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CUTseq is a versatile method for preparing
multiplexed DNA sequencing libraries from
low-input samples
Xiaolu Zhang1, Silvano Garnerone1, Michele Simonetti1, Luuk Harbers 1, Marcin Nicoś 1,2, Reza Mirzazadeh1,

Tiziana Venesio3, Anna Sapino 3,4, Johan Hartman 5,6, Caterina Marchiò3,4, Magda Bienko 1,7* &

Nicola Crosetto 1,7*

Current multiplexing strategies for massively parallel sequencing of genomic DNA mainly rely

on library indexing in the final steps of library preparation. This procedure is costly and time-

consuming, because a library must be generated separately for each sample. Furthermore,

library preparation is challenging in the case of fixed samples, such as DNA extracted from

formalin-fixed paraffin-embedded (FFPE) tissues. Here we describe CUTseq, a method that

uses restriction enzymes and in vitro transcription to barcode and amplify genomic DNA prior

to library construction. We thoroughly assess the sensitivity and reproducibility of CUTseq in

both cell lines and FFPE samples, and demonstrate an application of CUTseq for multi-region

DNA copy number profiling within single FFPE tumor sections, to assess intratumor genetic

heterogeneity at high spatial resolution. In conclusion, CUTseq is a versatile and cost-

effective method for library preparation for reduced representation genome sequencing,

which can find numerous applications in research and diagnostics.
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In the past decade, next-generation sequencing (NGS) tech-
nologies have become widely available in diagnostics and
research laboratories1,2. During this time, the number of

methodologies for preparing DNA libraries for NGS has greatly
expanded, whereas the cost of sequencing has exponentially
dropped1,2. In spite of this progress, sequencing of multiple
samples in parallel remains costly, mainly due to the way in
which multiplexing is achieved. Typically, this is done by
indexing libraries prepared from individual samples, followed by
pooling together multiple libraries in the same sequencing run.
This means that all the steps in the library preparation procedure
must be repeated for every sample to be sequenced, which is
labor-intensive and multiplies the cost of reagents. Furthermore,
accurate normalization of library concentration is necessary
before multiple libraries can be pooled together, which is not
always possible and requires additional reagents. In contrast,
being able to directly barcode genomic DNA (gDNA) prior to
library construction, followed by pooling of differentially bar-
coded samples into a single library, should enable high levels of
multiplexing at much lower cost.

An example of application that would greatly benefit from
improved solutions for NGS library multiplexing is multi-region
DNA sequencing of tumor samples3. In this approach, DNA is
extracted from multiple regions within the same tumor mass, or
from multiple tumor sites in the same patient, and a library is
prepared for each region. Multi-region tumor sequencing has
been successfully used to assess levels of intratumor heterogeneity
and to infer tumor evolution in different cancer types3. One
limitation of current multi-region tumor sequencing approaches
is the size of the regions examined, which must be sufficiently
large to enable the recovery of enough DNA to construct a library
from every region separately. This precludes the possibility of
examining a larger number of smaller regions, e.g., within a single
tissue section, which would enable assessing intratumor hetero-
geneity at much higher spatial resolution. This, together with the
high cost needed to make a single library for every region sam-
pled, currently limits the applicability of multi-region tumor
sequencing in routine cancer diagnostics.

Several approaches have been developed to barcode gDNA as
well as to amplify sub-nanogram amounts of gDNA prior to
library preparation. Direct incorporation of sequencing adapters
into gDNA by engineered transposases allows rapid library pre-
paration and is the basis of successful commercial solutions such
as Nextera from Illumina, Inc. However, this approach still
requires that individual libraries are generated from each sample,
and then pooled together before sequencing. On the other hand,
whole-genome amplification methods, such as DOP-PCR4,
MDA5, MALBAC6, and the more recent SCMDA7 and LIANTI8,
achieve direct gDNA barcoding during genome amplification, so
that multiple samples can be pooled together into a single mul-
tiplexed library. Although such methods are specifically tailored
for whole-genome sequencing of single cells, they could, in
principle, also be used for other applications, for instance to
generate multiplexed libraries for multi-region tumor sequencing
in tissue sections. One limitation, however, is that whole-genome
amplification requires intact DNA and thus is problematic in
fixed tissue samples, in particular formalin-fixed, paraffin-
embedded (FFPE) specimens, which still represent a corner-
stone in pathology. In addition, whole-genome amplification
methods are very costly, making them hardly applicable to rou-
tine diagnostics.

To overcome these limitations, here we develop a method,
which we name CUTseq, that combines restriction endonucleases
with in vitro transcription (IVT), to construct highly multiplexed
DNA libraries for reduced representation genome sequencing of
multiple samples in parallel. We show that CUTseq can be used

to barcode gDNA extracted from both non-fixed and fixed
samples, including old archival FFPE tissue sections. We bench-
mark CUTseq by comparing it with a widely used method of
DNA library preparation and demonstrate that CUTseq can be
used for reduced representation genome and exome sequencing,
enabling reproducible DNA copy number profiling and single-
nucleotide variant (SNV) calling in both cell and low-input FFPE
tissue samples. We then show an application of CUTseq for
assessing intratumor genetic heterogeneity, by profiling DNA
copy number levels in multiple small regions of individual FFPE
tumor sections. Lastly, we describe a workflow for rapid and cost-
effective preparation of highly multiplexed CUTseq libraries,
which can be applied in the context of high-throughput genetic
screens and for cell line authentication.

Results
CUTseq workflow. We aimed at developing a versatile method
for preparing highly multiplexed DNA sequencing libraries, by
barcoding gDNA from multiple samples directly after purifica-
tion. To this end, we devised the CUTseq workflow as depicted in
Fig. 1a. The procedure starts by digesting gDNA extracted from
either non-fixed or fixed samples, including low-input FFPE tis-
sue specimens, using a type-II restriction endonuclease that leaves
staggered ends. After gDNA is digested, the restricted sites are
ligated to specialized double-stranded DNA adapters that contain
a sample-specific barcode sequence, a unique molecular identifier
(UMI)9, the RA5 Illumina sequencing adapter, and the T7 pro-
moter sequence. After ligation, multiple samples are pooled
together and the genomic sequences flanking the ligated restric-
tion sites are amplified using IVT by the T7 RNA polymerase.
Lastly, a sequencing library is generated from the IVT product,
based on the small RNA library preparation kit from Illumina
(Methods). A step-by-step CUTseq protocol is available in the
Supplementary Methods and at Protocol Exchange (https://doi.
org/10.21203/rs.2.1742/v1). The sequences of all the CUTseq
adapters used in this study are provided in Supplementary Data 1.

CUTseq implementation. We first tested the feasibility of
CUTseq by constructing libraries from gDNA extracted from five
different human cancer cell lines and IMR90 primary human
fibroblasts (Methods). We digested the samples using either a
more frequent four-base cutter (NlaIII) or a less frequent six-base
cutter (HindIII). We selected the enzymes among a list of com-
mercially available restriction enzymes that leave staggered DNA
ends and are methylation insensitive (Supplementary Table 1),
choosing the least expensive enzymes with the most homo-
geneous distribution of recognition sites in the human genome
(Supplementary Fig. 1a-d). The distance between two consecutive
recognition sites is 210 ± 286 bp and 3422 ± 3684 bp (mean ± SD)
for NlaIII and HindIII, respectively. We sequenced all the
libraries on the NextSeq 500 platform from Illumina, Inc., and
processed the reads through a custom-made pipeline that we
make freely available (Supplementary Software). All the libraries
showed a homogeneous fragment size distribution and yielded a
high proportion of reads with the expected prefix (95% ± 0.01%,
mean ± SD), high mappability (96.58% ± 0.02%, mean ± SD), very
low rate of sequencing errors (0.81% ± 0.001%, mean ± SD), even
partitioning between the Watson and Crick strands, and balanced
distribution of all the four bases at every position along the UMI
sequence (Supplementary Fig. 2a-c and Supplementary Data 2).
In the IMR90 libraries, which should more closely mirror the
human reference genome, the fraction of aligned reads not
overlapping with any of the corresponding restriction sites in the
reference genome was 0.80% and 0.96% for NlaIII and HindIII,
respectively, indicating that these enzymes are extremely specific.
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These results show that CUTseq is a valid method for preparing
high-quality DNA libraries for sequencing on Illumina platforms.

CUTseq reproducibility and sensitivity. To evaluate the repro-
ducibility of CUTseq, we first compared the DNA copy number
profiles obtained with NlaIII and HindIII, at increasing resolu-
tions ranging from 1Mb up to 30 kb, for each of the cancer cell

lines described above (Methods). The segmented copy number
profiles were highly correlated between matched HindIII and
NlaIII samples, at all the resolutions examined (Fig. 1b, c and
Supplementary Fig. 3a, b). Each cell line showed a unique pattern
of copy number alterations (CNAs), which were not correlated to
the profiles of the other cell lines (Fig. 1c and Supplementary
Fig. 3a, b), highlighting the specificity of CUTseq. Quantitative
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analysis of the profiles revealed that, at comparable sequencing
depth, the read count profiles fluctuated more in the case of
HindIII-digested samples, which is expected based on the lower
cutting frequency of this enzyme compared with NlaIII (Sup-
plementary Figs. 1 and 3c, and Methods). In the case of IMR90,
the DNA copy number profile was flat (Supplementary Fig. 3d),
as expected for normal diploid cells. To confirm the specificity of
CUTseq, we assessed the amplification status of the clinically
relevant ERBB2/HER2 oncogene on chromosome (chr) 17, which
is amplified in BT474 and SKBR3 cells, but not in MCF7 cells, as
previously shown10,11. Indeed, in BT474 and SKBR3 cells, but not
in MCF7 cells, CUTseq detected a clear amplification of the
ERBB2 locus, both using HindIII and NlaIII (Fig. 1d). Thus,
CUTseq is able to reproducibly detect cell type-specific copy
number profiles using DNA extracted from cell lines.

We then assessed the reproducibility of CUTseq in FFPE
samples. To this end, we first prepared two replicate libraries for
each of five FFPE tumor samples, including two colon
adenocarcinomas (COAD) and three melanomas (MELA)
(Supplementary Table 2, Supplementary Data 2, and Methods).
DNA copy number profiles were highly similar between
replicates, across multiple resolutions (Fig. 1e, f and Supplemen-
tary Fig. 4). In line with this finding, the fraction of the genome
that was detected as either amplified or deleted was highly
correlated between corresponding replicates (Fig. 1g). By
increasing the resolution, the distribution of the length of
amplified and deleted genomic segments progressively shifted
towards shorter lengths in a reproducible manner (Fig. 1h, i).
Zooming-in on individual chromosomes revealed that the overall
copy number profile was reproducible even at 10 kb resolution,
whereas new features emerged reproducibly in both replicates at
higher resolution (Fig. 1j), including focal amplifications and
deletions, as well as more resolved complex patterns of alterations
that could not be appreciated at lower resolutions (Supplemen-
tary Fig. 5a). High correlations between copy number profiles at
multiple resolutions were also seen in CUTseq libraries prepared
using increasing numbers of PCR cycles (Supplementary Fig. 5b,
c and Methods), suggesting that extra amplification rounds do
not significantly bias the copy number profiles. Furthermore, the
correlation between replicates persisted by downsampling the
number of reads (Supplementary Fig. 5d and Methods),
demonstrating the ability of CUTseq to reproducibly detect
CNAs even at relatively low sequencing depths.

Next, we investigated the sensitivity of CUTseq for picogram
inputs of gDNA (125–500 pg), which most of commercially
available kits cannot achieve (Supplementary Table 3). To this
end, we prepared multiplexed libraries from gDNA extracted

from one breast cancer (BRCA) FFPE sample, by pooling into the
same IVT reaction decreasing amounts of gDNA (1, 0.5, 0.25, and
0.125 ng) (Supplementary Table 2 and Methods). To further
exclude the possibility of PCR biases, we prepared libraries using
either 12, 14, or 16 PCR cycles. We then sequenced all the
libraries and assessed DNA copy number profiles at various
resolutions (Supplementary Data 2 and Methods). The segmented
DNA copy number profiles remained extremely stable even for
the 0.125 ng input and were highly correlated between each other,
independently of the resolution and number of PCR cycles
(Fig. 1k, l, Supplementary Fig. 6, and Supplementary Fig. 7a, b).
Consistent with these observations, the overall fraction of the
genome either amplified or deleted was relatively constant,
independently of the gDNA input, number of PCR cycles, and
resolution (Supplementary Fig. 7c), despite the fact that, as
already observed in cell lines, the read count fluctuations
progressively increased at higher resolutions and lower genome
coverage (Supplementary Fig. 7d-f). Altogether, these results
demonstrate that CUTseq is a reproducible and sensitive method
that allows robust DNA copy number profiling across a broad
range of resolutions, even for picogram amounts of gDNA
extracted from FFPE samples.

CUTseq benchmarking. Next, we benchmarked CUTseq against
standard methods of NGS library preparation. To do so, we used
gDNA extracted from 10 FFPE samples representing four dif-
ferent tumor types, including four breast adenocarcinomas
(BRCA), four COAD, two gastrointestinal stromal tumors
(GIST), and two MELA samples (Supplementary Table 2 and
Methods). For each sample, we constructed two libraries, one
using CUTseq and the other using the commercially available
library preparation kit, NEBNext® Ultra™ II (Methods). DNA
copy number profiling at various resolutions (1Mb up to 30 kb)
revealed that the CUTseq and NEBNext profiles were strongly
correlated, independently of the resolution (Fig. 2a, Supplemen-
tary Figs. 8 and 9, and Supplementary Fig. 10a). Consistent with
this, the fraction of the genome that was detected as either
amplified or deleted was highly correlated between matched
samples (Fig. 2b and Supplementary Fig. 10b). Altogether, these
results validate CUTseq as a sensitive and reliable method that
can be used for DNA copy number profiling in FFPE samples,
including low-input DNA specimens.

Compatibility of CUTseq libraries with exome capture. We
then performed a proof-of-principle experiment to test whether
CUTseq libraries are compatible with exome capture. To this end,

Fig. 1 CUTseq implementation and reproducibility. a CUTseq workflow. (1) RE, restriction enzyme. T7, T7 phage promoter. IVT, in vitro transcription. RA5,
RA3, SP7, and SP9: Illumina’s sequencing adapters. b BT474 cells copy number profiles (100 kb resolution). ρ, Pearson’s correlation. c Pearson’s correlation
(ρ) between the copy number profiles (100 kb resolution) of five cancer cell lines digested with HindIII (rows) or NlaIII (columns). d Chr17 copy number
profiles (NlaIII, 100 kb resolution) in two HER2-positive (SKBR3 and BT474) and one HER2-negative cell line (MCF7). ERBB2/HER2 is highlighted in red.
e Copy number profiles (NlaIII, 100 kb resolution) in five replicates (Rep) from FFPE tumor samples. COAD, colon adenocarcinoma. MELA, melanoma. ρ,
Pearson’s correlation. f Pearson’s correlation (ρ) between the replicates shown in e at different resolutions. Each dot represents one pair of replicates. Error
bars indicate the median and interquartile range. g Pearson’s correlation (ρ) between the fraction of the genome (100 kb resolution) either amplified or
deleted in the replicates (Rep) shown in e. Each dot represents one pair of replicates. Dashed line: linear regression. h, i Length of amplified (AMP) or
deleted (DEL) genomic segments in Rep1 (h) and Rep2 (i) samples shown in e, at various resolutions. j Zoom-in view on chr9 q-arm in sample
TRN4 shown in e. Arrows indicate focal amplifications detected only at 10 kb resolution in both replicates. Red: centromeric region. The p-arm is not
shown. k Copy number profiles (NlaIII, 100 kb resolution) determined using 120 pg of gDNA extracted from one FFPE breast cancer (BRCA) sample and
three different numbers of PCR cycles. l Pearson’s correlation (ρ) between copy number profiles (100 kb resolution) determined using different amounts of
gDNA extracted from the sample shown in k. In all the profiles, gray dots represent individual genomic windows, whereas black lines indicate segmented
genomic intervals after circular binary segmentation37. The numbers below each box indicate chromosomes from chr1 (leftmost) to chr22 (rightmost). In
all the cases, TRN refers to the ID of Turin samples, as shown in Supplementary Table 2. All the source data for this figure are provided as a Source
Data file
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we first prepared two replicate CUTseq libraries using gDNA
extracted from SKBR3 cells and captured the exome using the
SureSelect exome capture kit from Agilent Technologies. As a
control, we prepared two replicate libraries from the same gDNA,
but instead we used a commercial kit also from Agilent and cap-
tured them with the SureSelect kit (Supplementary Table 2, Sup-
plementary Data 2, and Methods). SNV calling revealed that high-
confidence SNVs (at least 50× coverage) were more concentrated
around NlaIII recognition sites in CUTseq compared with Agilent
samples (distance to closest NlaIII site: 77.08 ± 63.68 bp for CUT-
seq; 123.65 ± 142.65 bp for Agilent, mean ± SD) (Supplementary
Fig. 10c), as indeed expected based on the fact that in CUTseq
NlaIII was used to fragment the genome. The genomic distribution

and type of high-confidence SNVs were very similar between
replicates and among CUTseq and Agilent samples (Fig. 2c, d). The
high-confidence SNVs (72.3%) identified by CUTseq were detected
in both replicates, whereas 37.8% of all the SNVs were shared
between CUTseq and Agilent (Fig. 2e, f and Methods), even though
the mean coverage per SNV was lower in CUTseq (Supplementary
Fig. 10d), consistent with the fact that it is a reduced representation
sequencing method. Similar results were obtained using gDNA
extracted from two different FFPE tumor samples (Supplementary
Fig. 10e, Supplementary Table 2, and Supplementary Data 2).
Altogether, these results demonstrate that CUTseq libraries are
compatible with standard exome capture and can thus be used for
reduced representation exome sequencing.
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Fig. 2 CUTseq validation. a Copy number profiles (NlaIII, 100 kb resolution) determined with CUTseq and NEBNext using gDNA extracted from ten
different FPPE tumors. BRCA, breast cancer. COAD, colon adenocarcinoma. GIST, gastrointestinal stromal tumor. MELA, melanoma. ρ, Pearson’s
correlation between matched profiles. b Pearson’s correlation (ρ) between the fraction of the genome (100 kb resolution) either amplified or deleted in
each of the paired CUTseq and NEBNext samples shown in a. Each dot represents one pair of replicates. Dashed line: linear regression. c Partitioning of all
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merging matched replicates shown in c, d. In both e and f, the percentages refer to the total number of SNVs in the union of the two sets. All the source
data for this figure are provided as a Source Data file
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Multi-region tumor sequencing in FFPE tissue sections. Next,
we took advantage of the high sensitivity of CUTseq to assess
intratumor heterogeneity of CNAs across multiple regions of
individual breast cancer tissue sections. For this purpose, we
retrieved 35 archival FFPE samples from 14 patients (age of
specimens: 9–27 years), including primary tumors and one or
more matched metastases previously profiled by whole exome
sequencing12 (Supplementary Table 2). For each tumor, we
stained a 4 μm-thick section with hematoxylin–eosin and then
extracted gDNA from a region L, ~7 mm2 in diameter, which was
confirmed by a pathologist to contain tumor cells (Fig. 3a and
Methods). We split each region into half, to produce two tech-
nical replicates, L1 and L2 (Fig. 4a). In two cases, we also captured
gDNA from multiple smaller regions S, ~3 mm2 in diameter
(Fig. 3a and Supplementary Fig. 11a). Accurate cell counting
within 80 tumor regions of similar size in a different set of breast
cancer samples revealed that, typically, such regions contain
between 5000 and 25,000 cells (Supplementary Fig. 11b, c and
Methods). Lastly, we extracted gDNA from the remaining
material in the full tissue sections F, from which L and S regions
were captured (Fig. 3a).

We separately barcoded the gDNA extracted from each region
and then pooled multiple gDNAs into four libraries (Supple-
mentary Data 2). In total, we barcoded 133 regions and
sequenced each library aiming to obtain at least 200 K reads
per region, which is sufficient for reliable copy number calling at
100 kb resolution. Indeed, the DNA copy number profiles of the
matched L1 and L2 replicates appeared very similar (Fig. 3b),
and the fraction of the genome that was detected as either
amplified or deleted was highly correlated across replicates
(Fig. 3c). Consistent with this observation, hierarchical cluster-
ing revealed that the profiles of matched L1 and L2 replicates
always clustered together (Fig. 3d, e and Supplementary Fig. 12a),
further highlighting the reproducibility of CUTseq. Typically, L
regions also clustered together with the corresponding F regions
(Supplementary Fig. 12a), suggesting that most of the tumor
cells within a single tissue section harbor the same CNAs. These
observations are in line with the notion that, in breast cancer,
the majority of CNAs are acquired at an early stage during
tumor evolution and therefore should be detectable across
multiple tumor regions13. However, we also observed some
exceptions. For example, in the metastasis-b of patient KI2, the L
region showed a ~900 kb amplification on chr14q24, encom-
passing the RAD51B gene, which was reproducibly detected in
both L1 and L2 replicates, but not in the full section (Fig. 3b,
arrowhead). Similarly, two S regions in the primary tumor of
patient KI14 clustered apart from all the other regions and
showed numerous CNAs that were not detected in the
corresponding F and L regions (Fig. 3b, e). These results
highlight the importance of multi-region sequencing at high
spatial resolution, to capture sub-clonal CNAs, which would
otherwise go undetected when extracting gDNA from larger
tissue areas.

Closer examination of the copy number profiles and
hierarchical clustering trees also revealed that metastatic regions
from the same tumor typically clustered together, and apart from
the regions of the corresponding primary lesion (Fig. 3b-e and
Supplementary Fig. 12a). Moreover, among all the regions with
detectable CNAs, the metastatic regions had a significantly higher
burden of amplifications and deletions compared with the
primary tumor regions (P-value= 0.006, Mann–Whitney test,
two-tailed) (Supplementary Fig. 12b). These results are in
agreement with the findings of a recent study on a larger sample
cohort, according to which breast cancer distant metastases
typically show a different, although phylogenetically related,
mutational landscape compared with the corresponding primary

tumors, as a result of ongoing genome instability and tumor
evolution14.

Finally, we checked how many of the 712 cancer-associated
genes in the COSMIC database15 are affected by CNAs in
different tumor regions. Two hundred and forty-one of the 712
genes (33.8%) were amplified, whereas 261 genes (36.6%) were
deleted in one or more tumor sites, regions, or patients in our
cohort. The top-three amplified genes were MYC, NDRG1, and
RAD21, whereas KMTA, PAFAH1B2, and POU2AF1 were the
three most frequently deleted genes (Fig. 3f, g and Methods).
Hierarchical clustering revealed at least two major groups of
samples: one group harboring amplifications and deletions in a
large subset of COSMIC genes; and the other group predomi-
nantly characterized by amplifications in a smaller subset of
COSMIC genes, including many genes that are recurrently
affected by CNAs in breast cancer16, such as MYC, ERBB2,
CCND1, MDM2, and PIK3CA (Fig. 3h and Methods). Among
frequently amplified genes, MYC and ERBB2 were amplified in 7
and 8 out of 14 patients, respectively (50% and 57%), whereas,
among frequently deleted genes, the classical onco-suppressor
TP53 gene was deleted in 4 out of 14 patients (28.6%).
Five primary tumors in which CUTseq detected HER2 amplifica-
tion (KI2, 4, 10, 11, 12) were also HER2-positive based on
immunohistochemistry (Supplementary Table 2), further validat-
ing our method. In one case (KI7), CUTseq detected HER2
amplification only in the metastasis, but not in the corresponding
primary tumor (Fig. 3b, arrowhead), in line with recent
observations that some breast cancers classified as HER2-
negative might actually express HER2 at distant metastatic
sites17. Overall, these results demonstrate that CUTseq is a robust
and sensitive method that can be used to profile, at high spatial
resolution, DNA CNAs across multiple regions in clinically
relevant tumor samples, thus providing valuable insights into
intratumor genetic heterogeneity.

High-throughput CUTseq. Lastly, we aimed to streamline the
preparation of highly multiplexed CUTseq libraries. To reduce
the assay cost and turnaround time, we developed a workflow that
takes only ~8 h from DNA digestion to ready-to-sequence
libraries (Fig. 4a, and Methods). To reduce reagent volumes,
and therefore costs, we used a contactless liquid-dispensing robot,
which allows performing digestion and ligation reactions in
nanoliter volumes (Fig. 4a). As a proof-of-principle, we prepared
a multiplexed library by digesting and differentially barcoding 96
replicate samples of HeLa cells gDNA inside a 96-well plate (5 ng
per well) and then pooled all the samples into a single IVT
reaction (Methods). We sequenced all the samples shallowly on
NextSeq 500, obtaining 88 out of 96 replicates (91.7%) with at
least 100 K usable reads (Fig. 4b and Methods). Notably, the
sequencing error rate was very low and typically comprised
between 1.5% and 1.7% (median: 1.62%; interquartile range:
1.58%–1.68%) (Fig. 4c), highlighting the precision of CUTseq,
even when quick digestion and ligation are performed in nano-
liter volumes. In the 88 replicates with at least 100 K usable reads,
the DNA copy number profiles appeared highly similar (Fig. 3d)
and were strongly correlated between each other (Fig. 4d, e and
Methods). In line with this, the fraction of the genome that was
detected as either amplified or deleted was very homogenous
across replicates (Fig. 4f). Importantly, the cumulative cost of
preparing libraries for a large number of samples is substantially
lower for CUTseq compared with available commercial kits,
independently of the use of a nanoliter dispensing device (Sup-
plementary Note 1). These results demonstrate that high-
throughput CUTseq is a cost-efficient method for sequencing
multiple samples in parallel, including low-input gDNA samples.
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Discussion
We have developed a streamlined method for gDNA barcoding
and amplification, which enables the generation of multiplexed
DNA sequencing libraries from both fixed and non-fixed cell and
tissue samples, including single FFPE tissue sections or small
regions thereof. The key advantage of CUTseq compared with

standard methods of NGS library preparation is that each sample
gets barcoded upfront, instead of at the end of the library pre-
paration workflow, which allows multiple samples to be pooled
together into the same library. This is possible, thanks to the
combination of two widely available molecular biology tools: (i)
type-II restriction enzymes that produce stereotypic DNA
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overhangs, to which complementary adapters can be immediately
ligated without the need for end-repair, unlike what is done in
most of conventional NGS library preparation methods (Sup-
plementary Table 3); and (ii) IVT, which allows pooling together
and co-amplifying multiple samples in the same reaction.
Another advantage is the incorporation of UMIs9 at the site of
CUTseq adapter ligation, which allows post-sequencing removal
of PCR duplicates and single-molecule counting, without having
to perform paired-end sequencing. Thanks to all these features,
multiple samples can be merged into a single library and
sequenced together without the need to prepare and quantify

multiple libraries, which drastically reduces the overall cost per
sample, as we demonstrate in the Supplementary Note 1.
Importantly, multiplexing is not only helpful to reduce costs, but
is also particularly advantageous when dealing with low-input
samples for which it is challenging to prepare single-sample
libraries using standard technology. As we have shown here, by
pooling multiple low-input samples into the same CUTseq
library, we were able to obtain very reliable DNA copy number
information at kilobase resolution, even for samples of only 120
pg of FFPE gDNA, which most of the existing commercial kits for
NGS library preparation cannot do (see Supplementary Table 3).

Fig. 3 Multi-region copy number profiling in FFPE breast cancer tissue sections. a Scheme of regions within individual FFPE breast cancer sections from
which gDNA was extracted. S, small regions of ~3 mm2. L, large regions of ~7 mm2. For each L region, gDNA was split in two technical replicates, L1 and L2.
F, remaining tissue in the section. b Scans (×10 magnification) of 35 hematoxylin–eosin-stained tissue sections from primary (T) and metastatic (M) breast
cancers, and corresponding copy number profiles (100 kb resolution), for F, L, and S regions. Black circles: L region from which L1 and L2 replicates were
obtained. Black arrowheads: amplification of the RAD51B gene in patient KI2 and of the HER2 gene in patient KI7. In all the profiles, chr1 is on the left
and chr22 on the right. c Pearson’s correlation (ρ) between the fraction of the genome either amplified or deleted in all the L1–L2 replicates shown in
b. d Hierarchical clustering of copy number profiles for F, L, and R regions, in patient KI13. e Same as d, but for patient KI14. f Ranking of 712 cancer-
associated genes in COSMIC15 based on the number of samples in which they were found amplified (AMP). Gene names refer to a subset of 31 COSMIC
genes that were found to be frequently amplified or deleted in 560 breast cancers16. g Same as f, but for genes deleted (DEL) in the samples shown in
b. h Hierarchical clustering of 712 COSMIC genes (rows) based on their amplification (red) or deletion (blue) status in the 133 samples shown in
b (columns). Gene names indicate 14 out of 31 genes that were previously found to be either amplified or deleted in breast cancer16. For each gene, the
rectangles on the right indicate whether it is amplified (no boundary) or deleted (black boundary) in at least one sample (F, L, R) in the corresponding KI
patient. In all cases, KI refers to the ID of samples from Karolinska Institute, as described in Supplementary Table 2. All the source data for this figure are
provided as a Source Data file
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Fig. 4 High-throughput CUTseq. a Front picture of the I-DOT One MC, low-volume non-contact dispensing device (Dispendix) that was used in this study,
and timeline for high-throughput CUTseq library preparation. IVT, in vitro transcription. The total workflow takes ~8 h for a single person to prepare 1–2
libraries, each containing up to 96 samples. The dispensing step can be done either manually or using a liquid handling device such as I-DOT One.
b Number of usable reads (after alignment and PCR duplicates removal) per sample, in one multiplexed CUTseq library prepared from 96 replicate samples
(n) of HeLa cells gDNA (5 ng), using I-DOT One. c Distribution of the sequencing error rates in the 96 replicates (n) shown in b. d Copy number profiles
(1 Mb resolution, averaged at arm level for visualization) of 88 replicates shown in b that yielded at least 300 K usable reads. The remaining eight samples
were not included, as the number of usable reads was insufficient to perform reliable copy number calling. e Distribution of all possible (n) pairwise
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provided as a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12570-2

8 NATURE COMMUNICATIONS |         (2019) 10:4732 | https://doi.org/10.1038/s41467-019-12570-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


One distinguishing feature of CUTseq compared with con-
ventional NGS library preparation methods is that it uses
restriction enzymes instead of random genome fragmentation,
thus providing a reduced representation of the genome. The
choice of the restriction enzyme depends on the cutting frequency
along the genome as well as on the desired resolution. As shown
in Supplementary Figs. 3c and 7d-f, the fluctuation of read counts
around the segmented genomic profiles is influenced by various
parameters, including sequencing depth (genome coverage),
binning size (resolution), and the cutting frequency of the
restriction enzyme in use. In general, at comparable sequencing
depths, profiles generated with a four-base cutter appear less
noisy than profiles obtained with a six-base cutter, especially at
high resolutions. However, it is critical to note that, despite
increasing noise levels in the raw read count profiles, the seg-
mented profiles are extremely stable even at high resolution and
picogram DNA inputs. As a rule of thumb, we recommend using
a four-base cutter such as NlaIII when high resolution is desired
(<50 kb), otherwise a less expensive six-base cutter such as
HindIII.

Although reduced genome representation does not prevent
accurate DNA copy number calling at high resolution, as we have
shown here, the same feature inherently limits the ability to detect
SNVs at any position in the genome. However, as we have also
demonstrated in this study, CUTseq is able to reproducibly detect
a considerable fraction of high-confidence SNVs detected by a
standard exome capture method and, as such, it can be used for
reduced representation exome sequencing. One application of
reduced representation exome sequencing would be in multi-
region tumor sequencing, to detect a lower number of high-
confidence SNV events, but from many more regions than
currently possible, at comparable sequencing costs. This would
significantly improve the ability to reconstruct a tumor’s phylo-
geny, by comparing CNA and SNV profiles from many regions in
the same tumor. Even though in this study we have used single-
end sequencing and short reads, combining a frequent cutter with
paired-end sequencing and long reads should, in principle, allow
for higher exome coverage. Furthermore, using a cocktail of
different enzymes could also increase the exome coverage. For
example, we found that over 15,000 recurrent mutations in 127
genes frequently mutated in 12 major cancer types18 are <500 bp
away from the closest NlaIII recognition site (Supplementary
Fig. 13a). In line with this, the mean number of NlaIII recognition
sites in the exons of cancer-associated genes listed in the COS-
MIC database15 is 4.3 kb−1 (median= 4.2 kb−1, SD= 1.3 kb–1)
(Supplementary Fig. 13b), which means that most of the cancer
mutations are, at least in principle, detectable with CUTseq. Thus,
CUTseq is a valuable method that expands the existing toolkit for
studying cancer genomes.

Compared with other reduced representation genome-
sequencing methods, such as the RAD-seq method19, which is
widely used in population genetics and ecology20, CUTseq
requires only one, and not two, ligation events, to barcode gDNA
and amplify it by IVT. This means that, for a given gDNA
fragment, the probability of getting properly ligated and barcoded
is higher for CUTseq compared with RAD-seq. This is particu-
larly advantageous, especially in cases in which the starting
material is very little, as in the case of gDNA extracted from small
regions within individual FFPE tissue sections. Furthermore,
although in RAD-seq DNA libraries are typically prepared from
individual samples20, the high-throughput CUTseq workflow
described here offers a streamlined and cost-effective solution for
analyzing hundreds of specimens in parallel, and thus could be
very useful in ecology and population genomics applications.

As a proof-of-principle, we have shown an application of
CUTseq to assess DNA copy number profiles across multiple

regions inside individual FFPE sections of primary and metastatic
breast cancer lesions, after assessing them by conventional his-
tology. Our results demonstrate that, by differentially barcoding
the gDNA extracted from multiple small regions within the same
tissue section, it is possible to assess the extent of genetic intra-
tumor heterogeneity and pinpoint alterations that would other-
wise go undetected by sequencing gDNA extracted from larger
tissue areas. Importantly, the cost of preparing a multiplexed
library from multiple regions within a single FFPE tissue section
using CUTseq is very similar to the cost of preparing a single
library from the entire tissue section using a standard method,
such as one of those shown in Supplementary Table 3. Thus,
CUTseq could be applied in routine diagnostics to assess DNA
CNAs and intratumor genetic heterogeneity directly in the tissue
sections that have been used for pathological diagnosis.

Another possible area of application of high-throughput
CUTseq outside tumor sequencing is copy number profiling in
the frame of genetic screens and cell line authentication efforts.
For example, it has been recently reported that CRISPR nucleases,
which are widely used for genome editing, can cause unwanted
large deletions and complex rearrangements21,22. In this context,
high-throughput CUTseq could be used to screen whether mul-
tiple CRISPR nucleases and small-guide RNA constructs induce
large-scale CNAs. Similarly, CUTseq could be applied for cell line
authentication and monitoring genome stability in cultured cells.
Recent international efforts to identify cross-contamination
among popular cell lines, such as the International Cell Line
Authentication Committee (ICLAC)23, would greatly benefit
from CUTseq to cost-efficiently profile the genomic landscape
and stability of hundreds of cell lines in public repositories such
as the American Tissue Culture Collection and the Coriell
Repository. In conclusion, CUTseq is a versatile, quantitative, and
streamlined method for reduced representation genome sequen-
cing with broad applications in both research and diagnostics.

Methods
Cell lines. We purchased the following cell lines from ATCC: IMR90 (catalog
number CCL-186), BT474 (catalog number HTB-20), A549 (catalog number CCL-
185), MCF7 (catalog number HTB-22), HeLa (catalog number CCL-2), Caov3
(catalog number HTB-75), and SKBR3 (catalog number HTB-30). None of these
cell lines is included in the ICLAC database of commonly misidentified cell lines.
We cultured IMR90 cells in MEM (Gibco, catalog number 10370021) supple-
mented with 10% non-heat-inactivated fetal bovine serum (FBS; Gibco, catalog
number 16000044), 2 mM L-glutamine (Sigma, catalog number 59202C), and 1%
non-essential amino acids (Gibco, catalog number 11140035); A549 cells in RPMI
1640 (Sigma, catalog number R8758) supplemented with 10% heat-inactivated FBS
(Sigma, catalog number F9665); BT474, MCF7, HeLa, and Caov3 cells in Dul-
becco’s modified Eagle’s medium (Sigma, catalog number D6429) supplemented
with 10% heat-inactivated FBS (Sigma, catalog number F9665); and SKBR3 in
McCoy’s 5A (Sigma, catalog number M9309) supplemented with 10% heat-
inactivated FBS (Sigma, catalog number F9665). We incubated cells at 37 °C in 5%
CO2 air. We tested all the cell lines for mycoplasma contamination using the
MycoAlert Mycoplasma Detection Kit (Lonza, catalog number LT07-118), but we
did not authenticate them.

FFPE samples. TRN samples (see Supplementary Table 2). We retrieved 31 FFPE
tumor samples of different origin (GIST, COAD, BRCA, and MELA) at the
Pathology Unit of IRCC Candiolo, Italy, in the frame of a prospective study
approved by the “Istituto di Candiolo FPO-IRCCS” Ethical Committee for the
identification of molecular profiles conferring resistance to selected target therapies
in oncological patients (“Profiling” # 001-IRCC-00IIS-10).

KI samples (see Supplementary Table 2). We collected one FFPE tissue section
(4 μm-thick) per lesion, from both the primary tumor and 1 or more distant
metastases that occurred in 14 female patients. We identified the patients by
searching the KI electronic medical records. A board-certified surgical pathologist
at Karolinska Institutet diagnosed the lesions as metastatic breast cancer. This
study was approved by the local ethical committee at Karolinska Institutet under
permission number 2013/1273-31/4 with amendments 2013/1739-32 and 2014/
707-32. We deparaffinized FFPE tissue sections in xylene and stained them with
hematoxylin for 8 min. Afterwards, we rinsed the sections with running tap water
for 5 min and then immersed them in eosin for 2 min. The sections were ready to
use after dehydration in ethanol16.
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Tissue imaging and automated cell counting. We stained all the 35 FFPE breast
cancer sections that were used for multi-region tumor sequencing (see Fig. 3) using
hematoxylin–eosin. Before staining, we deparaffinized all the sections in xylene
(Honeywell, catalog number 534056) and rehydrated them using an alcohol scale.
We scanned each tissue section using an Eclipse Ti inverted wide-field fluorescence
microscope (Nikon, Japan) in phase-contrast mode with a ×10 objective. To count
the number of cells in tissue regions of size comparable to the regions from which
gDNA was captured, we stained an independent set of 16 FFPE tissue sections from
16 different breast cancers (Supplementary Table 2) with 1 ng/μl Hoechst 33342
(Thermo Fisher, catalog number 62249) in 1× phosphate-buffered saline (PBS), for
15 min at 30 °C. We then scanned a 1 × 1 cm region in each section using an
Eclipse Ti2 inverted epifluorescence microscope (Nikon, Japan) at ×40 magnifi-
cation. To automatically segment the cell nuclei, we used the Ilastik24 open-source
pixel classifier software, by training the software on a single scan. We converted the
segmentation masks obtained with Ilastik to 8-bit images and binarized them using
FIJI25. Afterwards, we applied the following functions available in FIJI, by com-
bining them into a single macro, which is provided as Supplementary Software:
first “open”, to remove isolated pixels; then “fill holes” and “watershed segmen-
tation”, to further improve the segmentation obtained with Ilastik; lastly, “analyze
particles” excluding objects smaller than 100 square pixels, to count cells. We
counted cells in five 1.7 × 1.5 mm regions in each tissue section, by selecting the
regions so that they overlap with tumor-dense areas annotated in the same section
by a certified pathologist.

gDNA extraction. Cultured cells. We first trypsinized the cells with 0.25% (w/v)
trypsin-EDTA (Ambion, catalog number AM9261) when they reached confluency
and resuspended them in fresh culturing medium. After centrifuging, we resus-
pended the cell pellet and washed it twice in 1× PBS (Ambion, catalog number
AM9625). Lastly, we lysed the cell pellet using a buffer containing 10 mM Tris-
HCl/100 mM NaCl/50 mM EDTA/1% SDS/19 mg/ml Proteinase K (NEB, catalog
number P8107S), pH 7.5, and incubated the solution overnight at 55 °C on a
thermomixer, shaking at 800 r.p.m. The following day, we purified gDNA using a
standard phenol–chloroform extraction protocol. We quantified the gDNA using
the Qubit 2.0 Fluorimeter and the High Sensitivity DNA Kit (Agilent, catalog
number 5067–4626). We note that gDNA extracted with silica-based kits is also
perfectly compatible with the subsequent steps of CUTseq. More details are pro-
vided in the step-by-step protocol available in the Supplementary Information and
at Protocol Exchange (https://doi.org/10.21203/rs.2.1742/v1).

TRN samples (see Supplementary Table 2). We extracted 200 ng of gDNA from
five representative 10 μm-thick sections with >50% tumor cells after manual
dissection, using the QIAamp DNA FFPE Tissue Kit (Qiagen, catalog number
56404) according to the manufacturer’s protocol. We quantified the gDNA using
the Qubit 2.0 Fluorimeter and the High Sensitivity DNA Kit (Agilent, catalog
number 5067–4626).

KI samples (see Supplementary Table 2). To extract gDNA from multiple
regions in individual FFPE sections, we first used the PinPoint Slide DNA Isolation
System™ (ZymoResearch, catalog number D3001) to capture selected regions (see
Fig. 3). Afterwards, we captured all the remaining tissue section also using
Pinpoint. After air drying the samples for at least 30 min at room temperature, we
used sterile disposable insulin needles to pick up the dried glue and transfer it into
a DNA LoBind tube (Sigma, catalog number Z666548). We then resuspended and
lysed the tissue in the same buffer used for cell lines, and purified gDNA using a
standard phenol–chloroform extraction protocol.

CUTseq. A step-by-step protocol is available in the Supplementary Information as
well as at Protocol Exchange (https://doi.org/10.21203/rs.2.1742/v1). To prepare
CUTseq adapters, we purchased the oligonucleotides listed in the Supplementary
Data 1 as standard desalted oligos from Integrated DNA Technologies. UMIs were
generated by random incorporation of the four standard dNTPs using the
“Machine mixing” option. We first diluted the oligos at 10 μM in nuclease-free
water. We phosphorylated the upper oligos with 20 U of T4 Polynucleotide Kinase
(NEB, catalog number M0201) in a final volume of 90 μl, by incubating for 1 h at
37 °C. Afterwards, we added an equal volume of the corresponding antisense oligos
pre-diluted at 10 μM in nuclease-free water and incubated the solution for 5 min at
95 °C, followed by cooling down to 25 °C over a period of 45 min in a PCR
thermocycler. We digested purified gDNA with 20 U of HindIII (NEB, catalog
number R3104) or NlaIII (NEB, catalog number R0125) enzyme in a final volume
of 10 μl, by incubating for 14 h at 37 °C. Afterwards, we ligated HindIII or NlaIII
cut sites with CUTseq adapters carrying the complementary staggered end, using
1000 U of T4 ligase (Thermo Fisher Scientific, catalog number EL0014) in a final
volume of 30 μl, by incubating for 18 h at 16 °C. After ligation, we purified gDNA
with 3.7 μl/100 μl glycogen (Sigma, catalog number 10901393001)/sodium acetate,
pH 5.5 (Life Technologies, catalog number AM9740)/ice-cold ethanol (VWR,
catalog number 20816.367). For IVT, we used the MEGAscript® T7 Transcription
kit (Thermo, catalog number AM1334-5) following the manufacturer’s protocol. In
case of gDNA extracted from small regions of single tissue sections––for which we
could not measure the concentration––we pooled together gDNA extracted from
up to 48 regions in a single IVT reaction of 20 μl and incubated for 14 h at 37 °C. In
order to prevent RNA degradation, we added 20 U of RNaseOUTTM Recombinant
Ribonuclease Inhibitor (Invitrogen, catalog number 10777-019) per 20 μl of IVT

reaction. After IVT, we purified the amplified RNA with Agencourt RNAClean XP
beads (Beckman Coulter, catalog number A63987) following the manufacturer’s
instructions. Lastly, we prepared sequencing libraries from the amplified RNA,
using the TruSeq Small RNA Library Preparation kit (Illumina, catalog number RS-
200-0012/RS-200-0024). For CUTseq validation, we prepared libraries with the
NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (NEB, catalog number
E7645/E7103) and NEBNext adaptors (NEB, catalog number E7350), following the
manufacturer’s instructions. We analyzed the size distribution and concentration
of all the libraries using a Bioanalyzer 2100 (Agilent Technologies, catalog number
G2943CA) and the High Sensitivity DNA kit (Agilent Technologies, catalog
number 5067–4626), and sequenced them on a NextSeq 500 system (Illumina)
using the NextSeq 500/550 High Output v2 kit (75 cycles) (Illumina, catalog
number FC-404-2005).

CUTseq with serial gDNA dilutions and different PCR cycles. To test the
reproducibility of CUTseq for different input amounts of the same gDNA and
effects on the DNA copy number profiles with different PCR cycles, we extracted
gDNA from a single FFPE section of one colon cancer (TRN1) and one breast
cancer (TRN6, see Supplementary Table 2) using the procedure described above for
TRN samples. We measured the concentration of gDNA with the Qubit 2.0
Fluorimeter and the High Sensitivity DNA Kit (Agilent, catalog number
5067–4626). For TRN1, we prepared a single-sample CUTseq library using 200 ng
of gDNA and 10 PCR cycles. Afterwards, we prepared four libraries, by using 1 μl
per sample of the purified library and subjected them to two, four, six, and eight
extra PCR cycles. For TRN6, we prepared three multiplexed CUTseq libraries by
pooling barcoded decreasing input amounts of the same extracted gDNA: 1.0, 0.5,
0.25, and 0.125 ng using either 12, 14, or 16 PCR cycles. We analyzed all the
libraries on Bioanalyzer and sequenced them using the NextSeq 500/550 High
Output v2 kit (75 cycles) (Illumina, catalog number FC-404-2005). A list of
recommended PCR cycles depending on the amount of input gDNA is provided in
Supplementary Table 4.

Exome capture. To test whether CUTseq can be used for exome sequencing, we
extracted gDNA from SKBR3 cells and two FFPE breast samples (TRN16 and
TRN17, see Supplementary Table 2). For SKBR3 cell sample, we prepared two
CUTseq libraries as well as two reference libraries using the SureSelect XT HS Kit
(Agilent Technologies, catalog number G9704A). For the two FFPE breast samples,
we prepared one CUTseq library and one reference library for each. The amount of
gDNA input was 50 ng in all the cases. We then performed exome capture using
the SureSelect XT HS Target Enrichment kit and SureSelect Human All Exon v6
baits (Agilent Technologies, catalog number G9704K) on all libraries following the
manufacturer’s protocol. We analyzed all the captured libraries on Bioanalyzer and
sequenced them using the NextSeq 500/550 High Output v2.5 kit 300 cycles
(Illumina, catalog number 20024908).

High-throughput CUTseq. To streamline the preparation of multiplexed libraries
from low-input samples, we adapted the CUTseq workflow to perform the
digestion and ligation steps in multi-well plates using a low-volume non-contact
liquid-dispensing system (I-DOT One MC from Dispendix GmbH, Germany).
Briefly, we first manually dispensed 5 μl of Vapor-Lock (Qiagen, catalog number
981611) per well in 96 wells of a 384-well plate. We then used I-DOT One to
dispense first 5 ng diluted in 350 nl of gDNA extracted from HeLa cells, followed by
100 nl of 20 U/μl of HindIII (NEB, catalog number R3104) and 50 nl of CutSmart
buffer (NEB, catalog number R3104), in 96 of the 384 wells. After incubating the
plate at 37 °C for 30 min, we used I-DOT again to dispense 300 nl per well of
CUTseq adapter at 33 nM, using a differently barcoded adapter for each well,
followed by 200 nl of T4 rapid DNA ligase (Thermo Fisher Scientific, catalog
number K1423), 300 nl of T4 ligase buffer 5× (Thermo Fisher Scientific, catalog
number K1423), 120 nl of ATP at 10 μΜ (NEB, catalog number P0756L), 30 nl of
50 mg/ml bovine serum albumin (Thermo Fisher Scientific, catalog number
AM2616), and 50 nl of nuclease-free water (Thermo Fisher Scientific, catalog
number 4387936). We incubated the plate at 25 °C for 30 min and then pooled all
the contents of the 96 wells used into 1 tube, before proceeding to IVT and library
preparation following the standard CUTseq protocol. A list of reagents and
volumes dispensed using the I-DOT One system is provided in Supplementary
Table 5.

Sequencing data processing. We demultiplexed the raw sequence reads based on
index sequences using the BaseSpace® Sequence Hub cloud service of Illumina.
Afterwards, FASTQ files were generated and downloaded from BaseSpace. To
process FASTQ files, we developed a custom pipeline that is freely available on
GitHub at this address: https://github.com/garner1/cutseq. Briefly, we retained
reads containing the expected prefix consisting of 8 nt UMI and 8 nt sample bar-
code using SAMtools (v1.9)26 and scan_for_matches27, allowing at most two
mismatches in the sample barcode. We then clipped off the prefixes and aligned the
trimmed reads to the GRCh37/hg19 reference genome using BWA-MEM28 with
default parameters. We retained reads that aligned with a quality score ≥ 30. Lastly,
we identified and removed PCR duplicates using the Python umi_tools29 package,
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with default parameters. We excluded reads aligned to sex chromosomes, to
consider always comparable genomic support regions.

Estimation of sequencing error rates. We estimated the sequencing error rate in
all our sequencing experiments, by using the information contained in the Cigar
string of the generated BAM files and the open-source Alfred software30. The
sequence error rate is calculated by dividing the total number of deletions, inser-
tions, and mismatches (characters D, I, and M with mismatch to reference in the
Cigar string in the BAM files) over the total number of aligned bases (character M
in the Cigar string).

Copy number calling and analysis. To determine DNA copy number levels, we
used the R package QDNAseq31, which is optimized for FFPE samples. The
threshold used for calling amplifications and deletions was log2

2:5
2 and log2

1:5
2 ,

respectively. We binned the genomes in non-overlapping windows of constant size
(1Mb, 500 kb, 100 kb, 50 kb, or 30 kb) and plotted genome-wide copy number
profiles using custom scripts in R. We plotted chromosome-specific profiles
together with the corresponding chromosome ideogram using the R package
karyoploteR32. To quantify the similarity of copy number profiles across different
samples, we computed the Pearson’s pairwise correlation of the log ratio values in
corresponding genomic windows using custom scripts in R. To quantify the
fluctuation of the CUTseq signal, we computed the mean and SD of the absolute
difference between the non-segmented and segmented log2 ratio values inside each
genomic window. To compare copy number profiles obtained at different
sequencing depths, we down-sampled the SAM file using SAMtools (v1.9)26. To
determine the aneuploid genome fraction, we calculated the percentage of 100 kb
genomic windows that are called either amplified or deleted using custom scripts in
R. To identify cancer-associated genes that were either amplified or deleted in the
KI samples, we downloaded a list of genes frequently mutated in cancers from the
COSMIC database15. We then clustered the samples by calculating the Euclidean
distances between the state of each COSMIC gene (amplified= 1, deleted=− 1, or
neutral= 0) in all the samples, followed by complete linkage clustering. Further-
more, to examine COSMIC genes related to breast cancer, we used a list of genes
that are frequently affected by CNAs in breast cancer, which is included in the
Supplementary Table 14 of ref. 16. To cluster the copy number profiles of different
regions in the FFPE sections of KI samples, we used the R function hclust with
default parameters and complete linkage clustering.

Single-nucleotide variants calling. To analyze the sequencing data obtained from
exome capture, we performed SNV calling using the bcbio-nextgen tool (v1.1.4a)
(https://github.com/bcbio/bcbio-nextgen) and the VarDict variant caller33, using as
input PCR-deduplicated BAM files and the genomic target regions of the Agilent
SureSelect Human All Exon V6 kit. Default parameters were used in the processing
pipeline. To summarize the results of the analysis, we used MultiQC34 and SnpEff
(http://snpeff.sourceforge.net/).

In silico analysis of different restriction enzymes. To calculate the number of
recognition sites in the human reference genome (GRCh37/ hg19) for a variety of
restriction enzymes, we used the Restriction module2 package in Biopython35. We
then used a custom R script to compute the distribution of all the distances
between consecutive recognition sites for all the restriction enzymes considered.

Overlap between HindIII and NlaIII sites and COSMIC genes. To calculate the
number of HindIII and NlaIII recognition sites inside the exons of cancer-
associated genes listed in the COSMIC database15, we first extracted the sequences
of all the exons of these genes from the reference human genome (GRCh37/hg19),
using the coordinates of the genomic regions targeted by the Agilent SureSelect
Human All Exon V6 kit. As sequencing reads can reach exons from restriction sites
located in close proximity, we artificially shifted the exons start and end coordi-
nates of 50 bp outwards. Subsequently, we created a FASTA file from these regions
using the BEDTools36 function getfasta1. To count the number of restriction sites
present inside the extracted exon sequences, we used the Restriction module2
package in Biopython35. Lastly, we computed the number of restriction sites per
kilobase of exonic sequence. We then used a custom R script to compute the
distribution of all the distances between consecutive recognition sites for all the
restriction enzymes considered. To measure whether the distribution of the
recognition sites is homogenous across the human genome, we binned the human
reference genome in 100 kb bins and calculated the SD of the distances between
consecutive recognition sites within each bin.

Data availability
All the sequencing data related to the cell lines described in this study have been
deposited in the NCBI Sequence Read Archive with the following SRA accession:
PRJNA513980. The sequencing data related to the clinical samples are not disclosed due
to patient privacy protection rules enforced at the institutions that provided the samples.
The source data underlying all the Figures and Supplementary Figures are provided as a
separate Source Data file. The following publically available datasets were used:
1) Human reference genome (Grch37/hg19):

ENSEMBL release 75: http://grch37.ensembl.org/index.html
2) COSMIC gene set: https://cancer.sanger.ac.uk/census
3) List of genes frequently affected by copy number alterations in breast cancers:
Supplementary Table 14, sheet “CopyNumber” in ref. 16.
4) List of mutations in 127 genes recurrently mutated in breast cancers:
Supplementary Table 2 in ref. 18.
All other relevant data are available from the authors upon resonable request.

Code availability
All the custom code used for processing CUTseq sequencing data is provided as
Supplementary Software and is also available at the following GitHub link: https://github.
com/garner1/cutseq.
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