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Abstract

We present exact time–dependent solutions in vacuum string field theory. We
show that they have many characteristics of the rolling tachyon solutions. We
discuss the consequences of introducing a background electric field and, in connec-
tion with it, the existence of fundamental string solutions in vacuum string field
theory.

1. Introduction

One of the most important problems in nowadays string/brane theory is the
description of how unstable branes decay. Of course string theory contains
many example of stable branes, but this stability involves supersymme-
try. In real world supersymmetry is broken and branes become unstable.
Therefore instability is a generic property for real world branes. There
exists already a considerable literature concerning brane decay. When the
latter is described by means of a classical solution in a (super)gravity the-
ory, it is referred to as an S–brane. Instability in D–branes is signalled by
the presence of a tachyon and described in terms of an effective tachyon
theory. In this case the solution describing the brane decay is called rolling
tachyon. More effectively rolling tachyons have been formulated in terms of
boundary conformal field theories. Altogether these formulations allow us
to, at least qualitatively, describe the final products of brane decays, which
consist of very massive closed string states and, possibly, of macroscopic
fundamental strings.

Making progress in the description of brane decay is very important, not
only because we would like to know the fate of the branes that inhabit the
string landscape, but also because the decay of a brane could provide a very

∗ Work supported by the Italian MIUR under the program ”Teoria dei Campi, Super-
stringhe e gravitá” and CAPES-Brasil
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appealing prototype of cosmological evolution: the bouncing off a tachyon
potential contains suggestions both for dark matter and dark energy, not
to speak of inflationary and pre–inflationary evolution. To have access to a
more effective description one must however start from a more fundamental
point of view than the ones mentioned so far: in particular we need a
framework in which to be able to describe loop corrections. In this sense
the most general vantage point is offered at present by string field theory.
In this paper we would like to review the progress made in this direction.

In recent years, the study of tachyon condensation has driven a renewed
attention upon String Field Theory (SFT), where this typically off-shell
phenomenon can be most appropriately approached. Among the various
formulations of string field theory Witten’s Open String Field Theory, [13],
sticks out for its elegance and completeness, and in this review we will limit
ourselves to it, for reviews see [2, 3, 4, 5, 6]. It is worth, to start with, to
summarize the historical developments that eventually lead us to the time
dependent solutions that form the subject of this paper. The initial input
is represented by A.Sen’s conjectures, [1], which can be summarized as fol-
lows. Bosonic open string theory in D=26 dimensions is quantized on an
unstable vacuum. This instability manifests itself through the existence of
the open string tachyon. The effective tachyonic potential has, beside the
local maximum where the theory is quantized, a local minimum. Sen’s con-
jectures concern the nature of the theory around this local minimum. First
of all, the energy density difference between the maximum and the mini-
mum should exactly compensate for the D25–brane tension characterizing
the unstable vacuum: this is a condition for the (relative) stability of the
theory at the minimum. Therefore the theory around the minimum should
not contain any quantum fluctuation pertaining to the original (unstable)
theory. The minimum should therefore correspond to an entirely new the-
ory, which can only be the bosonic closed string theory. If so, in the new
theory one should be able to find in particular all the classical solutions
characteristic of closed string theory, the D25–brane as well as all the lower
dimensional D–branes.

A lot of evidence in favor of these conjectures has been collected over
the last few years (see below) although it does not have a uniform degree
of accuracy and reliability. However it is sufficient to conclude that they
provide a correct description of tachyon condensation in SFT. Particularly
elegant is the proof of the existence of solitonic solutions in Vacuum String
Field Theory (VSFT), the SFT version that is believed to represent the
theory near the minimum.

The D25–brane and its lower dimensional companions are unstable,
because there is no conserved charge (like in the corresponding supersym-
metric theories) associated with them. They are bound to decay. Therefore
SFT must contain also time–dependent solutions that describe their decay
as well as their decay products. This represents a basic problem in tachyon
condensation, for the decay of the space filling D25–brane represents the
evolution from the maximum of the tachyon potential to the (local) min-
imum. That such a solution, the rolling tachyon, exists has been argued
in many ways, [25], see also [27, 28, 29] using effective field theories or
boundary conformal field theories. As far as the SFT proper is concerned,
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although there have been some attempts [7], no analytical control has been
achieved so far.

In contrast with the situation in SFT proper, encouraging exact results
have been obtained in the framework of vacuum SFT (VSFT). Let us recall
that VSFT, [9], is a version of Witten’s open SFT, [13], that is supposed
to describe the theory at the minimum of the tachyonic potential. As men-
tioned above, there is evidence that at this minimum the negative tachyonic
potential exactly compensates for the D25–brane tension. No open string
mode is expected to be excited, so that the BRST cohomology must be
trivial. This state can only correspond to the closed string vacuum.

Thanks to these properties VSFT is a simplified version of SFT. The
BRST operator Q takes a very simple form in terms of ghost oscillators
alone. It is clearly simpler to work in such a framework than in the original
SFT. In fact many classical solutions have been shown to exist, which
are candidates for representing D–branes (the sliver, the butterfly, etc.),
and other classical solutions have been found (lump solutions) which may
represent lower dimensional D–branes [8, 10, 11, 12, 14, 15, 24].

In [37] it was shown that VSFT contains exact solitonic solutions that
are localized in time: the time profile of such solutions is dominated for large
t by a factor exp(−at2) with positive constant a. At time t = 0 the solution
takes the form of a deformed sliver (D25-brane) and at infinite future (and
infinite past) time it becomes 0, i.e. it flows into the stable vacuum. If
the initial configuration happens to coincide exactly with the sliver (no
deformation present) there cannot be any time evolution. Therefore an
initial deformation away from the sliver is essential for true time evolution.
All this is strongly reminiscent of Sen’s rolling tachyon solution, [25] or of
an S–brane, [36], i.e of a bouncing state finely tuned at t = −∞ to be poised
at time t = 0 near the top of the tachyon potential and let free to evolve.
This result has been subsequently confirmed in [19], where the same kind
of solutions has been studied in the presence of a background electric field.
In this background one expects that among the final products of the brane
decay also fundamental strings be present. As a necessary condition for
this, in the last part of this review, we show that in VSFT there exist in
fact fundamental strings solutions.

This paper is organized as follows. In the next section we briefly review
rolling tachyon solutions obtained with boundary conformal field theory
methods. In section 3 we collect general results and formulas in VSFT
which are necessary in the sequel. In section 4 we present our method to
obtain rolling tachyon–type time–localized solutions in VSFT and illustrate
their connection with the rolling tachyon. In section 5 we briefly discuss
the consequences of introducing a background electric field and show the
existence of fundamental strings solutions in vacuum string field theory.

2. The rolling tachyon in effective field theory and BCFT

In this section, for later reference, we briefly review the main points con-
cerning rolling tachyon solution and brane decay (for a complete account
see the original literature, [25, 27, 28, 29] or the review [26]). It is well–
known that in bosonic open string theory the tachyon potential has a local
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maximum and a local minimum. The rolling tachyon is a solution describ-
ing the system prepared near the maximum of the potential and let free
to evolve toward the minimum and eventually stop there. One could think
that the system, starting from the local minimum at time −∞, was pushed
toward the local maximum and tuned so that at t = 0 it is poised near the
maximum and free to evolve back toward the minimum. As pointed out by
Sen, a classical tachyon field solution in accord with these conditions would
be

T (x0) = λ cosh(x0) (1)

at least for small x0. Here λ is small and represents the distance from the
potential maximum. In general one doesn’t go too far with a solution like
(1). However Sen remarked that this is just the classical limit of an exact
conformal field theory. In fact if we consider the action (involving only the
x0 mode, the other string modes are dropped)

− 1
2π

∫
d2z ∂zX

0 ∂z̄X
0 + λ̃

∫
dt coshX0(t) (2)

where t parametrizes the world–sheet boundary, and Wick–rotate the field
X0 = iX, we end up with a solvable conformal field theory, since the bound-
ary perturbation λ̃

∫
dt cosX(t) turns out to be exactly marginal. The (pos-

itive) coupling λ̃ coincides with λ for small λ. By expressing the solution
in terms of the associated boundary state in closed string theory, one is
able to extract information concerning in particular the energy momentum
tensor. For a generic Dk–brane the result, after inverse–Wick–rotating it,
is expressed in terms of the function

f̃(x0) =
1

1 + ex0sin(λ̃π)
+

1
1 + e−x0sin(λ̃π)

− 1 (3)

The total energy and pressure are

T00 = Tk cos2(πλ̃)δ(x⊥) (4)

p(x0) = −Tk f̃(x0)δ(x⊥) (5)

where Tk is the tension of the Dk–brane, x⊥ denotes the transverse direction
to it. For 0 < λ̃ < 1

2 , it follows that f̃(x0) → 0 as x0 → ∞. Therefore,
while the energy is conserved, the pressure tends to 0. This pressureless
matter (or dust) is referred to as tachyon matter.

The conclusion of this analysis is that the products of the Dk–brane
decay are made of pressureless matter which stays close to the brane plane.
When λ̃ = 1

2 something peculiar happens, for f̃(x0) = 0 and the energy mo-
mentum tensor identically vanishes. One can interpret this static solution
as the vacuum corresponding to the minimum of the potential. However
this conclusion is only apparently true. The solution identified by λ̃ = 1

2
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has a simple geometric interpretation: it corresponds to an infinite peri-
odic array of D–branes located at imaginary time x = −ix0 = (2n + 1)π.
According to the analysis of [28], this background actually corresponds to
a closed string background. For instance, if one considers a disk amplitude
with two closed string tachyon insertions in the presence of this background
and inverse–Wick–rotate it, one finds that the contribution from the am-
plitude comes from a region of the moduli space that corresponds to the
disk extending to cover all of the complex plane, i.e. becoming a sphere
with one puncture (at infinity). The resulting amplitude is a sphere ampli-
tude with two tachyon insertions and a closed string state inserted at the
puncture. This extra state contains the full tower of massive closed string
excitations. This analysis extends to more general amplitudes and leads
to the conclusion that the point λ̃ = 1

2 represents a purely closed string
background, composed of massive closed string states with characteristics
very similar to the tachyon matter. In other words this background seems
to represent the final result of the brane decay.

In the presence of a background electric field the above picture does not
essentially change except for the presence in the final state of (macroscopic)
fundamental strings coupled to the electric field, [17].

Our purpose in the sequel is to try to reproduce the results we have
summarized in this section in the context of VSFT.

3. Projectors in VSFT

VSFT, [9], is a version of Witten’s open SFT, [13], that is supposed to
describe the theory at the minimum of the tachyonic potential. The action
has functionally the same form as the original SFT, but we do not know the
precise form of the BRST charge. Some heuristic argument is necessary to
complement our ignorance. Relying on the evidence that, at the minimum,
the negative tachyonic potential exactly compensates for the D25–brane
tension, one can conclude that no open string mode should be excited. So
that the BRST cohomology must be trivial. The possible BRST operators
that satisfy this condition are of course manifold. However it is possible to
find evidence that the correct form is given by eq.(7) below, [18].

In short the formulas relevant to VSFT are as follows. The action is

S(Ψ) = − 1
g2
0

(
1
2
〈Ψ|Q|Ψ〉 +

1
3
〈Ψ|Ψ ∗ Ψ〉

)
(6)

where
Q = c0 +

∑
n>0

(−1)n (c2n + c−2n) (7)

The equation of motion is

QΨ = −Ψ ∗ Ψ (8)

Our aim below is to find solutions of this equation that represent both
D–branes and time–dependent solutions representing D–brane decays. The
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ansatz for nonperturbative solutions we constantly refer to has the factor-
ized form

Ψ = Ψm ⊗ Ψg (9)

where Ψg and Ψm depend purely on ghost and matter degrees of freedom,
respectively. Then eq.(8) splits into

QΨg = −Ψg ∗g Ψg (10)
Ψm = Ψm ∗m Ψm (11)

where ∗g and ∗m refers to the star product involving only the ghost and
matter part, respectively. The action for this type of solution becomes

S(Ψ) = − 1
6g2

0

〈Ψg|Q|Ψg〉〈Ψm|Ψm〉 (12)

〈Ψm|Ψm〉 is the ordinary inner product product, 〈Ψm| being the bpz con-
jugate of |Ψm〉.

It it well–known how to solve the ghost equation of motion (10), [18].
We give this solution for granted and ignore it throughout. Henceforth we
concentrate on the matter part, eq.(11). The solutions are projectors of the
∗m algebra. The ∗m product is defined as follows

123〈V3|Ψ1〉1|Ψ2〉2 =3 〈Ψ1 ∗m Ψ2| (13)

where the three strings vertex V3 is given by

|V3〉 =
∫
d26p(1)d

26p(2)d
26p(3)δ

26(p(1) + p(2) + p(3)) exp(−E) |0, p〉123 (14)

where

E =
3∑

r,s=1


1

2

∑
m,n≥1

ηµνa
(r)µ†
m V rs

mna
(s)ν†
n (15)

+
∑
n≥1

ηµνp
µ
(r)V

rs
0na

(s)ν†
n +

1
2
ηµνp

µ
(r)V

rs
00 p

ν
(s)




Summation over the Lorentz indices µ, ν = 0, . . . , 25 is understood and
η denotes the flat Lorentz metric. The operators a(r)µ

m , a
(r)µ†
m denote the

non–zero modes matter oscillators of the r–th string, which satisfy

[a(r)µ
m , a(s)ν†

n ] = ηµνδmnδ
rs, m, n ≥ 1 (16)

p(r) is the momentum of the r–th string and |0, p〉123 ≡ |p(1)〉⊗|p(2)〉⊗|p(3)〉
is the tensor product of the Fock vacuum states relative to the three strings.
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|p(r)〉 is annihilated by the annihilation operators a(r)µ
m and it is eigenstate

of the momentum operator p̂µ
(r) with eigenvalue pµ

(r). The normalization is

〈p(r)| p′(s)〉 = δrsδ
26(p+ p′) (17)

The symbols V rs
nm, V

rs
0m, V

rs
00 will denote the coefficients computed in [30]. We

will use them in the notation of Appendix A and B of [15]. The notation
V rs

MN for them will also be used at times (with M(N) denoting the couple
{0,m} ({0, n})) .

An important ingredient in the following are the bpz transformation
properties of the oscillators

bpz(a(r)µ
n ) = (−1)n+1a

(r)µ
−n (18)

The solutions to eq.(11) are projectors of the ∗m algebra. The simplest
one is the sliver. Let us recall its main features. It is translationally in-
variant. As a consequence all momenta can be set to zero. The integration
over the momenta can be dropped and the only surviving part in E will be
the one involving V rs

nm. The sliver is defined by

|Ξ〉 = N e−
1
2
a†Sa† |0〉, a†Sa† =

∞∑
n,m=1

aµ†
n Snma

ν†
mηµν (19)

This state satisfies eq.(11) provided the matrix S satisfies the equation

S = V 11 + (V 12, V 21)(1 − ΣV)−1Σ
(
V 21

V 12

)
(20)

where
Σ =

(
S 0
0 S

)
, V =

(
V 11 V 12

V 21 V 22

)
, (21)

The proof of this fact is well–known, [14]. First one expresses eq.(21) in
terms of the twisted matrices X = CV 11, X+ = CV 12 and X− = CV 21,
together with T = CS = SC, where Cnm = (−1)nδnm is the twist matrix.
The matrices X,X+, X− are mutually commuting. Then, requiring T to
commute with them as well, one can show that eq.(21) reduces to the
algebraic equation

(1 − T )(XT 2 − (1 +X)T +X) = 0 (22)

Apart form the identity solution, the significant solution is the sliver

T =
1

2X
(1 +X −

√
(1 + 3X)(1 −X)) (23)

which evidently commutes with X,X+, X−.
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The normalization constant N is

N = (det(1 − ΣV))
D
2 (24)

where D = 26. The contribution of the sliver to the matter part of the
action (see (12)) is given by

〈Ξ|Ξ〉 =
N 2

(det(1 − S2))
D
2

(25)

Both eq.(24) and (25) are ill–defined and need to be regularized. Some
proposals in this sense have been put forward in [22, 23].

The sliver solution represents the space–filling D25–brane. In order
to find D–brane solution of lower dimensions we have to define transverse
directions, i.e. directions along which the solutions are not translational in-
variant. The lump solutions are engineered to represent a lower dimensional
brane, therefore they are characterized by the breaking of translational in-
variance along a subset of directions. Accordingly we split the three strings
vertex into the tensor product of the perpendicular part and the parallel
part

|V3〉 = |V3,⊥〉 ⊗ |V3,‖〉 (26)

and the exponent E, accordingly, as E = E‖ + E⊥. The parallel part is
the same as in the sliver case while the perpendicular part is modified as
follows. Following [15], we denote by xα, pα, α = 1, ..., k the coordinates
and momenta in the transverse directions and introduce the zero mode
combinations

a
(r)α
0 =

1
2

√
bp̂(r)α − i

1√
b
x̂(r)α, a

(r)α†
0 =

1
2

√
bp̂(r)α + i

1√
b
x̂(r)α, (27)

where p̂(r)α, x̂(r)α are the zero momentum and position operator of the r–th
string, and we have introduced the parameter b as in [15]. It follows

[a(r)α
0 , a

(s)β†
0 ] = ηαβδrs (28)

Denoting by |Ωb〉 the oscillator vacuum ( aα
0 |Ωb〉 = 0 ), the relation between

the momentum basis and the oscillator basis is defined by

|{pα}〉 =(
b

2π

) k
4

exp

[
3∑

r=1

(
− b

4
p(r)

α ηαβp
(r)
β +

√
ba

(r)α†
0 p(r)

α − 1
2
a

(r)α†
0 ηαβa

(r)β†
0

)]
|Ωb〉

Next we insert this equation inside E′
⊥ and eliminate the momenta along

the perpendicular directions by integrating them out. The overall result of
this operation is that, while |V3,‖〉 is the same as in the ordinary case,

|V3,⊥〉′ = K e−E′ |Ωb〉 (29)
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with

K =

( √
2πb3

3(V00 + b/2)2

) k
2

, E′ =
1
2

3∑
r,s=1

∑
M,N≥0

a
(r)α†
M V

′rs
MNa

(s)β†
N ηαβ (30)

The coefficients V
′rs
MN are given in Appendix B of [15]. The new Neumann

coefficients matrices V
′rs satisfy the same relations as the V rs ones. In

particular one can introduce the matrices X
′rs = CV

′rs, where CNM =
(−1)NδNM , which turn out to commute with one another. All the relations
valid forX,X± hold with primed quantities as well. We can therefore repeat
word by word the derivation of the sliver from eq.(19) through eq.(25). The
new solution, denoted |Ξ′

k〉 will have the form (19) with S along the parallel
directions and S replaced by S′ along the perpendicular ones. In turn S′
is obtained as a solution to eq.(20) where all the quantities are replaced
by primed ones. This amounts to solving eq.(22) with primed quantities.
Therefore in the transverse directions S is replaced by S′, given by

S′ = CT ′, T ′ =
1

2X ′ (1 +X ′ −
√

(1 + 3X ′)(1 −X ′)) (31)

In a similar way we have to adapt the normalization and energy formulas
(24,25). Once this is done, one can compute the energy density, which, for
a static solution, corresponds to the negative of the action calculated via
(12) divided by the volume. The absolute value of this energy is not well
defined (see below), but one can at least compute the ratio for the tensions
of two lumps of contiguous dimensions, [15],

Tk

2πTk+1
=

3√
2πb3

(V00 +
b

2
)2
(

det(1 −X ′)3 det(1 + 3X ′)
det(1 −X)3 det(1 + 3X)

) 1
4

(32)

This ratio has been proven both numerically, [15], and analytically, [32],
to be 1. In this way we find the expected value of the ratio of tension of
D–branes (in α′ = 1 units). Another confirmation of the D–brane inter-
pretation of a lump comes from the space profile, which can be calculated
by contracting the lump solution with the coordinate eigenstate |xα〉 along
the transverse directions. After regularization, [8], or after introduction
of a constant background B field, [33, 34], this profile turns out to be a
Gaussian centered at the transverse coordinate origin and thus represents
a space–localized solution.

Finally we remark that there is another solution beside (31), for which
T ′ is replaced by 1/T ′. The solution obtained in this way is referred to as
inverse lump. It is not clear whether such solutions make sense at all. How-
ever below we will use this suggestion to invert only the discrete spectrum
of T ′. This makes sense and will allow us to find interesting time–dependent
solutions.
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3.1. Spectroscopy and diagonal representation
A good deal of information about the sliver and lump solutions can be ob-
tained by diagonalizing the X,X± matrices. The diagonalization program
was carried out in [31], while the same analysis for X ′ was accomplished
in [21] and [20]. Here, for later use, we summarize the results of these
references. The eigenvalues of X = X11, X+ = X12, X− = X21 and T are
given, respectively, by

µrs(k) =
1 − 2 δr,s + e

πk
2 δr+1,s + e−

πk
2 δr,s+1

1 + 2 coshπk
2

(33)

t(k) = −e−
π|k|
2 (34)

where −∞ < k <∞. The generating function for the eigenvectors is

f (k)(z) =
∞∑

n=1

v(k)
n

zn

√
n

=
1
k
(1 − e−k arctan z) (35)

The completeness and orthonormality equations for the eigenfunctions are
as follows

∞∑
n=1

v(k)
n v(k′)

n = N (k) δ(k − k′) , N (k) =
2
k

sinh
πk

2
,

∫ ∞

−∞
dk

v
(k)
n v

(k)
m

N (k)
= δnm (36)

The spectrum of X is continuous and lies in the interval [−1/3, 0). It is
doubly degenerate except at 0. The continuous spectrum of X ′ lies in the
same interval, but X ′ in addition has a discrete spectrum. To describe it
we follow [20]. We consider the decomposition, see [5],

X
′rs =

1
3
(1 + αs−rCU ′ + αr−sU ′C) (37)

It is convenient to express everything in terms of CU ′ eigenvalues and
eigenvectors. The discrete eigenvalues are denoted by ξ and ξ̄. Since CU ′
is unitary they lie on the unit circle. The discrete eigenvalues ξ and ξ̄ are
determined as follows. Let

ξ = −2 − cosh η − i
√

3 sinh η
1 − 2cosh η

(38)

and

F (η) = ψ(
1
2

+
η

2πi
) − ψ(

1
2
), ψ(z) =

d log Γ(z)
dz

(39)
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Then the eigenvalues ξ and ξ̄ are solutions to


F (η) =
b

4
(40)

To each value of b there corresponds a couple of values of η with opposite
sign (except for b = 0 which implies η = 0).

The eigenvectors V (ξ)
n are defined via the generating function

F (ξ)(z) =
∞∑

n=1

V (ξ)
n

zn

√
n

= −
√

2
b
V

(ξ)
0

[
b

4
+

π

2
√

3
ξ − 1
ξ + 1

+ log iz

+ e−2i(1+ η
πi

)arctan zΦ(e−4i arctan z, 1,
1
2

+
η

2πi
)
]

(41)

where Φ(x, 1, y) = 1
y 2F1(1, y; y + 1;x), while

V
(ξ)
0 =

(
sinh η

∂

∂η
[log
F (η)]

)− 1
2

(42)

As for the continuous spectrum, it is spanned by the variable k,
−∞ < k <∞. The eigenvalues of CU ′ are given by

ν(k) = −2 + cosh πk
2 + i

√
3 sinh πk

2

1 + 2 cosh πk
2

The generating function for the eigenvectors is

F (k)
c (z) =

∞∑
n=1

V (k)
n

zn

√
n

= (43)

V
(k)
0

√
2
b

[
− b

4
−
(

Fc(k) −

b

4

)
e−k arctan z − log iz −

(
π

2
√

3
ν(k) − 1
ν(k) + 1

+
2i
k

)

+ 2i f (k)(z) − Φ(e−4i arctan z, 1, 1 +
k

4i
) e−4i arctan z e−k arctan z

]

where

Fc(k) = ψ(1 +
k

4πi
) − ψ(

1
2
),

while

V
(k)
0 =

√
b

2N (k)

[
4 + k2

(

Fc(k) −

b

4

)2
]− 1

2

(44)
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The continuous eigenvalues of X ′, X ′−, X ′− and T ′ (for the conventional
lump) are given by same formulas as for theX,X+, X− and T case, eqs.(33,34).
As for the discrete eigenvalues, they are given by the formulas

µrs
ξ =

1 − 2 δr,s − eη δr+1,s − e−η δr,s+1

1 − 2 cosh η
tξ = e−|η| (45)

The set of continuous and discrete eigenvectors form a complete basis,
the completeness relation being∫ ∞

−∞
dk V

(k)
N V

(k)
M + V

(ξ)
N V

(ξ)
M + V

(ξ̄)
N V

(ξ̄)
M = δNM (46)

It is convenient to expand all the relevant quantities in VSFT by means
of this basis. To this end we define

ak =
∞∑

N=0

V
(k)
N aN , aξ =

∞∑
N=0

V
(ξ)
N aN , aξ̄ =

∞∑
N=0

V
(ξ̄)
N aN

aN =
∫ ∞

−∞
dk V

(k)
N ak + V

(ξ)
N aξ + V

(ξ̄)
N aξ̄ (47)

and introduce the even and odd twist combinations

ek =
ak + Cak√

2
, eη =

aξ + Caξ√
2

, ok =
ak − Cak

i
√

2
, oη =

aξ − Caξ

i
√

2
. (48)

The commutation relations among them are

[ek, e
†
k′ ] = δk,k′ , [eη, e†η] = 1, [ok, o

†
k′ ] = δk,k′ , [oη, o

†
η] = 1,

(49)

while all the other commutators vanish. The twist properties are defined
by

Cak = a−k, Caξ = aξ̄,

Using these combinations the three–strings vertex can be cast in diag-
onal form and, for instance, the exponent of the lump state can be written

a†S′a† =
∫ ∞

−∞
dk t(k) (a†k, Ca

†
k) + 2 tξ (a†ξ, Ca

†
ξ)

=
1
2

∫ ∞

−∞
dk t(k) (e†ke

†
k + o†ko

†
k) + tη (e†ηe

†
η + o†ηo

†
η) (50)

where tη ≡ tξ = e−|η|.
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4. Time–localized solutions

As discussed in the introduction, D–branes of bosonic theories, in particular
the D25–brane, are unstable. This piece of information should be stored in
SFT and also in VSFT, if the latter is, as we suppose, a self-contained the-
ory. Therefore the theory should contain a description of how these branes
decay. We expect therefore that among the classical solutions of the equa-
tions of motion there exist time–dependent ones which precisely describe
brane decays. What we expect to find is something like the rolling tachyon
solution[25, 27, 28, 29] or an S–brane–like solution[36]. A state having
a time profile dominated by a factor exp(−at2) with positive constant a
would do.

The technique to produce such a solution is based on double Wick–
rotation. Our reference solution is obtained by picking a Euclidean lump
solution with one transverse space direction (a D24-brane) and then per-
forming an inverse Wick–rotation along such a direction. However the
important ingredient is that our lump solution is an unconventional one.
Since the spectrum of the twisted Neumann coefficient matrices of the three
strings vertex nicely split into a continuous and a discrete part, we define
a new solution in which the squeezed state matrix is made of a continuous
part which is the same as for the conventional lump, and a discrete part
which is inverted with respect to the ordinary lump. After inverse–Wick–
rotating such solution we get the desired time behavior.

4.1. Why ordinary lumps don’t work
Let us see first why we have to start from an unconventional lump solution,
and not from the ordinary one (see section 3 from eq.(26) through eq.(31)).
In fact, for those who are familiar with lump solutions, it would be natural
to start from a lump with one transverse space direction (which represents
a D24-brane) and inverse–Wick–rotate it. For simplicity we denote the
transverse direction coordinate, momenta and oscillators simply by x, p
and aN , dropping the Lorentz label. The solution is written as follows:

|Ψ′〉 = |Ξ25〉 ⊗ |Λ′〉

|Λ′〉 = N ′ exp


−1

2

∑
N,M≥0

a†NS
′
NMa

†
M


 |Ωb〉 (51)

where |Ξ25〉 is the usual sliver along the longitudinal 25 directions. For
normalization constant N ′ , see [37].

We need to know the space profile of this solution in the transverse
direction. To this end we contract it with the x0–coordinate eigenstate

|x0〉 =
(

2
bπ

) 1
4

exp
[
−1
b
x2

0 −
2√
b
ia†0x0 +

1
2
(a†0)

2
]
|Ωb〉 (52)

The result is

〈x0|Λ′〉 =
(

2
bπ

) 1
4 N ′

1 + s′
exp

[
1
b

s′ − 1
s′ + 1

x2
0 −

2i√
b

x0f0

1 + s′
− 1

2
a†W ′a†

]
(53)
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with the following condensed notation

f0 =
∑
n=1

S′
0na

†
n, a†W ′a† =

∑
n,m=1

a†nW
′
nma

†
m, W ′

nm = S′
nm − S′

0nS
′
0m

1 + s′
(54)

and
s′ = S′

00 (55)

After an inverse Wick rotation x0 → ix0, a
†
n → ia†n (53) becomes

〈x0|Λ′〉 =
(

2
bπ

) 1
4 N ′

1 + s′
exp

[
1
b

1 − s′

1 + s′
x2

0 +
2i√
b

x0f0

1 + s′
+

1
2
a†W ′a†

]
(56)

We are interested in solutions which are localized in time. The second term
in the exponent gives rise to time oscillations. Only the first term there
can give rise to time localization. This happens precisely when |s′| > 1.
However such a condition can never be achieved within the present scheme
in which ordinary lump solutions are utilized. For it is possible to show
that for such solutions |s′| ≤ 1. Let us see this in detail. Using the basis of
the previous section we can write

s′ ≡ S′
00 =

∫ ∞

−∞
dk V

(k)
0 (−e−

π|k|
2 )V (k)

0 + V
(ξ)
0 e−|η|V (ξ)

0 + V
(ξ̄)
0 e−|η|V (ξ̄)

0 (57)

We evaluate first this in the extreme limit b → 0 and b → ∞. To this
end we need the behavior of the eigenvectors near these values of b. Near
b = 0 we have

b ≈ 0, η ≈ 0, ξ ≈ 1

V
(ξ)
0 =

1√
2

+ O(η), V (ξ)
n = O(η2) (58)

The same behavior holds for the V (ξ̄) basis.
When b→ ∞ we have instead

b→ ∞, b ≈ 4 log η, ξ ≈ −eπi
3

V
(ξ)
0 ≈ e−

η
2

√
2η log η, V (ξ)

n ∼ e−
η
2
√
η (59)

and the same for V (ξ̄).
As for the asymptotic expansions of the V (k) basis, we have to be more

careful. The point is that the expression (V (k)
0 )2, see (44), would superfi-

cially seem to vanish in the limit η → ∞, but it is in fact a representation
of the Dirac delta function δ(k). Therefore the result of taking the η → ∞
limit in an integral containing (V (k)

0 )2 is to concentrate it at the point k = 0.
This renders the use of the generating function (43) very tricky and, conse-
quently, such integrals as

∫
dk V

(k)
n V

(k)
m f(k) difficult to handle in this limit.
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Anyway whenever we meet such an integral we can bypass the problem by
an indirect evaluation, [37]. The result is as follows.

The first term in the RHS of (57) does not contribute in the limit b→ 0
(i.e. η → 0) and using the approximants (58) we immediately see that the
remaining two terms add up to 1. Therefore when b → 0, s′ → 1. On the
other hand, in the limit b→ ∞, using (59) we see that the last two terms in
the RHS of (57) do not contribute, while the first term contributes exactly
-1.

For generic values of b we cannot calculate s′ analytically but it is easy
to evaluate it numerically and to show that it is a monotonically decreasing
function of b for 0 ≤ b <∞.

Our conclusion is therefore that we cannot obtain a time–localized so-
lution by inverse–Wick–rotating an ordinary lump solution. Some drastic
change has to be made in order to produce a localized time–dependent
solution.

4.2. A Rolling Tachyon–like Solution
The above unsuccessful attempt tells us how we should proceed. It is not
hard to realize that should we replace e−|η| with e|η| in eq.(57) we would
reverse the conclusion at the end of the previous section. In fact, as we
shall see in a moment, we would have |s′| ≥ 1. In section 3 we saw that,
if in the lump solution we replace T ′ by 1/T ′, formally, we still have a
projector. This is true also if we make this replacement for the discrete
spectrum alone. Therefore we define an unconventional lump, by replacing
|Λ′〉 in (51) with

|Λ̌′〉 = Ň ′ exp(−1
2
a†CŤ ′a†)|Ωb〉 (60)

where

Ť ′
NM = −

∫ ∞

−∞
dk V

(k)
N V

(k)
M exp

(
−π|k|

2

)
+
(
V

(ξ)
N V

(ξ)
M + V

(ξ̄)
N V

(ξ̄)
M

)
exp |η|

(61)
Due to the fact that the star product is split into eigenspaces of the Neu-
mann coefficients matrices X ′, X ′

+, X
′−, the projector equation splits ac-

cordingly into the continuous and discrete spectrum part, [24]. Therefore
(60) is still a projector, as one can on the other hand easily verify by direct
calculation. This is the solution we set out to examine. We will see that it
is localized in time.

A few comments are in order. Passing from a squeezed state solution
with a matrix T ′ to another characterized by the inverse matrix 1/T ′ may
lead in general to unacceptable features of the state. However in the case
at hand, in which one inverts only the discrete spectrum, such unpleasant
aspects are not present. First of all the matrix Ť ′ is well defined both
in the oscillator and in the continuous basis. Second, such expression as√

det(1 − Ť ′) are well–defined. This is due to the fact that, if we are al-
lowed to factorize the discrete and continuous spectrum contributions, the
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former can be written as det(1 − Ť ′)(d) = (1 − exp |η|)2, so that the pos-
sible dangerous - sign under the square root disappears due to the double
multiplicity of the discrete eigenvalue. Thirdly, the energy density of the
(Euclidean) solution (60) is well–defined and equals the energy density of
the ordinary lump. In fact, using the formulas similar to (32), the ratio
between the energy densities of the two solutions reduces to

√√√√det(1 + Ť ′)
det(1 − Ť ′)

/

√
det(1 + T ′)
det(1 − T ′)

=

√
(1 + eη)2

(1 − eη)2
/

√
(1 + e−η)2

(1 − e−η)2
= 1 (62)

after factorization of the discrete and continuous parts of the spectrum.
After these important remarks it remains for us to show that this solu-

tion has the appropriate features to represent a rolling tachyon–type solu-
tion. To see if this is true we have to represent it in a more explicit way.
In particular we have to extract the explicit time dependence (that is, we
have to extract the space dependence and then inverse–Wick–rotate it). To
do so, we choose a (coordinate) basis on which to project (60). The most
obvious choice is the ordinary (open string) time, i.e. the time defined by
the center of mass of the string, and analyze the corresponding time profile.
Despite the fact that this coordinate is not diagonal for the ∗–product we
can still have complete control on the corresponding profile. The center of
mass position operator is given by

x̂0 =
i√
b
(a0 − a†0) (63)

The center of mass position eigenstate is

|x0〉 =
(

2
bπ

) 1
4

exp
(
−1
b
x0x0 −

2√
b
ia†0x0 +

1
2
a†0a

†
0

)
|Ωb〉 (64)

Let us compute the center of mass time profile. After inverse–Wick–rotating
x0, it turns out to be

|Λ̌′(x0)〉 = 〈x0|Λ̌′〉 =
(

2
bπ

) 1
4 Ň ′√

1 + Ť ′
00

(65)

× exp

(
1
b

1 − Ť ′
00

1 + Ť ′
00

x2
0 +

2i√
b(1 + Ť ′

00)
x0Ť

′
0na

†
n +

1
2
a†nW̌

′
nma

†
m

)
|Ωb〉

W̌ ′
nm = Š′

nm − 1
1 + Ť ′

00

Š′
0nŠ

′
0m (66)

The quantities Š′
0n and Š′

nm can be computed in the diagonal basis
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Š′
0n = Ť ′

0n (67)

= (1 + (−1)n)
(
−
∫ ∞

0
V0(k)V (k)

n exp
(
−πk

2

)
+ V

(ξ)
0 V (ξ)

n exp |η|
)

Š′
nm = (−1)nŤ ′

nm = (68)

= ((−1)n + (−1)m)
(
−
∫ ∞

0
V (k)

n V (k)
m exp

(
−πk

2

)
+ V (ξ)

n V (ξ)
m exp |η|

)

It is evident that the leading time dependence is contained in

exp
(

1
b

1−Ť ′
00

1+Ť ′
00

x2
0

)
. The number Ť ′

00 is b(η)–dependent and can be computed

via

Ť ′
00(η) = −2

∫ ∞

0
dk
(
V

(k)
0 (b(η))

)2
exp

(
−πk

2

)
+ 2(V (ξ)

0 )2 exp |η| (69)

This is the crucial quantity as far as the time profile is concerned. An
analytic evaluation of it is beyond our reach. However it was shown in [37]
that

lim
η→0

Ť ′
00 = 1 (70)

lim
η→∞ Ť ′

00 = ∞ (71)

A numerical analysis shows that this quantity is a function monotonically
increasing with η within such limits.

This means that the quantity 1−Ť ′
00

1+Ť ′
00

is always negative (it lies in the

interval [−1, 0]) and so the profile is always localized in the center of mass
time, except in the extreme case η → 0, which corresponds to the tensionless
limit (see below). This has to be compared with the usual lump solution
(see previous subsection) for which the corresponding quantity is always
positive and takes values in the interval (0,∞), allowing for localized space
profiles but divergent along a time-like direction.

Actually, for reasons explained in [37], one is obliged to introduce an-
other free parameter, which we denote by y. y is the eigenvalue of the
operator

ŷη =
i√
2
(oη − o†η). (72)

corresponding to the eigenstate

|y〉 = 1√
π

exp
(
−1

2y
2 −

√
2io†ηy + 1

2o
†
ηo

†
η

)
|Ωηo〉, (73)

oη|Ωηo〉 = 0,
ŷη|y〉 = y|y〉.
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The operator ŷη is the twist odd combination of the string oscillators pro-
jected along the discrete basis.

We contract our solution with the eigenvector (73). This operation can
be done before or after projecting along the center of mass coordinate and
does not interfere with it because ŷ does not contain the zero mode. This
leads to the following representation of our solution (inverse Wick–rotation
is included)

|Λ̌′(x0, y)〉 = 〈x0, y|Λ̌′〉 =
(

2
bπ

) 1
4 Ň ′√

2π(1 + eη)
exp

(
1 − e|η|

1 + e|η|
y2

)
(74)

1√
1 + Ť ′

00

exp

(
1
b

1 − Ť ′
00

1 + Ť ′
00

x2
0 +

2i√
b(1 + Ť ′

00)
x0Ť

′
0na

†
n +

1
2
a†nW̌

′′
nma

†
m

)
|0〉

The quantities Ť ′
00 and Ť ′

0n are the same as in (69, 67) since the momentum
ŷη is twist–odd. Some changes occur instead in W̌ ′′

nm, see [37].
Eq.(74) provides the complete time profile of our solution (60). It rep-

resents a solution localized in x0, with the desired profile. It depends on
two free parameters y and η (or b). These are all desirable features. But
we can make a closer comparison of the representation (74) with the rolling
tachyon solution. This can be done by considering the limit b→ ∞, which
can be derived from the eqs.(59). b → ∞ means η → ∞ and Ť ′

00 is given
by

Ť ′
00 ≈ 2 η log η (1 − log(2π)

log η
+ . . .) (75)

where dots denote higher order terms and, for simplicity, we take η positive.
Therefore we see that in this limit any time dependence in (74) disappears.
Moreover, using a result of [37], we also have that W̌ ′′

nm → Snm. In other
words, in the limit b→ ∞ we obtain a static solution corresponding to the
initial sliver (notice the change of sign in the quadratic oscillator term in
(74) with respect to the initial sliver; this is as it should be after inverse
Wick–rotation). From this we understand that the parameter 1/b, for large
b, plays a role similar to Sen’s parameter λ̃ near 0, see section 2.

A second remark concerns the limit y → ∞. In this case the first
exponential factor in the RHS of (74) suppresses everything, so that the
limit is the 0 state. In other words, we can consider this value of the
parameter y as identifying the stable vacuum state.

4.3. Low energy limit
It is instructive to study the solution (60) in a regime we are more familiar
with, the low energy regime α′ → 0, in which the solution considerably
simplifies and an analytic treatment is possible. What we would like to see
more closely is whether, for sufficiently small values of the parameters, the
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solution at time 0 is close enough to the sliver configuration (19), whose
decay the solution is expected to describe.

The Neumann coefficients V
′rs
NM explicitly depend on the b parameter.

In the low energy limit the three–strings vertex can be expanded by means
of a parameter ε (a dimensionless parameter which represents the size of
α′) , see [8]. This translates into an expansion for V

′rs
NM whose dominant

terms are given by the following rescalings

V (rs)
mn → V rs

mn

V rs
m0 →

√
εV rs

m0 (76)
V00 → εV00

Let us analyze in detail what is the limit of the various quantities ap-
pearing in (74). Throughout this analysis the parameter b is kept constant.
First of all we have

lim
η→∞

1 − Ť ′
00

1 + Ť ′
00

= −1 (77)

This follows from (59) and from the property of (V (k)
0 )2 of approximating

δ(k) in the limit we are considering, which implies that Ť ′
00 → ∞ in the

same limit. For the oscillating term we have[37]

lim
η→∞

Ť ′
0n

1 + Ť ′
00

= lim
η→∞

1√
log η

= 0 (78)

Thus the oscillating part decouples completely from the time dependent
part. It remains for us to consider the limit of the quadratic form W̌ ′′

nm,
(74). This analysis, which is more complicated, is carried out in [37]. The
result is

W̌ ′′
nm = Snm + O(ε/b) (79)

Going back to equation (74) we see that, if we ignore for a moment the
normalization factor, we obtain

lim
α′→0

|Λ̌′(x0, y)〉 = Ň ′′(y) e−
x2
0
b |Ξ〉 (80)

where |Ξ〉 is the zero momentum sliver state. This result can be phrased
as follows: in the low energy limit the solution takes the form of a time–
Gaussian multiplying a deformed sliver, the deformation being parametrized
by ε/b.

It is also interesting to analyze the the opposite limit, that is α′ →
∞ (tensionless limit). As in the previous case this is formally achieved
by taking the η → 0 limit in all the quantities which are related to the
Neumann coefficients, but keeping b as a free parameter. One easily gets

lim
η→0

1 − Ť ′
00

1 + Ť ′
00

= 0 (81)
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This result implies that the Gaussian representing time dependence in (74)
is actually completely flat: time dependence has disappeared! We believe
this is related to the fact that all strings modes become massless in this
limit [38], so there are no modes the brane can decay into.

In conclusion the solution represented by the time profile (74) enjoys
many properties of the rolling tachyon: it is localized in time, therefore
it is a good candidate to represent a solution bouncing off the tachyon
potential; it depends on two parameters b and y; at time t = 0 it represents
a deformation of the sliver; in the limit in which the parameter b → ∞
the solution becomes exactly the sliver, but no time evolution is possible
for this value of b; instead if b is large but finite, 1/b seems to play the
role of the λ̃ parameter in the boundary conformal field theory approach;
finally in low energy limit the solution takes the form of a time–Gaussian
multiplying a deformed sliver.

5. Background electric field and fundamental strings

In [17] the rolling tachyon solution was studied in the presence of a back-
ground electric field. The solution does not change qualitatively except for
the fact that the final products of the brane decay include, beside massive
closed string states, also fundamental strings (the evidence for the latter
being indirect).

The analysis of the same problem in VSFT was carried out in [19].
The solution depends on two parameter, b and E, the electric field. After
projecting on the center of mass time coordinate it has been shown that
in the extreme cases b = 0 and b = ∞ time dependence is lost and we
are left respectively with the 0 state (VSFT vacuum) and the sliver state
(VSFT D–brane), confirming in this case too these two cases are likely to
reproduce the λ̃ = 1

2 and λ̃ = 0 of Sen’s BCFT, section 2. The E–field
is another free parameter in the range 0 ≤ E ≤ Ec = 1

2πα′ . For E going
to its critical value, time dependence is lost and we get a flat (non zero)
profile in time (effective tensionless regime), this result still persists in the
b→ 0 limit if we keep the ratio 1−(2πα′E)2

b finite. This case corresponds to
the tachyon vacuum with a background of fundamental strings, prevented
to decay by their polarization due to critical electric field. Of course this
is an indirect way to see these fundamental strings arising in a classical
solution of VSFT. A more direct construction of such objects is given in
the following.

Since fundamental strings are expected to be among the brane decay
products, the first thing one has to verify is that they are indeed solutions
of VSFT. This was done in [39]. Macroscopic fundamental strings are
particular solutions to (11). They are condensates of D0–branes.

Let us briefly review their construction. We start from a lump solution
representing a D0–brane as introduced in section 3, let us denote it |Ξ′

0〉: it
has a Gaussian profile in all space directions. Let us pick a particular space
direction, say the α–th. For simplicity, in the following we will drop the
corresponding label from the coordinate x̂α, momenta p̂α and oscillators
aα along this direction. Next we need the same solution displaced by an
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amount s in the positive x direction (x being the eigenvalue of x̂). The
appropriate solution was constructed by Rastelli, Sen and Zwiebach, [16]:

|Ξ′
0(s)〉 = e−isp̂|Ξ′

0〉 (82)

It satisfies |Ξ′
0(s)〉 ∗ |Ξ′

0(s)〉 = |Ξ′
0(s)〉. Eq.(82) can be written explicitly as

|Ξ′
0(s)〉 = N ′e−

s2

2b
(1−S′

00) (83)

× exp
(
− is√

b
((1 − S′) · a†)0

)
exp

(
−1

2
a† · S′ · a†

)
|Ωb〉

where

((1 − S′
00) · a†)0 =

∑∞
N=0((1 − S′)0Na

†
N ) and

a† · S′ · a† =
∑∞

N,M=0 a
†
NS

′
NMa

†
M ;

N ′ is the |Ξ′
0〉 normalization constant. One can show that

〈Ξ′
0(s)|Ξ′

0(s)〉 = 〈Ξ′
0|Ξ′

0〉 (84)

The meaning of this solution is better understood if we make its space
profile explicit by contracting it with the coordinate eigenfunction

〈x̂|Ξ′
0(s)〉 =

(
2
πb

) 1
4 N ′√

1 + S′
00

(85)

× e
− 1−S′

00
1+S′

00

(x−s)2

b e
− 2i√

b

x−s
1+S′

00
S′

0ma†
m
e−

1
2
a†

nW ′
nma†

m |0〉

where W ′
nm = S′

nm − S′
n0S′

0m
1+S′

00
. It is clear that (85) represents the same

Gaussian profile as |Ξ′
0〉 = |Ξ′

0(0)〉 shifted away from the origin by s.
It is important to remark now that two such states |Ξ′

0(s)〉 and |Ξ′
0(s

′)〉
are ∗–orthogonal and bpz–orthogonal provided that s �= s′. An explicit
calculations shows that

|Ξ′
0(s)〉 ∗ |Ξ′

0(s
′)〉 = e−C(s,s′)|Ξ′

0(s, s
′)〉 (86)

where the state |Ξ′
0(s, s

′)〉 becomes proportional to |Ξ′
0(s)〉 when s = s′ and

needs not be explicitly written down otherwise; while

C(s, s′) = − 1
2b

[
(s2 + s

′2)
(
T ′(1 − T ′)

1 + T ′

)
00

+ ss′
(

(1 − T ′)2

1 + T ′

)
00

]
(87)

The quantities
(

T ′(1−T ′)
1+T ′

)
00

and
(

(1−T ′)2
1+T ′

)
00

can be evaluated by using the
basis of eigenvectors of X ′ and T ′ (subsection 3.1). The analysis of [39]
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shows that, when s �= s′, the factor e−C(s,s′) vanishes, so that (86) becomes
a ∗–orthogonality relation. When s = s′ we get instead

C(s, s) = −s
2

2b
(1 − S′

00)

In conclusion we can write

|Ξ′
0(s)〉 ∗ |Ξ′

0(s
′)〉 = δ̂(s, s′)|Ξ′

0(s)〉 (88)

where δ̂ is the Kronecker delta.
Similarly one can prove that

〈Ξ′
0(s

′)|Ξ′
0(s)〉 = δ̂(s, s′) 〈Ξ′

0|Ξ′
0〉 (89)

After the above preliminaries, let us consider a sequence s1, s2, . . . of
distinct real numbers and the corresponding sequence of displaced D0–
branes |Ξ′

0(sn)〉. Due to the property (88) also the string state

|Λ〉 =
∞∑

n=1

|Ξ′
0(sn)〉 (90)

is a solution to (11): |Λ〉 ∗ |Λ〉 = |Λ〉. To figure out what it represents
we analyze its space profile. To this end we render the sequence s1, s2, . . .
dense, say, in the positive x–axis so that we can replace the summation
with an integral. The relevant integral is
∫ ∞

0
ds e−α(x−s)2−iβ(x−s) =

√
π

2
√
α

(
e−

β2

4α

(
1 + Erf

(
iβ

2
√
α

+
√
αx

)))
(91)

where Erf is the error function and

α =
1
b

1 − S′
00

1 + S′
00

, β =
2√
b

S′
0ma

†
m

1 + S′
00

Of course (91) is a purely formal expression, but it becomes meaningful in
the α′ → 0 limit. As usual, [8], we parametrize this limit with a dimension-
less parameter ε and take ε → 0. Using the results of [37, 8], one can see
that α ∼ 1/ε, β ∼ 1/

√
ε, so that β/

√
α tends to a finite limit. Therefore, in

this limit, we can disregard the first addend in the argument of Erf. Then,
up to normalization, the space profile of |Λ〉 is determined by

1
2
(
1 + Erf(

√
αx)

)
(92)

In the limit ε → 0 this factor tends to a step function, valued 1 in the
positive real x–axis and 0 in the negative one. Of course a similar result
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can be obtained numerically to any degree of accuracy. This derivation is
not rigorous and mostly qualitative, but it can be made more reliable, [37].
In conclusion, we have constructed a state |Λ〉 which is a solution to (11)
and represents, in the low energy limit, a one–dimensional object with a
constant profile that extends from the origin to infinity in the x–direction.
Actually the initial point can be any finite point of the x–axis, and it is
possible to construct a configuration that extend from −∞ to +∞.

We interpret such |Λ〉 solutions as fundamental strings. In order to
justify this claim, let us show that they are still solutions if we attach them
to a D–brane. To this end let us pick |Λ〉 as given by (90) with sn > 0 for
all n’s. Now let us consider a D24–brane with the only transverse direction
coinciding with the x–axis and centered at x = 0. The corresponding lump
solution has been introduced in section 3 (case k = 24). Let us call it
|Ξ′

24〉. Due to the particular configuration chosen, it is easy to prove that
|Ξ′

24〉 + |Λ〉 is still a solution to (11). This is due to the fact that |Ξ′
24〉 is

∗-orthogonal to the states |Ξ′
0(sn)〉 for all n’s. To be even more explicit

we can study the space profile of |Ξ′
24〉 + |Λ〉, assuming the sequence sn to

become dense in the positive x–axis. Using the previous results it is not
hard to see that the resulting configuration is a Gaussian centered at x = 0
in the x direction (the D24-brane) with an infinite prong attached to it and
extending along the positive x–axis. The latter has a Gaussian profile in
all space directions except x.

In [39] we have shown many other properties of the Λ solutions. For
instance it is not possible to have solutions representing configurations in
which the string crosses the brane by a finite amount: the string has to
stop at the brane. Moreover these solutions enjoys the exchange property
typical of fundamental strings. Finally it is possible to construct solutions
corresponding to any curve in space.

6. Comments

This review is an account of the attempt at finding (exact) rolling tachyon
solutions in SFT. We chose to search for such solutions in VSFT: this means
looking for lump solutions to (11) and inverse–Wick–rotate them. In section
4 we showed that it is indeed possible to find an exact solution that has
several characteristics of a rolling tachyon. However the analysis is still
incomplete. The explicit analysis of the total energy conservation during
the decay process is still missing, although it is implicit in the fact that the
energy of the Wick rotated (Euclidean) solution is a constant. Moreover
from our solution it is not clear what the products of the brane decay are
going to be. Another open problem is connected with the time x0 we have
used. Our choice of x0 as the time is not fully motivated. It is in fact the
open string time, that is the time that couples to the open string metric.
Other choices are possible. In [37] we suggested a different choice, which
may be connected with the closed string time. More work is necessary in
this direction.

In section 5 we have seen some consequences of introducing a back-
ground electric field. We have concentrated especially on the problem of
fundamental strings. The Euclidean (Wick–rotated) energy of the solution
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depends on the background field. One infers from this that the final state
must contain fundamental strings, which are the objects in the bosonic
string zoo that couple to the electric field. We found that fundamental
string solutions exist in VSFT both as isolated objects and attached to
D–branes. This result confirms the analysis of the brane decay in the pres-
ence of a background electric field. But of course we would like to have a
more direct account of the involvement of fundamental strings in D–brane
decays.
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