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Abstract. In most real world scenarios, experts dispose of limited back-
ground knowledge that they can exploit for guiding the analysis process.
In this context, semi-supervised clustering can be employed to lever-
age such knowledge and enable the discovery of clusters that meet the
analysts’ expectations. To this end, we propose a semi-supervised deep
embedding clustering algorithm that exploits triplet constraints as back-
ground knowledge within the whole learning process. The latter consists
in a two-stage approach where, initially, a low-dimensional data embed-
ding is computed and, successively, cluster assignment is refined via the
introduction of an auxiliary target distribution. Our algorithm is evalu-
ated on real-world benchmarks in comparison with state-of-the-art unsu-
pervised and semi-supervised clustering methods. Experimental results
highlight the quality of the proposed framework as well as the added
value of the new learnt data representation.

1 Introduction

Clustering is by far one of the most popular machine learning task among com-
puter scientists, machine learning specialists and statisticians. Although it is
conceived to work in fully unsupervised scenarios, very often, its application in
real-world domains is supported by the availability of some, scarce, background
knowledge. Unfortunately, producing or extracting such background knowledge
(in terms of available class labels or constraints) is a time consuming and expen-
sive task. Hence, the amount of available background knowledge is not sufficient
for driving a supervised task. Still, it can be helpful in guiding a semi-supervised
learning process.

The aim of semi-supervised clustering is to take advantage of the few avail-
able side information to guide the clustering process towards a partitioning that
takes into account both the natural distribution of the data and the expectations
of the domain experts. One of the most popular class of semi-supervised cluster-
ing algorithms exploit the so-called pairwise constraints: the clustering process
is driven by a set of must-link (or similarity) and cannot-link (or dissimilarity)
pairs modeling the fact that two data examples involved in any of these con-
straints should belong to the same cluster (must-link) or not (cannot-link). Such
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constraints are successively exploited to either learning a distance metric [14, 7,
12] or forcing constraints during the clustering process [23], although the most
effective methods usually combine both strategies [4, 3, 19].

However, all these strategies suffer from the same two problems: i) two exam-
ples involved in a cannot-link constraint may actually be assigned to the wrong
clusters and still satisfy the constraint; ii) when constraints are generated from
the labeled portion of the training set (a common practice in semi-supervised
learning), and the class is rather loose (e.g., multiple clusters co-exist within the
same class), the must-link constraints would mislead the clustering algorithm
resulting in poor partitioning results. To address this issue, an alternative form
of supervision has been proposed: given three data examples xa, xp and xn,
one may impose that xa (called reference or anchor example) is closer to xp
(called positive example) than to xn (called negative example). Such relative
comparisons form the so-called triplet constraints [15].

In this paper, we propose Ts2DEC (Triplet Semi-Supervised Deep Embed-
ding Clustering). Ts2DEC is a deep embedding-based clustering framework that
leverages triplet constraints to inject supervision in the learning process. The
framework consists of a two-stage approach: i) an autoencoder extracts a low-
dimensional representation (embedding) of the original data and ii) an initial
cluster assignment is refined via the introduction of an auxiliary target distribu-
tion [25]. Both stages are guided by the knowledge supplied by triplet constraints.

By means of an extensive experimental study conducted on several real-
world datasets, we show that our approach outperforms state-of-the-art semi-
supervised clustering methods no matter how much supervision is considered.

2 Related Work

Early semi-supervised approaches used pairwise (e.g., must-link and cannot-link)
constraints to learn a metric space before applying standard clustering [14], or
to drive the clustering process directly [23]. In [23], a simple adaptation of k-
means that enforces must-link and cannot-link constraints during the clustering
process is described. [2] proposes a constrained clustering approach that lever-
ages labeled data during the initialization and clustering steps. Instead, [4] in-
tegrates both constraint-based and metric-based approaches in a k-means-like
algorithm. Davis et al., propose an information-theoretic approach to learning a
Mahalanobis distance function [7]. They leverage a Bregman optimization algo-
rithm [1] to minimize the differential relative entropy between two multivariate
Gaussians under constraints on the distance function. This approach has been
recently extended by Nogueira et al., who combine distance metric learning and
cluster-level constraints [19]. Zhu et al. present a pairwise similarity framework to
perform an effective constraint diffusion handling noisy constraints as well [28].

In recent years, the advances in the deep learning field have also fostered
new research in semi-supervised clustering. For instance, in [11], the author pro-
pose a semi-supervised clustering algorithm that directly exploits labels, instead
of pairwise constraints. Their algorithm generates an ensemble of multiresolu-
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tion semi-supervised autoencoders. The final partitioning is obtained by apply-
ing k-means on the new data representation obtained by stacking together all
the different low-dimensional embeddings. In a very recent work [21], a semi-
supervised extension to Deep Embedded Clustering (DEC [25]) is proposed.
DEC learns a low-dimensional representation via autoencoder and, successively,
it gradually refines clusters with an auxiliary target distribution derived from the
current softcluster assignment. Its semi-supervised extension [21], called Semi-
supervised Deep Embedded Clustering (SDEC) makes use of pairwise constraints
in the cluster refinement stage. Therefore, the learned feature space is such that
examples involved in a must-link (resp. cannot-link) constraint are forced to be
close (resp. far away) from each other.

Our approach is also based on DEC, but, contrary to [21], it exploits triplet
constraints introducing the background knowledge at the different stages of the
process: during the embeddings generation and during the clustering refinement.
We remind that, the expressiveness of triplet constraints has already demon-
strated to be effective in the constrained clustering task [15].

3 Triplet Semi-Supervised Deep Embedding Clustering

In this section, we introduce our semi-supervised clustering approach, called
Ts2DEC (Triplet semi-supervised Deep Embedding Clustering). The goal is
to group together a set of examples X = {xi}Ni=1 into C clusters given some
background knowledge in terms of constraints.

To this purpose, we model our problem using neural networks. In a nutshell,
given ML = {(xj , xl)} (resp. CL = {(xj , xl)}) the set of must-link (resp. cannot-
link) constraints, first we derive triplet constraints from these two sets. A triplet
constraint is defined as a tuple (xa, xp, xn) where xa is the anchor example
and xp (resp. xn) is the positive (resp. negative) example with the associated
semantic that xa and xp (resp. xa and xn) belong (resp. do not belong) to the
same cluster. Furthermore, due to transitivity, we also have that xp and xn do
not belong to the same cluster. Successively, due to the exponential number of
triplets we can generate, we adopt a simple and practical strategy to sample a
subset of such triplets. We remind that triplet selection is an hard task and some
research works are investigating how to smartly sample useful and informative
subsets of triplet constraints [26]. It is out of the scope of this work supplying
a method that competes with such strategies. On the other hand, we set up
an easy and ready to use approach that well fits our scenario. Once the set
of triplet constraints are chosen, we inject such background information into a
deep-learning based clustering algorithm [26, 9, 27].

More in detail, we integrate the semi-supervision during: i) the data embed-
ding generation, by alternating unsupervised and semi-supervised optimization
of the network parameters and ii) the clustering refinement stage when cluster
assignment hardening loss [18] is employed. Figure 1(a) and Figure 1(b) provide
a general overview of the embedding generation and clustering refinement stage,
respectively. For each stage, we depict with the rose color and the dotted line
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Fig. 1. General Overview of Ts2DEC: (a) Embedding Generation and (b) Clustering
Refinement. We depict with the rose color and the dotted line the components related
to the semi-supervised optimization (working on triplet constraints) while we depict
with the blue color and the solid line the fully unsupervised components (working on
the whole set of data X).

the components related to the semi-supervised optimization (working on triplet
constraints) while we depict with the blue color and the solid line the fully un-
supervised components (working on the whole set of data X). In the following,
we provide the details of all the algorithmic steps of our approach.

Triplets generation strategy The first preliminary step of Ts2DEC is the
generation of a set T of triplet constraints from the set ML and CL of must-link
and cannot-link constraints. To achieve this goal, first, we compute the transitive
closure from both sets [6], then, we leverage it to generate all possible triplet
constraints (xa, xp, xn). Generating triplets in such a way can produce a huge
number of constraints. Consequently, we limit the number of triplet constraints
by adopting the following strategy: for each pair (xa, xp), we randomly sample
a subset of possible examples that can play the role of negative examples (xn).
Here, we give more importance to background knowledge that groups together
similar examples (positive information) than information that forces examples
to be clustered apart (negative information). We adopt this strategy because,
during our experimental evaluations, we have empirically observed that positive
information seems more effective in stretching the representation manifold thus
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respecting the given background knowledge. In our experiments, we sample 30%
of all possible negative examples for each pair (xa, xp) in order to obtain a
reasonable trade off between performances and computational cost. The obtained
set of triplet constraints is denoted by T .

Embedding generation with background knowledge The core of Ts2DEC
involves a first stage in which semi-supervised embedding representations are
generated by means of autoencoder neural networks. This stage is depicted
in Figure 1(a). Autoencoders [16] are a particular kind of feed-forward neu-
ral network commonly employed to generate low-dimensional representation of
the original data by setting up a reconstruction task. The autoencoder network
is composed by two parts: i) an encoder network that transforms the original
data X into an embedding representation (EMB) and ii) a decoder network that
reconstructs the original data from the embedding representation. Furthermore,
the autoencoder network is layered and symmetric and the last layer of the
encoder part is generally referred as bottleneck layer. The commonly adopted
loss function optimized by an autoencoder network is the mean squared error
between the original data and the reconstructed one:

Lae =
1

|X|
∑
xi∈X

||xi − dec(enc(xi, Θ1), Θ2)||22 (1)

where enc(z,Θ1) is the encoder network with parameters Θ1, while dec(·, Θ2) is
the decoder network that reconstructs the data, with parameters Θ2.

For the encoder network, similarly to what proposed in [25], we adopt a feed-
forward neural network with four layers (resp. 500, 500, 2000, 10 neurons per
layer). The activation function associated to the first three (hidden) layers is
the Rectifier Linear Unit (ReLU) while, for the last (bottleneck) layer, a simple
linear activation function is employed [25]. The decoder is symmetrically derived
from the encoder reversing the hidden layers.

A semi-supervised autoencoder [8, 20] (denoted as SSAE), instead, is a multi-
task network that, in addition to the reconstruction task via its autoencoder
structure, also deals with a discrimination task (mainly classification) leverag-
ing the embedded representation. Conversely to most previous works on semi-
supervised autoencoders [8, 20, 11] where the SSAE exploits labeled data to per-
form classification as supervised task, here, we design a SSAE that, associated
to the reconstruction task, exploits the set T of triplet constraints to generate
the low-dimensional data embeddings EMB.

The set T of triplets is used to learn a triplet network which consists of three
different encoders/decoders with shared weights (highlighted in rose color and
dotted line in Figure 1(a)). In addition to the standard reconstruction loss, the
specific loss function (triplet loss) optimized by the model is defined as follows:

L
′

triplet =
∑

(xa,xp,xn)∈T

[d(xa, xp)− d(xa, xn) + α]+ (2)
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with
d(b, c) = ||normL2

(enc(b,Θ1))− normL2
(enc(c,Θ1))||22 (3)

where T is the set of triplet constraints, [x]+ = max(0, x) is the hinge loss,
||x||22 is the squared L2 norm of x, enc(x,Θ1) is the encoder network, with
weights parameters Θ1, applied on an example x, normL2

is a function that
performs the L2 normalization of the output of the encoder and α is the margin
hyperparameter usually involved in distance-based loss function to stretch the
representation space [26]. We consider α equal to 1.0 since distances are derived
by L2 normalization.

Additionally, we can observe that, due to the transitivity relation among the
examples in the triplet tuple, we can also define a second triplet loss function:

L
′′

triplet =
∑

(xa,xp,xn)∈T

[d(xa, xp)− d(xp, xn) + α]+ (4)

where the second term of the hinge loss, this time, consider the relationship
between the xp and xn examples. In the rest of the paper, L

′

triplet and L
′′

triplet

are exploited to introduce semi-supervision in the clustering process and we
use the notation Ltriplet to indicate the sum of the two triplet loss functions:

Ltriplet = (L
′

triplet + L
′′

triplet).
The overall architecture of our semi-supervised autoencoder involves the op-

timization of Ltriplet loss as well as the simultaneous reconstruction of the ex-
amples concerned by the constraints. Given T , the set of triplet constraints, the
loss function optimized by the SSAE is as follows:

Lssae =
1

|T |

([∑
t∈T

∑
xi∈t
||xi − dec(enc(xi, Θ1), Θ2)||22

]
+ λLtriplet

)
(5)

where t = (xa, xp, xn) is a generic triplet, λ is a hyperparameter that controls the
importance of the triplet loss term. Such loss function optimizes the parameters
Θ1 and Θ2 so as to optimize the data reconstruction as well as to meet the
constraint relationships expressed by the background knowledge. In Lssae, the
reconstruction term is considered with the aim of regularizing the action of
the Ltriplet loss. Therefore, we obtain embeddings that meet the requirements
expressed by the constraints as well as with the main reconstruction task.

We underline that, in our context, the embedding generation process involves
two different stages: the first one implies the optimization of the autoencoder loss
on the full set of data X while, the second one regards the optimization of the
semi-supervised autoencoder loss considering only the set of examples Xt (Xt =
{xi ∈ t|t ∈ T}) covered by the triplet constraint set. Algorithm 1 reports the
joint optimization procedure we employ to learn the weight parameters Θ1, Θ2.
In a generic epoch, the procedure optimizes: i) the unsupervised loss associated
to data reconstruction on the set of data X (line 3-4) and, ii) both reconstruction
and triplet losses (Lssae) considering the set of data involved in the set T (line 5-
6). The learning of parameters is achieved via a gradient descent based approach
using mini-batches. Finally, the data embeddings are generated considering the
Θ1 parameters associated to the encoder network enc(·, Θ1).
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Algorithm 1 Semi-supervised autoencoder optimization

Require: X, T , N EPOCHS
Ensure: Θ1, Θ2.
1: i = 0
2: while i < N EPOCHS do
3: Update Θ1 and Θ2 by descending the gradient:
4: ∇Θ1,Θ2

1
|X|

∑
xi∈X

||xi − dec(enc(xi, Θ1), Θ2)||22
5: Update Θ1, Θ2 by descending the gradient:

6: ∇Θ1,Θ2
1
|T |

([∑
t∈T

∑
xi∈t
||xi − dec(enc(xi, Θ1), Θ2)||22

]
+ λLtriplet(T )

)
7: i = i + 1
8: end while
9: return Θ1, Θ2

Clustering refinement with background knowledge Once the embedding
representation produced by the SSAE is obtained, the final stage consists in a
clustering refinement step via cluster assignment hardening [18, 25] as depicted in
Figure 1(b). Here, we iterate between computing an auxiliary target distribution
and minimizing the Kullback-Leibler (KL) divergence with respect to it. More
in detail, as depicted in Figure 1(b), we discard the decoder part of the previous
model (Θ2 parameters) but we still allow modifications of encoder parameters

Θ1. Given the initial cluster centroids {cj}|C|j=1, the cluster assignment hardening
technique tries to improve the partitioning using an unsupervised algorithm that
alternates between two steps: i) compute a soft assignment between the embed-
dings and the cluster centroids and ii) update the embedded data representation
and refine the cluster centroids by learning from current high confidence assign-
ments leveraging an auxiliary target distribution. The process is repeated until
convergence is achieved or a certain number of iterations is executed. To gen-
erate the clustering centroids we use K-Means on the embeddings produced by
the encoder network.

To compute the soft assignment, as commonly done in deep embedding clus-
tering approaches, we exploit the Student’s t-distribution as a kernel to measure
the similarity [17]:

qij =
(1 + ||EMBi − cj ||2)−1∑|C|
l=1

(1 + ||EMBi − cl||2)−1
(6)

where EMBi is the embedded representation of the i− th example obtained via
enc(xi, Θ1), cj (resp. cl) is the cluster centroid of the j− th (resp. l− th) cluster,
and qij is the soft assignment between example xi and cluster cj .

Once the soft assignments are computed, they are iteratively refined by learn-
ing from their high-confidence assignments with the help of an auxiliary target
distribution. The target distribution is defined as:

pij =
q2ij/

∑
i
qij∑

l
(q2il/

∑
i
qij)

(7)
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Such distribution forces the assignment to have stricter probabilities (closer to
0 or 1) by squaring the original distribution and then normalizing it [18].

To match the soft-assignment q with the auxiliary target distribution p,
we employ the Kullback-Leibler (KL) divergence as loss function to evaluate
the distance between the two probability distributions. The KL divergence is
computed between the soft assignment qi and the auxiliary distribution pi:
KL(P ||Q) =

∑
i pi · log pi

qi
.

Furthermore, we integrate the semi-supervision supplied by the background
knowledge in this step as well, by adding the information carried out by the
triplet constraints to the overall loss function:

Lsscr = KL(P ||Q) + λLtriplet (8)

The resulting loss function considers the auxiliary target distribution together
with the triplet constraints when upgrading the parameters of the encoder (Θ1).
Hence, this last step has also an influence on the way embeddings are computed.
As before, λ is an hyperparameter controlling the importance of the triplet loss
term and it is the same in the two steps of our framework. To optimize such
semi-supervised loss Lsscr we adopt a similar strategy to what proposed in Al-
gorithm 1. Finally, once convergence is reached, each example is assigned to the
cluster that maximizes its assignment score: cluster(xi) = argmaxjqij .

4 Experiments

In this section, we assess the effectiveness of Ts2DEC on several real world
datasets comparing its behavior w.r.t. competitors. Then, we consider the impact
of the different components of Ts2DEC by means of an ablation study. Finally,
we provide a visual inspection of the representation learnt by our strategy.

Competitors For the quantitative evaluation, we compare the performances
of Ts2DEC with those obtained by different unsupervised and semi-supervised
competing algorithms. The former are employed as baselines to understand the
gain related to the introduction of weak supervision; the latter consist of fair
state-of-the-art competitors that are more closely related to the task at hand.
As regards the unsupervised approaches, we consider K-Means and DEC [25],
a recent deep learning unsupervised clustering approach (the unsupervised clus-
tering algorithm Ts2DEC is built upon).
As semi-supervised clustering algorithms, we consider the following competi-
tors: a semi-supervised variant of K-Means, named MPCKmeans [4]; a recent
constrained spectral clustering method [5], called Spectral; two very recent deep
learning based methods named MSAEClust [11] and SDEC [21]. MPCKmeans
combines metric-learning and pairwise constraint processing to exploit the sup-
plied supervision as much as possible. Spectral captures constrained clustering
as a generalized eigenvalue problem via graph Laplacians. [11] employs an en-
semble of semi-supervised autoencoders to learn embedding representations that
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(a) USPS (b) Reuters10K

(c) fMNIST (d) Optdigits

Fig. 2. Results (in terms of NMI) of the different approaches varying the amount of
labeled samples per class on: a) USPS, b) Reuters10K, c) fMNIST and d) Optdigits
benchmarks.

fit the data as well as the background knowledge and that are finally used to
perform clustering. Finally, SDEC is a direct extension of DEC that integrates
the pairwise constraints in the clustering refinement stage, by adding an extra
term to the cluster assignment hardening loss.

Experimental settings and datasets To measure the clustering performances
of all the methods, we use the Normalized Mutual Information (NMI) [22] as
well the Adjusted Rand Index (ARI) [10]. Both NMI and ARI take their max-
imum value when the clustering partition completely matches the original one,
i.e., the partition induced by the available class labels. The NMI measure ranges
between [0, 1] while the ARI index ranges between [−1, 1]. Both evaluation met-
rics can be considered as an indicator of the purity of the clustering result. For
each dataset, both measures are computed considering the whole set of exam-
ples, including the ones on which the constraints are defined. We analyze the
behavior of the different methods according to increasing levels of supervision.
More in detail, we simulate the supervision in term of constraints, by selecting
a number of labeled examples per class and, successively, inducing the corre-
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sponding full set of constraints. We vary such amount of labeled examples per
class between 5 and 25 with a step of 5. Due to the randomness of the sample
selection process and the non deterministic nature of the clustering algorithms,
we repeat the sample selection step 5 times for each number of per-class labels
and, successively, we repeat the clustering process 10 times. For Ts2DEC we
derive the corresponding triplet constraints as explained in Section 3. Finally,
for each level of supervision, we report the average values of NMI and ARI. For
all the methods, the number of clusters is equal to the number of classes.
Ts2DEC is implemented via the Tensorflow python library and the implemen-
tation is available online 3. Model parameters are learnt using the Adam opti-
mizer [13] with a learning rate equal to 1 × 10−3 for the autoencoder (recon-
struction and triplet loss functions) and we use Stochastic Gradient Descent
with learning rate equal to 1 × 10−2 for the Clustering Refinement stage (KL
loss function) as done in DEC [25] and SDEC [21]. We set the value of λ equal
to 1 × 10−3, a batch size of 256 and a number of epochs equal to 50 for the
semi-supervised autoencoder. For the refinement clustering stage, we iterate the
procedure for 20 000 batch iterations as done in DEC [25] and SDEC [21]. For
all the competitors, we use publicly available implementations. For SDEC, the
source code was kindly provided by the authors of the related paper. Experiments
are carried out on a workstation equipped with an Intel(R) Xeon(R) W-2133,
3.6Ghz CPU, with 64Gb of RAM and one GTX1080 Ti GPU. To evaluate the
behavior of all the competing approaches the experiments are performed on four
publicly available datasets: (1) USPS is a handwritten digit recognition bench-
mark (10 classes) containing 9 298 grayscale images with size 16 x 16 pixels and
provided by the United States Postal Service. (2) fMNIST is a dataset of Za-
lando’s article images (shirt, sneakers, bags, etc..) consisting of 70 000 examples.
Each example is a 28x28 grayscale image, associated with a label from 10 classes.
It serves as a more complex drop-in replacement for the original MNIST bench-
mark [24]. (3)Reuters10k is an archive of English news stories labeled with a
category tree that contains 810 000 textual documents. Following [25], we used 4
root categories: corporate/industrial, government/social, markets and economics
as labels and excluded all documents with multiple labels. We randomly sam-
pled a subset of 10 000 examples and computed TF-IDF features on the 2 000
most frequent words. (4)Optdigits is a dataset of the UCI repository involving
optical recognition of handwritten digits. It contains 5 620 examples described
by 64 feature each.

Quantitative evaluation Figure 2 and 3 report the performances of the differ-
ent approaches on the four benchmarks in terms of NMI and ARI, respectively.
Notice that Spectral was not able to process the fMNIST benchmark due to the
fact that the original implementation cannot handle a dataset with 70 000 ex-
amples. We observe that both NMI and ARI depict a similar situation. At first
look, we note that Ts2DEC outperforms all the competing approaches regarding
any amount of supervision for all the four benchmarks. In addition, the graphs

3 https://gitlab.irstea.fr/dino.ienco/ts2dec
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(a) USPS (b) Reuters10K

(c) fMNIST (d) Optdigits

Fig. 3. Results (in terms of ARI) of the different approaches varying the amount of
labeled samples per class on: a) USPS, b) Reuters10K, c) fMNIST and d) Optdigits
benchmarks.

generally show that the margin gained by Ts2DEC increases with the amount
of available supervision. This behavior is particularly evident in USPS, fMNIST
and Reuters10k. Considering Optdigits, we observe an improvement between the
supervision value 5 and 10 while, later on, Ts2DEC remains stable according
to NMI and it slightly increases according to ARI. This is not the case for all
the other semi-supervised competitors. For instance, considering the fMNIST
benchmark, we note that all competitors remain almost stable while varying the
amount of supervision, underlying the fact that they are unable to exploit in-
creasing amount of background knowledge properly. Unexpectedly, we observe
that one of the best competitor is DEC, which is completely unsupervised. More
surprisingly, SDEC performs similarly to its unsupervised counterpart.

Ablation and parameter analysis In this section, we study the impact of
the different components of Ts2DEC that involve supervision, as well as the
sensitivity of our method to hyperparameter λ. To do this, we fix the amount
of supervision by considering 10 labeled examples from each class. For the first
study, we derive two variants of our method: i) Ts2DECv1 which considers back-
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Table 1. Impact of the different components of Ts2DEC considering the NMI measure.

Dataset Ts2DEC Ts2DECv1 Ts2DECv2
USPS 0.86 ± 0.02 0.86 ± 0.02 0.82 ± 0.03

fMNIST 0.65 ± 0.01 0.64 ± 0.01 0.64 ± 0.02

Reuters10k 0.64 ± 0.03 0.64 ± 0.03 0.61 ± 0.03

Optdigits 0.92 ± 0.01 0.91 ± 0.01 0.91 ± 0.02

(a) NMI (b) ARI

Fig. 4. Sensitivity analysis of the λ hyperparameter: NMI (a) and ARI (b) are reported
for increasing weight of semisupervision.

ground knowledge only to generate embeddings via semi-supervised autoencoder,
and ii) Ts2DECv2 which considers background knowledge only during the clus-
tering refinement stage. Table 1 reports the results of this study in terms of
NMI. We note that the best performances are obtained when semi-supervision is
injected at both stages of our process. Furthermore, we observe that Ts2DECv1

consistently achieves slightly better results than Ts2DECv2 in terms of NMI.
The results of the sensitivity analysis are given in Figure 4. In details, we let
the hyperparameter λ varies in the range {10−4, 10−3, 10−2, 10−1, 100}. At
first look, USPS, fMNIST and Optdigits exhibit a similar behavior. When λ is
too small (10−4), supervision is not that effective while, starting from λ equal
to 10−3, we observe that Ts2DEC achieves stable performances and becomes
insensitive to such parameter. On the other hand, for the Reuters10k dataset,
we note that the performances slightly decrease when λ increases. At a deeper
inspection, we observe that raising the value of λ results in an increase of the
standard deviation associated to the average value plotted in Figure 4. We re-
mind that this benchmark is characterized by a high-dimensional feature space
(2 000 features) and, the encoder/decoder architecture (inherited from the DEC
method) is unable to compress the original data properly and, simultaneously,
incorporate the supervision. This may explain the increasing instability and re-
duced performances when augmenting the importance of the semi-supervision.
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(a) DEC (b) SDEC

(c) MSAECLUST (d) Ts2DEC

Fig. 5. Visual inspection of different embeddings processed by TSNE.

Visual inspection Here, we visually analyze the embedding generated by our
approach on the Optdigits benchmark. To this end, we visually compare the
embeddings derived by Ts2DEC with the embeddings generated by the other
deep learning competitors considering an amount of labeled examples per class
equal to 10 (i), and by increasing the amount of background knowledge from
5 to 20 labels per class (ii). To obtain the two dimensional representations, we
apply the t-distributed stochastic neighbor embedding (TSNE) approach [17].
For this evaluation we consider 300 instances per class. In the former evaluation
(Figure 5), we clearly note that the visual representation induced by Ts2DEC
provides a better separation among examples belonging to different classes and,
simultaneously, locates examples belonging to the same class close to each other.
The latter experiment (Figure 5) shows the ability of Ts2DEC to modify the
data manifold exploiting the increasing amount of background knowledge. We
observe that clear differences exist between the embeddings learnt when 5 (Fig-
ure 6(a)) and 15 labeled examples (Figure 6(c)) per class are considered, the
latter providing significant better class separation than the former.
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(a) USPS (5 labels per class) (b) USPS (10 labels per class)

(c) USPS (15 labels per class) (d) USPS (20 labels per class)

Fig. 6. Visual inspection of the embedding generated by Ts2DEC (and processed by
TSNE) for increasing amounts of background knowledge.

5 Conclusion

We have presented Ts2DEC, a new semi-supervised deep embedding clustering
technique that integrates background knowledge as triplet constraints. More pre-
cisely, Ts2DEC integrates the background knowledge at two stages: i) during the
data embedding generation and ii) during the clustering refinement. Extensive
evaluations on real-world benchmarks have shown that Ts2DEC outperforms
state-of-the-art competitors w.r.t different amount of background knowledge.
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with background knowledge. In: ICML. pp. 577–584 (2001)

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. CoRR abs/1708.07747 (2017)

25. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: ICML. pp. 478–487 (2016)

26. Yu, B., Liu, T., Gong, M., Ding, C., Tao, D.: Correcting the triplet selection bias
for triplet loss. In: ECCV. pp. 71–86 (2018)

27. Zhao, Y., Jin, Z., Qi, G., Lu, H., Hua, X.: An adversarial approach to hard triplet
generation. In: ECCV. pp. 508–524 (2018)

28. Zhu, X., Loy, C.C., Gong, S.: Constrained clustering with imperfect oracles. IEEE
Trans. Neural Netw. Learning Syst. 27(6), 1345–1357 (2016)


