
−1,n〉 . (A.12)

Notice that the R-charge of the bosonic modes |b`,− `
2
,n〉 is r, while that of the fermionic

modes |c`,− `
2
−1,n〉 is −(r − 2). Thus fmatter(x, y) is counting the bosonic particles minus

the fermionic anti-particles [21].

In order to make contact with the main part of the paper, one can see that upon

making the identifications15 p1 = q−1
1 , p2 = q−1

2 , the first term in (A.3) is precisely the

character C(∂̄Kr/2−
, (q1, q2)) in (4.22), counting φ modes. On the other hand, the second

term is equal to the character C(∂K−(r−2)/2
+

, (q1, q2)), namely it can be identified with the

character counting B̃ modes. Notice that

C(∂K−(r−2)/2
+

, (q1, q2)) = C(∂̄Kr/2−
, (q−1

1 , q−1
2 )) . (A.13)

On taking the limit (A.5), the opposite signs in front of the fermionic part and in its

exponent cancel each other, effectively giving the same result as the limit of the character,

or Dirac character, that we considered before.

A.2 Secondary Hopf surfaces

Let us now discuss secondary Hopf surfaces M4 = S1 ×M3, starting with the case that

the fundamental group of M3 is Γ ∼= Zp. Thus M3 = L(p, 1) is a Lens space. The

supersymmetric index in this case was studied in [15, 23, 24]. We can work on the space

with a round metric on S1 × S3/Zp and obtain the modes by projecting from those on

the covering space S1 × S3. In the absence of a flat connection the modes on L(p, 1) are

precisely the Zp-invariant modes on S3. For example, for the scalar field φ, these are given

by the S3 hyperspherical harmonics Y mn
` satisfying 2n ≡ 0 mod p. More generally, in the

14Here the operators are normal ordered [21].
15The need for this change of variables originates from our definition of the complex structures. See

footnote 2. This is of course just a convention.
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presence of a flat connection with first Chern class c1(L), the modes that descend to the

Lens space from S3 obey the condition [23, 25]

2n ≡ c1(L) mod p . (A.14)

Since the flat connection can be removed locally by a gauge transformation, the eigen-

values of the operators Hsusy, R, J
L
3 , J

R
3 are unchanged. One can then compute the generat-

ing function by restricting the sums in (A.9) to the single particle states annihilated by Ξ of

the previous subsection, and further obeying the projection (A.14), with c1(L) = ρ(m) = ν.

Accordingly, the bosonic part is then given by

fbos(x, y) = xr
∞∑
`=0

x`
∑
n∈P

y2n , (A.15)

where P = {n ∈ {− `
2 , . . . ,

`
2} : 2n ≡ ν mod p}. The sums are then computed exactly as

in section 5.1, and we have

fbos(x, y) = xr
(xy)ν(1− x2(p−ν)) + (xy )p−ν(1− x2ν)

(1− x2)(1− (xy)p)(1− (xy )p)
. (A.16)

Expressing this in terms of the variables p1 = xy and p2 = x/y, we obtain

fp,νbos(p1, p2) = (p1p2)
r
2 C(∂̄L, (p1, p2),C2/Zp) . (A.17)

For the fermions in the complex conjugate multiplet, the projection condition has to

be modified as [24]

2n ≡ −ν mod p . (A.18)

This effectively swaps n1 and n2, or equivalently, p1 and p2. Therefore, the index counting

antifermions is given by

fp,νfer (p1, p2) = (p1p2)
2−r

2 C(∂̄L, (p2, p1),C2/Zp) , (A.19)

Again, it can be checked explicitly that fp,νfer (p1, p2) = fp,νbos(p
−1
1 , p−1

2 ), showing the char-

acter contributing to the fermions is counting anti -holomorphic sections, as opposed to

the bosonic character, which counts holomorphic sections. Of course, the result of the

limit (A.5) reproduces precisely the supersymmetric Casimir energy in (5.6).

In order to compute the supersymmetric index using the plethystic exponential, it is

convenient to write the twisted Lens space character as

C(∂̄L, (p1, p2),C2/Zp) =
pν1

(1− p1p2)(1− pp1)
+

pp−ν2

(1− p1p2)(1− pp2)
. (A.20)

Using this, it is immediate to obtain the index in the factorised form [24], namely

Imatter
p,ν (p1, p2) = Γ((p1p2)

r
2 pp−ν2 ; pp2, p1p2) Γ((p1p2)

r
2 pν1 ; pp1, p1p2) , (A.21)

where notice that this does not contain any Casimir energy contribution.

– 35 –



J
H
E
P
0
8
(
2
0
1
6
)
1
1
7

The reasoning that led to the expression of the single particle index above should be

valid more generally for a theory defined on M4 = R ×M3 (where π1(M3) is finite), with

a fixed flat connection in a sector α ∈ Mflat. In particular, we expect that this is always

given by

fmatter(p1, p2) = (p1p2)
r
2 C(∂̄α, (p1, p2),M4)− (p1p2)−

r
2 C(∂̄α, (p

−1
1 , p−1

2 ),M4) .(A.22)

However, we will not pursue this direction further here. To illustrate our prescription, below

we will derive expressions for the (chiral multiplet contribution to the) supersymmetric

index in the class of homogeneous hypersurface singularities, in the sector without flat

connection.

As before, to evaluate the bosonic single letter partition function, we can start from

the theory on R × S3, and evaluate the sums as in (A.15) by projecting out the modes

not invariant under Γ ⊂ SU(2). This is equivalent to counting holomorphic functions on

C2 that are invariant under Γ. For Γ = Zp this is of course the case of the Lens space,

yielding (A.20). Let us then discuss the remaining D and E singularities. Implementing

the projection on the modes, we find

fDEbos (x) = xr
1− x2d

(1− x2w1)(1− x2w2)(1− x2w3)
, (A.23)

where the weights and degrees of the singularities can be read off from the defining equations

given in (2.30). For example, for the E8 singularity, corresponding to the Poincaré Hopf

surface, the (minimal) set of weights is (w1, w2, w3) = (10, 6, 15), with degree d = 30. For

the Dp+1 series the weights are (w1, w2, w3) = (2, p− 1, p) and the degree is d = 2p. Notice

that in all cases the series expansion of (A.23) does not contain odd powers of x. This is

because for Γ = ΓD and Γ = ΓE , Γ ⊃ Z2, where this acts as Z2 : (z1, z2)→ −(z1, z2).

Changing variable setting x = q1/2, we indeed find that

fDEbos (q) = qr/2
1− qd

(1− qw1)(1− qw2)(1− qw3)
= qr/2C(∂̄, q,C2/Γ) . (A.24)

Moreover, using that

w1 + w2 + w3 − d = 1 , (A.25)

we compute

fDEfer (q) = fDEbos (q−1) = q(2−r)/2C(∂̄, q,C2/Γ) . (A.26)

Thus the single particle index for the chiral multiplet reads

fmatter
DE (q) =

(qr/2 − q(2−r)/2)(1− qd)
(1− qw1)(1− qw2)(1− qw3)

, (A.27)

and taking the plethystic exponential it results in the following triple infinite products

Imatter
DE (q) =

∏∞
n1,n2,n3≥0

(
1− q1−r/2qn1w1+n2w2+n3w3

) (
1− qr/2+dqn1w1+n2w2+n3w3

)∏∞
n1,n2,n3≥0

(
1− qr/2qn1w1+n2w2+n3w3

) (
1− q1−r/2+dqn1w1+n2w2+n3w3

) .
(A.28)
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Notice that this cannot be expressed in term of the ordinary elliptic gamma functions.

However, interestingly, using the condition (A.25), valid for the D and E singularities, we

find that this can be written as

Imatter
DE (q) =

Γ(qr/2+d; qw1 , qw2 , qw3)

Γ(qr/2; qw1 , qw2 , qw3)
, (A.29)

where

Γ(z; q1, q2, q3) =
∞∏

n1,n2,n3≥0

(1− z−1qn1+1
1 qn2+1

2 qn3+1
3 ) (1− zqn1

1 qn2
2 qn3

3 ) (A.30)

is a generalization of the elliptic gamma function [26, 27].
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