Re-sequencing of genes related to mastitis resistance in dairy cows.

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1718430 since 2021-10-20T11:43:57Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Official Journal of the Animal Science and Production Association (ASPA)

ISSN: 1828-051X

http://www.tandfonline.com/tjas

Italian Journal of Animal Science

ASPA 23rd CONGRESS
Sorrento, June 11-14, 2019

Book of Abstracts

Guest Editors: Fulvia Bovera (Coordinator), Marzia Albenzio, Mariangela Caroprese, Rosaria Marino, Gianluca Neglia, Giovanni Piccolo, Angela Salzano.
particular, the CAN1 (60% of variability) discriminated the strong alleles, CAN2 (22% of variability) discriminated the weak alleles and CAN3 separated the animals carrying the null alleles. The most discriminant SNPs for the three CANs have been found to be located in the casein cluster. In particular two SNPs mapped in the CSN1S1 chromosomal position and the breeds carrying the null alleles showed opposite allelic frequencies in relation to the other breeds as results of selective selection pressure. Mahalanobis distance, based on the group centroid position in the three-dimensional space, returns a trend of variation from the strong to null alleles classes. Moreover, the CDA analysis allowed to identify associations of CSN1S1 alleles with other clustered casein genes. This result could help in the developing of a panel of SNPs useful for selection plans aimed to improve milk technological properties for cheese making or, conversely, to modify milk nutraceutical characteristics for goat’s milk intolerance.

Acknowledgements
The research was supported by the research programme GENZOOT funded by the Italian Ministry of Agriculture.

P043
Re-sequencing of genes related to mastitis resistance in dairy cows
Stefano Sartore1, Dominga Soglia1, Roberto Rasero1, Sandra Maione1, Stefania Chessa1,2, Paola Sacchi1
1Dipartimento di Scienze Veterinarie, University of Torino, Italy
2Istituto di Biologia e Biotecnologia Agraria, National Research Council, Lodi, Italy
Contact: stefano.sartore@unito.it

Selection for mastitis resistance should be one of the first aims in dairy farms, since mastitis is a major cause of economic loss. Resistance to mastitis is a complex trait and expression profiles of mammary gland infected with different pathogens were conducted for a better understanding of the mechanism underlying this disease. Many different genes were found to be involved with mastitis, but only the identification of causative mutations could be useful for selection of resistant cows. Wide regions of six genes involved in immune response were re-sequenced to look for causative mutation of mastitis resistance: the pentraxin3 (PTX3), the chemokine C-X-C motif receptors (CXCR1 and CXCR2), the toll-like receptor 4 (TLR4), the mannose-binding lectin 1 (MBL1), and serum amyloid A3 (SAA3) genes, respectively on BTA1, BTA2, BTA8, BTA28 and BTA29. DNA was extracted from semen of bulls in the positive (58 bulls) and negative (37 bulls) tails of the distributions of estimated breeding values for somatic cell score. Using a target re-sequencing approach by NGS technique on the MiSeq Illumina platform, we identified a total of 1535 polymorphisms (including SNPs and small indels). Excluding mutations, with a minor allele frequency lower than 0.05 only 384 polymorphisms remained. The original phenotypes were adjusted for population structure using the genomic relationship matrix calculated using this dataset and 4 individuals having an identity by state (IBS) > 0.95 were excluded from the following analysis. To test for associations, mutations with a correlation higher than 0.80 with any others were further excluded, together with polymorphisms deviating from Hardy-Weinberg equilibrium. Finally, 101 polymorphisms were tested for associations. A total of 7 SNPs resulted significantly associated with SCS (p < .05): one on PTX3 (rs208223246, missense variant responsible for the amino acid exchange Glu347Lys), one on CXCRL1 (rs109694601, intron variant), one on TLR4 (rs134052737, intergenic variant), one on MBL1 (rs208247354 and rs208491630, respectively intron and upstream gene variant), and two on SAA3 (rs137746604 and rs210417381, both upstream gene variants). These findings represent the first step toward the use of causative mutations in genetic selection for mastitis resistance in dairy cows.

Acknowledgements
The research was funded by Cassa di Risparmio di Cuneo, Progetto ‘Migliorlatte’.

P044
Genetic diversity, productive and reproductive performance in Italian chicken breed Bianca di Saluzzo
Stefano Sartore1, Dominga Soglia1, Sandra Maione1, Sihem Dabbou1, Marta Gariglio1, Paola Sacchi1, Roberto Rasero1, Cecilia Mugnai1, Laura Gasco2, Francesco Gai3, Achille Schiavone1,2
1Dipartimento Scienze Veterinarie, University of Torino, Italy
2Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Italy
3Istituto di Scienze delle Produzioni Animali, Consiglio Nazionale delle ricerche, Grugliasco, Italy
Contact: dominga.soglia@unito.it

Bianca di Saluzzo (BS) is a chicken breed reared in Piedmont region and its substitution with commercial lines caused a reduction in size, associated with a progressive decline due to inbreeding. In this study, genetic diversity, productive and reproductive performance were examined. Birds were kept in standard environmental conditions. At hatching, 177 chicks were weighed and at six weeks of age were separated by sex and transferred to growing pens with free-access to water and were fed with a standard commercial starter diet ad libitum followed by a growing diet. All birds were genotyped by a set of 14 microsatellite markers chosen by their high polymorphism. Body weight (BW) was