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Abstract

We propose a generalization of an RSA-like scheme based on Rédei
rational functions over the Pell hyperbola. Instead of a modulus which
is a product of two primes, we define the scheme on a multi-factor
modulus, i.e. on a product of more than two primes. This results
in a scheme with a decryption which is quadratically faster, in the
number of primes factoring the modulus, than the original RSA, while
preserving a better security. The scheme reaches its best efficiency
advantage over RSA for high security levels, since in these cases the
modulus can contain more primes. Compared to the analog schemes
based on elliptic curves, as the KMOV cryptosystem, the proposed
scheme is more efficient. Furthermore a variation of the scheme with
larger ciphertext size does not suffer of impossible group operation
attacks, as it happens for schemes based on elliptic curves.
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1 Introduction

RSA is the most widespread asymmetric encryption scheme. Its security
is based on the fact that the trapdoor function τN,e(x) = xe mod N , with
N = pq product of two large prime integers, and e an invertible element
in Zφ(N) (φ(N) being the Euler totient function), cannot be inverted by a
polynomial-time in N algorithm without knowing either the integers p, q,
φ(N) or the inverse d of e modulo φ(N). Thus the pair (N, e), called the
public key, is known to everyone, while the triple (p, q, d), called the secret
key, is only known to the receiver of an encrypted message.
Both encryption and decryption are performed through an exponentiation
modulo N . Precisely, the ciphertext C is obtained as C = M e (mod N),
and the original message M is obtained with the exponentiation M = Cd

(mod N). While usually the encryption exponent is chosen to be small, the
decryption exponent is about the size of N , implying much slower perfor-
mances during decryption with respect to encryption.
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Through the years many proposal have been presented trying to speed up
the decryption process. In this work we present the fastest, to the authors
knowledge, of such decryption algorithms whose security is based on the
factorization problem.
The presented scheme exploits different properties of Rédei rational func-
tions, which are classical functions in number theory. The proposed de-
cryption algorithm is quadratically, on the number of primes composing the
modulus N , faster than RSA.

The work is divided as follows. In Section ?? an overview of the main
schemes based on the factorization problem which successfully improved
RSA decryption step is presented. In Section ?? the main theoretical re-
sults underlying our scheme are described. Section ?? is devoted to the
presentation of the cryptographic scheme, and in Section ?? and ?? its se-
curity and efficiency are discussed, respectively. Section ?? concludes the
work.

2 Related work

In this section we briefly overview the main cryptographic schemes based
on the factorization problem that have been introduced in order to improve
RSA decryption step.
Usually, the general technique to speed up the RSA decryption step C = M e

(mod N) is to compute the exponentiation modulo each factor of N and then
obtain N using the Chinese Remainder Theorem.

2.1 Multifactor RSA

There exists variants of RSA scheme which exploit a modulus with more than
2 factors to achieve a faster decryption algorithm. This variants are some-
times called Multifactor RSA ([?]), or Multiprime RSA ([?], [?]). The first
proposal exploiting a modulus of the form N = p1p2p3 has been patented
by Compaq ([?], [?]) in 1997. About at the same time Takagi [?] proposed
an even faster solution using the modulus N = prq, for which the exponen-
tiation modulo pr is computed using the Hensel lifting method [?, p.137].
Later, this solution has been generalized to the modulus N = prqs [?].
According to [?] the appropriate number of primes to be chosen in order
to resist state-of-the-art factorization algorithms depends from the modulus
size, and, precisely, it can be: up to 3 primes for 1024, 1536, 2048, 2560,
3072, and 3584 bit modulus, up to 4 for 4096, and up to 5 for 8192.
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2.2 RSA-like schemes

Another solution which allows to obtain even faster decryption is to use
RSA-like schemes based on isomorphism as [?], [?], [?], [?]. As an addi-
tional property, these schemes owns better security properties with respect
to RSA, avoiding small exponent attacks to either d ([?]) or e ([?], [?]), and
vulnerabilities which appear when switching from one-to-one communica-
tion scenario to broadcast scenario (e.g., see [?]).
The aforementioned schemes are based on isomorphism between two groups,
one of which is the set of points over a curve, usually a cubic or a conic.
A complete overview on RSA-like schemes based on conics can be found in
[?]. In general, schemes based on cubic curves have a computationally more
expensive addition operation compared to schemes based on conic equations.

2.3 Generalizing RSA-like scheme with multifactor modulus

As done when generalizing from RSA to Multiprime RSA, in [?] a general-
ization of [?], [?] has been proposed, thus generalizing a RSA-like scheme
based on elliptic curves and a modulus N = pq to a similar scheme based
on the generic modulus N = prqs.
In this paper we present a similar generalization of the scheme [?], which is
based on the Pell’s equation, to the modulus N = pe11 · . . . · perr for r > 2,
obtaining the fastest decryption of all schemes discussed in this section.

3 Product of points over the Pell hyperbola

In [?], we introduced a novel RSA–like scheme based on an isomorphism
between certain conics (whose the Pell hyperbola is a special case) and a
set of parameters equipped with a non–standard product. In Section ??, we
generalize this scheme considering a prime power modulus N = pe11 · · · perr .
In this section, we recall some definitions and properties given in [?] in order
to improve the readability of the paper. Then, we study properties of the
involved products and sets in Zpr and ZN .

3.1 A group structure over the Pell hyperbola over a field

Let K be a field and x2−D an irreducible polynomial over K[x]. Considering
the quotient field A[x] = K[x]/(x2 −D), the induced product over A[x] is

(p+ qx)(r + sx) = (pr + qsD) + (qr + ps)x.

The group of unitary elements of A∗[x] = A[x] − {0A[x]} 1 is {p + qx ∈
A∗[x] : p2 − Dq2 = 1}. Thus, we can introduce the commutative group

1The element 0A[x] is the zero polynomial.
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(HD,K,⊗), where

HD,K = {(x, y) ∈ K×K : x2 −Dy2 = 1}

and

(x, y)⊗ (w, z) = (xw + yzD, yw + xz), ∀(x, y), (w, z) ∈ HD,K. (1)

It is worth noting that (1, 0) is the identity and the inverse of an element
(x, y) is (x,−y).

Remark 1. When K = R, the conic HD,K, for D a non–square integer,
is called the Pell hyperbola since it contains all the solutions of the Pell
equation and ⊗ is the classical Brahamagupta product, see, e.g., [?].

3.2 A parametrization of the Pell hyperbola

From now on let A = A[x].
Starting from A∗, we can derive a parametrization for HD,K. In particular,
let us consider the group A∗/K∗, whose elements are the equivalence classes
of A∗ and can be written as

{[a+ x] : a ∈ K} ∪ {[1K∗ ]}.

The induced product over A∗/K∗ is given by

[a+ x][b+ x] = [ab+ ax+ bx+ x2] = [D + ab+ (a+ b)x]

and, if a+ b 6= 0, we have

[a+ x][b+ x] = [
D + ab

a+ b
+ x]

else
[a+ x][b+ x] = [D + ab] = [1K∗ ].

This construction allows us to define the set of parameters PK = K∪{α},
with α not in K, equipped with the following product:

a� b =
D + ab

a+ b
, a+ b 6= 0

a� b = α, a+ b = 0
. (2)

We have that (PK,�) is a commutative group with identity α and the
inverse of an element a is the element b such that a+ b = 0. Now, consider
the following parametrization for the conic HD,K:

4



y =
1

m
(x+ 1) .

It can be proved that the following isomorphism between (HD,K,⊗) and
(PK,�) holds:

ΦD :



HD,K → PK

(x, y) 7→
1 + x

y
∀(x, y) ∈ HD,K, y 6= 0

(1, 0) 7→ α

(−1, 0) 7→ 0 ,

(3)

and

Φ−1
D :


PK → HD,K

m 7→

(
m2 +D

m2 −D
,

2m

m2 −D

)
∀m ∈ K

α 7→ (1, 0) ,

, (4)

see [?] and [?].

Proposition 1. When K = Zp, p prime, (PK,�) and (HD,K,⊗) are cyclic
groups of order p+ 1 and

m�(p+2) = m (mod p), ∀m ∈ PZp

or, equivalently

(x, y)⊗(p+2) = (x, y) (mod p), ∀(x, y) ∈ HD,Zp ,

where powers are performed using products � and ⊗, respectively. See [?].

The powers in PK can be efficiently computed by means of the Rédei
rational functions [?], which are classical functions in number theory. They
are defined by considering the development of

(z +
√
D)n = An(D, z) +Bn(D, z)

√
D,

for z integer and D non–square positive integer. The polynomials An(D, z)
and Bn(D, z) defined by the previous expansion are called Rédei polynomials
and can be evaluated by

Mn =

(
An(D, z) DBn(D, z)
Bn(D, z) An(D, z)

)
where

M =

(
z D
1 z

)
.
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From this property, it follows that the Rédei polynomials are linear recurrent
sequences with characteristic polynomial t2 − 2zt + (z2 − D). The Rédei
rational functions are defined by

Qn(D, z) =
An(D, z)

Bn(D, z)
, ∀n ≥ 1.

Proposition 2. Let m�n be the n–th power of m ∈ PK with respect to �,
then

m�n = Qn(D,m).

See [?].

Remark 2. The Rédei rational functions can be evaluated by means of an
algorithm of complexity O(log2(n)) with respect to addition, subtraction
and multiplication over rings [?].

3.3 Properties of the Pell hyperbola over a ring

In this section, we study the case K = Zpr that we will exploit in the next
section for the construction of a cryptographic scheme. In what follows, we
will omit from HD,K the dependence on D when it will be clear from the
context.

First, we need to determine the order of HZpr
in order to have a result

similar to Proposition ?? also in this situation.

Theorem 1. The order of the cyclic group HZpr
is pr−1(p + 1), i.e., the

Pell equation x2 − Dy2 = 1 has pr−1(p + 1) solutions in Zpr for D ∈ Z∗pr
quadratic non–residue in Zp.

Proof. Since, by Proposition ??, the Pell equation in Zp has p+ 1 solutions,
then we need to prove the following

1. any solution of the Pell equation in Zp, generates pr−1 solutions of the
same equation in Zpr ;

2. all the solutions of the Pell equation in Zpr are generated as in the
previous step.

(??) Let (x0, y0) be a solution of x2−Dy2 ≡ 1 (mod p). We want to prove
that for any integer 0 ≤ k < pr−1, there exists one and only one integer
h such that (x0 + kp, y0 + hp) is solution of x2 −Dy2 ≡ 1 (mod pr).
Indeed, we have

(x0 + kp)2 −D(y0 + hp)2 = 1 + vp+ 2x0kp+ k2p2 − 2Dy0hp−Dh2p2,

since x2
0 − Dy2

0 = 1 + vp for a certain integer v. Thus, we have that
(x0 + kp, y0 + hp) is solution of x2 −Dy2 ≡ 1 (mod pr) if and only if

Dph2 + 2Dy0h− v − 2x0k − k2p ≡ 0 (mod pr−1).
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Hence, we have to prove that there is one and only one integer h that
satisfies the above identity. The above equation can be solved in h by
completing the square and reduced to

(2Dph+ 2Dy0)2 ≡ s (mod pr−1), (5)

where s = (2Dy0)2 + 4(v + 2x0k + k2p)Dp. Let us prove that s is a
quadratic residue in Zpr−1 . Indeed,

s = 4D((x0 + kp)2 − 1)

and surely the Jacobi symbol

(
s

pr−1

)
=

(
s

p

)r−1

= 1 if r is odd.

If r is even we have that(
s

pr−1

)
=

(
4

pr−1

)(
D

pr−1

)(
(x0 + kp)2 − 1

pr−1

)
= 1

since

(
4

pr−1

)
= 1,

(
D

pr−1

)
=

(
D

p

)r−1

= −1 by hypothesis on D,(
(x0 + kp)2 − 1

pr−1

)
= −1, since (x0 + kp)2 − 1 ≡ Dy2

0 (mod p).

Now, let ±t be the square roots of s. It is easy to note that

t ≡ 2Dy0 (mod p), −t ≡ −2Dy0 (mod p)

or
−t ≡ 2Dy0 (mod p), t ≡ −2Dy0 (mod p).

Let us call t̄ the only one between t and −t that is equal to 2Dy0 in
Zp. Hence, Equation (??) is equivalent to the linear equation

ph ≡ (t̄− 2Dy0)(2D)−1 (mod pr−1),

which has one and only one solution, since t̄ − 2Dy0 ≡ 0 (mod p).
Note that, if t̄ is not equal to 2Dy0 in Zp the above equation has no
solutions. Thus, we have proved that any solution of the Pell equation
in Zp generates pr−1 solutions of the Pell equation in Zpr .

(??) Now, we prove that all the solutions of the Pell equation in Zpr are
generated as in step ??.
Let (x̄, ȳ) be a solution of x2 − Dy2 ≡ 1 (mod pr), i.e., x̄2 − Dȳ2 =
1 + wpr, for a certain integer w. Then x0 = x̄ − kp and y0 = ȳ − hp,
for h, k integers, are solutions of x2 −Dy2 ≡ 1 (mod p). Indeed,

(x̄− kp)2 −D(ȳ − hp)2 = 1 + wpr − 2x̄kp+ k2p2 + 2Dȳhp−Dh2p2 .
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As a consequence of the previous theorem, an analogous of the Euler
theorem holds for the product ⊗.

Theorem 2. Let p, q be prime numbers and N = prqs, then for all (x, y) ∈
HZN

we have

(x, y)⊗p
r−1(p+1)qs−1(s+1) ≡ (1, 0) (mod N)

for D ∈ Z∗N quadratic non–residue in Zp and Zq.

Proof. By Theorem ??, we know that

(x, y)⊗p
r−1(p+1) ≡ (1, 0) (mod pr)

and
(x, y)⊗q

s−1(s+1) ≡ (1, 0) (mod qs).

Thus, said (a, b) = (x, y)⊗p
r−1(p+1)qs−1(s+1), we have

(a, b) ≡ (1, 0) (mod pr),

i.e., a = 1 + kpr and b = hpr for some integers h, k. On the other hand, we
have

(a, b) ≡ (1, 0) (mod qs)⇔ (1 + kpr, hpr) ≡ (1, 0) (mod qs).

We can observe that 1 + kpr ≡ 1 (mod qs) if and only if k = k′qs for a
certain integer k′. Similarly, it must be h = h′qs, for an integer h′. Hence,
we have that (a, b) = (1 + k′prqs, h′prqs) ≡ (1, 0) (mod N).

Corollary 1. Let p1, ..., pr be primes and N = pe11 · . . . · perr , then for all
(x, y) ∈ HZN

we have

(x, y)⊗Ψ(N) = (1, 0) (mod N),

where
Ψ(N) = pe1−1

1 (p1 + 1) · . . . · per−1
r (pr + 1),

for D ∈ Z∗N quadratic non–residue in Zpi, for i = 1, ..., r.

Now, we can observe that when we work on ZN , the map ΦD is not
an isomorphism. Indeed, the orders of HD,ZN

and PZN
do not coincide.

However, it is still a morphism and we also have |Z∗N | = |H∗ZN
|, because of

the following proposition.

Proposition 3. With the above notation, we have that

1. ∀(x1, y1), (x2, y2) ∈ H∗ZN
, ΦD(x1, y1) = ΦD(x2, y2)⇔ (x1, y1) = (x2, y2);
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2. ∀m1,m2 ∈ Z∗N , Φ−1
D (m1) = Φ−1

D (m2)⇔ m1 = m2;

3. ∀m ∈ Z∗N , we have Φ−1(m) ∈ H∗ZN
and ∀(x, y) ∈ H∗ZN

, we have
ΦD(x, y) ∈ Z∗N .

See [?].

As a consequence, we have an analogous of the Euler theorem also for
the product �, i.e., for all m ∈ Z∗N the following holds

m�Ψ(N) = α (mod N) ,

where � is the special product in PZN
defined in Equation ??.

4 The cryptographic scheme

In this section, we describe our public–key cryptosystem based on the prop-
erties studied in the previous section.

4.1 Key generation

The key generation is performed by the following steps:

• choose r prime numbers p1, . . . , pr, r odd integers e1, . . . , er and com-
pute N =

∏r
i=1 p

ei
i ;

• choose an integer e such that gcd(e, lcm
∏r
i=1 p

ei−1
i (pi + 1)) = 1;

• evaluate d = e−1 (mod lcm
∏r
i=1 p

ei−1
i (pi + 1)).

The public or encryption key is given by (N, e) and the secret or decryption
key is given by (p1, . . . , pr, d).

4.2 Encryption

We can encrypt pair of messages (Mx,My) ∈ Z∗N×Z∗N , such that

(
M2
x − 1

N

)
=

−1. This condition will ensure that we can perform all the operations. The
encryption of the messages is performed by the following steps:

• compute D =
M2
x − 1

M2
y

(mod N), so that (Mx,My) ∈ H∗D,ZN
;

• compute M = Φ(Mx,My) =
Mx + 1

My
(mod N);

• compute the ciphertext C = M�e (mod N) = Qe(D,M) (mod N)

Notice that not only C, but the pair (C,D) must be sent through the insecure
channel.
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4.3 Decryption

The decryption is performed by the following steps:

• compute C�d (mod N) = Qd(D,C) (mod N) = M ;

• compute Φ−1(M) =

(
M2 +D

M2 −D
,

2M

M2 −D

)
(mod N) for retrieving the

messages (Mx,My).

5 Security of the encryption scheme

The proposed scheme can be attacked by solving one of the following prob-
lems:

1. factorizing the modulus N = pe11 · . . . · perr ;

2. computing Ψ(N) = pe1−1
1 (p1 + 1) · . . . · per−1

r (pr + 1), or finding the
number of solutions of the equation x2 − Dy2 ≡ 1 mod N , i.e. the
curve order, which divides Ψ(N);

3. computing Discrete Logarithm problem either in (H∗ZN
,⊗) or in (P∗ZN

,�);

4. finding the unknown d in the equation ed ≡ 1 mod Ψ(N);

5. finding an impossible group operation in PZN
;

6. computing Mx,My from D.

5.1 Factorizing N or computing the curve order

It is well known that the problem of factorizing N = pe11 ·. . .·perr is equivalent
to that of computing the Euler totient function φ(N) = pe1−1

1 (p1 − 1) · . . . ·
per−1
r (pr − 1), e.g. see [?] or [?, Section 10.4].

In our case we need to show the following

Proposition 4. The problem of factorizing N is equivalent to computing
Ψ(N) = pe1−1

1 (p1 + 1) · . . . · per−1
r (pr + 1) or the order of the group P∗ZN

(or
equivalently of H∗ZN

), which is a divisor of Ψ(N).

Proof. Clearly, knowing the factorization of N yields Ψ(N).
Conversely, suppose N and Ψ(N) are known. A factorization of N can be
found by applying Algorithm ?? recursively.
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Remark 3. Algorithm ?? is an adaptation of the general algorithm in [?,
Section 10.4], used to factorize N by only knowing φ(N) (Euler totient
function) and N itself. The main idea of the Algorithm ?? comes from the
fact that x�Ψ(N) = 1 (mod N) for all x ∈ Z∗N , which is the analog of the
Euler theorem in PZN

. Notice that, because of Step ??, Algorithm ?? is
a probabilistic algorithm. Thus, to find a non-trivial factor, it might be
necessary to run the algorithm more than once. We expect that a deeper
analysis of the algorithm will lead to a similar probabilistic behaviour than
the algorithm in [?], which returns a non-trivial factor with probability 1/2.

Algorithm 1 Find a factor of N by knowing N and Ψ(N)

1: function Find factor(N ,Ψ(N))
2: h = 0
3: t = Ψ(N)
4: while IsEven(t) do
5: h = h + 1
6: t = t / 2

7: a = Random(N − 1)
8: d = gcd(a,N)
9: if d 6= 1 then

10: return d
11: b = a�t mod N
12: for j = 0, . . . , h− 1 do
13: d = gcd(b+ 1, N)
14: if d 6= 1 or d 6= N then
15: return d
16: b = b2 mod N
17: return 0

Since we proved that the problems ?? and ?? are equivalent, we can only
focus on the factorization problem.
According to [?], state-of-the-art factorization methods as the Elliptic Curve
Method [?] or the Number Field Sieve [?], [?] are not effective if in the
following practical cases

• |N | = 1024, 1536, 2048, 2560, 3072, 3584 and N = pe11 p
e2
2 p

e3
3 with e1 +

e2 + e3 ≤ 3 and pi, i = 1, 2, 3 greater than approximately the size of
3
√
N .

• |N | = 4096 and N = pe11 p
e2
2 p

e3
3 p

e4
4 with e1 + e2 + e3 + e4 ≤ 4 and

pi, i = 1, . . . , 4 greater than approximately the size of 4
√
N .

• |N | = 8192 and N = pe11 p
e2
2 p

e3
3 p

e4
4 p

e5
5 with e1 + e2 + e3 + e4 + e5 ≤ 5

and pi, i = 1, . . . , 5 greater than approximately the size of 5
√
N .
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Notice that currently, the largest prime factor found by the Elliptic Curve
Method is a 274 bit digit integer [?]. Note also that the Lattice Factoring
Method (LFM) of Boneh, Durfee, and Howgrave-Graham [?] is designed to
factor integers of the form N = puq only for large u.

5.2 Computing the Discrete Logarithm

Solving the discrete logarithm problem in a conic curve can be reduced to
the discrete logarithm problem in the underlying finite field [?]. In our case
the curve is defined over the ring ZN . Solving the DLP over ZN without
knowing the factorization of N is as hard as solving the DLP over a prime
finite field of approximately the same size. As for the factorization problem,
the best known algorithm to solve DLP on a prime finite field is the Number
Field Sieve. When the size of N is greater than 1024 then the NFS can not
be effective.

5.3 Solving the private key equation

In the case of RSA, small exponent attacks ([?], [?], [?]) can be performed
to find the unknown d in the equation ed ≡ 1 mod Ψ(N). Generalization
of these attacks can be performed on RSA variants where the modulus is
of the form N = pe11 p

e2
2 [?]. It has already been argued in [?], [?] and [?]

that this kind of attacks fails when the trapdoor function is not a simple
monomial power as in RSA, as it is in the proposed scheme.

5.4 Finding an impossible group operation

In the case of elliptic curves over ZN , as in the generalized KMOV cryp-
tosystem [?], it could happen that an impossible addition between two curve
points occurs, yielding the factorization of N . This is due to the fact that
the addition formula requires to perform an inversion in the underlying ring
ZN . However, as shown by the same authors of [?], the occurrence of an
impossible addition is very unlikely for N with few and large prime factors.
In our case an impossible group operation may occur if a + b is not in-
vertible in ZN , i.e. if gcd(a + b,N) 6= 1, yielding in fact a factor of N .
However, also in our case, if N contains a few large prime factors, impos-
sible group operations occur with negligible probability, as shown by the
following proposition.

Proposition 5. The probability to find an invertible element in PZN
is

approximately

1−
(

1− 1

p1

)
· . . . ·

(
1− 1

pr

)
Proof. The probability to find an invertible element in PZN

is given by
dividing the number of non-invertible elements in PZN

by the total number
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of elements of this set, as follows:

|PZN
| −#{invertible elements in PZN

}
|PZN

|
= (6)

=
|ZN |+ 1− (#{invertible elements in ZN}+ 1)

|ZN |+ 1
= (7)

=
N − φ(N)

N + 1
= (8)

∼1−
(

1− 1

p1

)
· . . . ·

(
1− 1

pr

)
(9)

where we used N ∼ N + 1 and φ(N) = N
(

1− 1
p1

)
· . . . ·

(
1− 1

pr

)
.

This probability tends to zero for large prime factors.

Let us notice that, in the Pell curve case, it is possible to avoid such situ-
ation, by performing encryption and decryption in H∗ZN

, without exploiting
the isomorphism operation. Here the group operation ⊗ is defined between
two points on the Pell curve, as in Equation ??, and does not contain the
inverse operation. In the resulting scheme the ciphertext is obtained as
(Cx, Cy) = (Mx,My)

⊗e, where the operation ⊗ depends on D. Thus the
triple (Cx, Cy, D) must be transmitted, resulting in a non-compressed ci-
phertext.

5.5 Recovering the message from D

To recover the message pair (Mx,My) from D = M2
x−1
M2

y
(mod N), the at-

tacker must solve the quadratic congruence M2
x − DM2

y − 1 = 0 (mod N)
with respect to the two unknowns Mx and My. Even if one of the two co-
ordinates is known (partially known plaintext attack), it is well known that
computing square roots modulo a composite integer N , when the square
root exists, is equivalent to factoring N itself.

5.6 Further comments

As a conclusion to this section, we only mention that as shown in [?], RSA-
like schemes based on isomorphism own the following properties: they are
more secure than RSA in the broadcast scenario, they can be transformed
to semantically secure schemes using standard techniques which introduce
randomness in the process of generating the ciphertext.
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6 Efficiency of the encryption scheme

Recall that our scheme encrypts and decrypts messages of size 2 logN . To
decrypt a ciphertext of size 2 logN using CRT, standard RSA requires four
full exponentiation modulo N/2-bit primes. Basic algorithms to compute
xd mod p requires O(log d log2 p), which is equal to O(log3 p) if d ∼ p.
Using CRT, if N = pe11 ·. . .·perr , our scheme requires at most r exponentiation
modulo N/r-bit primes.
This means that the final speed up of our scheme with respect to RSA is

4 · (N/2)3

r · (N/r)3
= r2/2 (10)

When r = 2 our scheme is two times faster than RSA, as it has already been
shown in [?]. If r = 3 our scheme is 4.5 time faster, with r = 4 is 8 times
faster, and with r = 5 is 12.5 times faster.

7 Conclusions

We generalized an RSA-like scheme based on the Pell hyperbola from a
modulus that was a product of two primes to a generic modulus. We showed
that this generalization leads to a very fast decryption step, up to 12 times
faster than original RSA for the security level of a modulus of 8192 bits.
The scheme preserves all security properties of RSA-like schemes, which
are in general more secure than RSA, especially in a broadcast scenario.
Compared to similar schemes based on elliptic curves it is more efficient. We
also pointed that a variation of the scheme with non-compressed ciphertext
does not suffer of impossible group operation attacks.

8 Appendix

Let us consider p = 5, q = 7, r = 3 and s = 5, so that the modulo used
in our scheme is N = pr · qs = 2100875. We choose e = 359 as the public
exponent and consequently

d = 359−1 (mod (pr+pr−1)(qs+qs−1)) = 359−1 (mod 2881200) = 1139639

is the secret one.
Let us suppose that we want to send the message pair

(Mx,My) = (956443, 745523) ∈ Z∗N × Z∗N .

We evaluate D =
M2
x − 1

Mx
(mod N) = 1660987, in order that (Mx,My) lies

on the conic x2 −Dy2 = 1 (mod N).

14



For encrypting this message, we first evaluate the corresponding param-
eter of the point (Mx,My) by means of

M = Φ(Mx,My) (mod N) =
Mx + 1

My
(mod N) = 2082503.

Now we encrypt M evaluating

2082503�359 (mod N) = Q359(1660987, 2082503) (mod N) = 550197 = C.

If we want to retrieve the original message from the cyphertext C, we eval-
uate

550197�1139639 (mod N) = Q1139639(1660987, 550197) (mod N) = 2082503 = M

and

Φ−1(M) (mod N) =

(
M2 +D

M2 −D
,

2M

M2 −D

)
(mod N) = (956443, 745523).
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