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Abstract 13 

Nitrogen (N) fertilisation determines maize grain yield (MGY). Precision agriculture (PA) allows matching crop 14 

N requirements in both space and time. Two approaches have been suggested for precision N management, 15 

i.e. management zones (MZ) delineation and crop remote and proximal sensing (PS). Several studies have 16 

demonstrated separately the advantages of these approaches for precision N application. This study 17 

evaluated their convenient integration, considering the influence of different PA techniques on MGY, N use 18 

efficiency (NUE), and farmer’s net return, then providing a practical tool for choosing the fertilisation strategy 19 

that best applies in each agro-environment. A multi-site-year experiment was conducted between 2014 and 20 

2016 in Colorado, USA. The trial compared four N management practices: uniform N rate, variable N rate 21 

based on MZ (VR-MZ), variable N rate based on PS (VR-PS), and variable N rate based on both PS and MZ (VR-22 

PSMZ), based on their effect on MGY, partial factor productivity (PFPN), and net return above N fertiliser cost 23 

(RANC). Maize grain yield and PFPN maximisation conflicted in several situations. Hence, a compromise 24 



between obtaining high yield and increasing NUE is needed to enhance the overall sustainability of maize 25 

cropping systems. Maximisation of RANC allowed defining the best N fertilisation practice in terms of 26 

profitability. The spatial range in MGY is a practical tool for identifying the best N management practice. 27 

Uniform N supply was suitable where no spatial pattern was detected. If a high spatial range (>100 m) existed, 28 

VR-MZ was the best approach. Conversely, VR-PS performed better when a shorter spatial range (<16 m) was 29 

detected, and when maximum variability in crop vigour was observed across the field (range of 30 

variation=0.597) leading to a larger difference in MGY (range of variation=13.9 Mg ha-1). Results indicated 31 

that VR-PSMZ can further improve maize fertilisation for intermediate spatial structures (43 m).  32 

Keywords: precision fertilisation, variable rate N application, proximal crop sensing, management zones, data 33 

fusion 34 

 35 

Introduction 36 

Sustainable intensification of crop production is required to fulfil the growing consumption needs of 37 

humanity while reducing the environmental impact of agriculture (Cassman, 1999; Foley et al., 2011). 38 

Sustainable cultivation requires a more efficient resource use, including fertiliser applications. Nitrogen (N) 39 

is among the most important nutrients supplied to maize for obtaining the full yield potential, as it affects 40 

both grain yield and quality (Miao et al., 2007). A proper N management should aim to meet maize N needs, 41 

to avoid exceeding crop requirements. An optimally tailored N fertilisation could increase maize production 42 

and maintain soil fertility, while limiting environmental concerns through the reduction of N imbalances and 43 

inefficiencies (Ma and Biswas, 2015). Excess N is subjected to losses in the environment, through leaching, 44 

surface run-off, denitrification and ammonia emissions (Cai et al., 2002; Ma and Biswas, 2015). Several 45 

studies reported that N losses in maize cultivation could range between 10 and 70% of the applied N, 46 

considering different environmental conditions and fertilisation management (Cai et al., 2002; Delgado et al., 47 

2005; Wang et al., 2014; Prasad and Hochnut, 2016). Crop N demand varies spatially and temporally within 48 

a field, due to the inherent variations in soil N availability, soil properties and crop growing conditions (e.g. 49 



edge effect) across the field (Khosla et al., 2002; Nawar et al., 2017). Two main approaches have been 50 

proposed in literature to adapt N fertilisation to the spatial variability: soil-based methods and plant-based 51 

methods. The former includes the concept of homogeneous management zones (Khosla and Shaver, 2001), 52 

while the latter relies on crop N status monitoring with crop canopy sensors during the growing season 53 

(Roberts et al., 2012). Few studies have compared these two approaches or assessed the possibility of using 54 

them in combination. 55 

The identification of management zones (MZ) represents a cost-effective method to manage field variability, 56 

through field classification into areas of broad similarities (Khosla et al., 2002; Nawar et al., 2017). 57 

Management zones approach was originally suggested to overcome the limitation of intensive grid soil 58 

sampling for mapping the variance of soil properties, due to high cost and labour (Fleming et al., 2000). 59 

Therefore, it can be suggested as an alternative method to produce prescription maps for site-specific crop 60 

management, by identifying areas of similar productivity potential within a field (Hornung et al., 2006). 61 

Indeed, in the location of a field where yield potential is low, added N fertiliser profitability can be reduced 62 

(Ma and Biswas, 2015). Doerge (1999) defined MZ as sub-regions of a field that express a homogeneous 63 

combination of yield limiting factors. Therefore, MZ can be considered as homogeneous areas within a field 64 

that show similar characteristics in landscape and soil conditions, that should lead to a similar yield potential 65 

and input use efficiency (Schepers et al., 2004). However, the delineation of uniform sub-field regions may 66 

be challenging as different physical, biological and chemical processes acting simultaneously with different 67 

intensities and with complex interactions can affect crop yield potential (Moral et al., 2010). Several 68 

techniques have been proposed in literature to delineate MZ, using various soil and crop properties 69 

individually or in combination (Longchamps and Khosla, 2017). Topography, bare soil aerial imagery, 70 

apparent electrical conductivity (ECa), farmers’ management experiences together with yield maps have been 71 

extensively used to define the boundaries of MZ (Khosla et al., 2002; Schepers et al., 2004). Indeed, grain 72 

yield data, being a total reflection of all biotic and abiotic factors that can affect crop production, can be 73 

combined with other soil variables in order to explain field variability associated with both crop and soil 74 

properties (Hornung et al., 2006, Bunselmeyer and Lauer, 2015). However different weights should be 75 

attributed to the different data layers, on the basis of their contribution to crop production variability 76 



(Hornung et al., 2006). Moreover, yield patterns are often inconsistent across growing seasons (Hornung et 77 

al., 2006). Therefore, it is important to also consider temporal variation of crop yield, which reflects climate 78 

variability across the growing seasons (Schepers et al., 2004) and is not necessarily correlated to soil 79 

properties variations (Nawar et al., 2017). The knowledge of yield history could improve MZ delineation 80 

through the identification of yield patterns at sub-field levels (Bunselmeyer and Lauer, 2015). Indeed, 81 

Maestrini and Basso (2018) built a spatial indicator that combines the processes that regulates yield by 82 

averaging the normalised values of each pixel over the yearly map, using the previous three-year data. 83 

Considering the complex interactions involved in yield variability, at least five or more years of yield data 84 

should be used to identify stable MZ (Nawar et al., 2017). Typically, traits such as low-lying topography, dark 85 

colour, and historic high yields were designated as zones of potentially high productivity, or high zones 86 

(Khosla et al., 2002). Soil-based information used alone to manage maize N fertilisation may not always lead 87 

to improvement in Nitrogen Use Efficiency (NUE, defined as the grain yield obtained at a certain level of N 88 

supplied with fertilisers). Such an approach fails to account for in-season micro-variability (i.e., variability that 89 

occurs at shorter range) associated with crop N status, since the crop response in unstable zones has been 90 

demonstrated to be strictly dependent on weather (Maestrini and Basso, 2018). Consequently, the 91 

delineation of MZ alone does not characterise the entire representation for variable N applications 92 

(Shanahan et al., 2008). Crop monitoring, which exploits optical properties of leaf pigments, allows 93 

integrating soil, climate, agronomic management, and other environmental factors on crop N status 94 

(Shanahan et al., 2008; Muñoz-Huerta et al., 2013). Ground-based reflectance measurements have been 95 

proposed as promising tools to assess crop N status during the growing season (Roberts et al., 2012). Several 96 

vegetation indices can be determined combining reflectance data recorded at specific wavelengths (Bajwa 97 

et al., 2010). Among these, the most widely used is Normalised Difference Vegetation Index (NDVI), 98 

calculated as the difference between the NIR and red reflectance divided by the sum of these two values 99 

(Shanahan et al., 2008. NDVI values are positively correlated with leaf area index (LAI), green biomass and 100 

leaf N (Shaver et al., 2010). Consequently, they provide a measure of canopy chlorophyll content in the field-101 

of-view of the sensor. Maize growth stage at the moment of spectral data acquisition heavily affects NDVI 102 

values. Teal et al. (2006) demonstrated that NDVI readings acquired at V8 (8-leaf) maize growth stage showed 103 



the highest ability to distinguish in-field N variability. Shaver et al. (2010) found out that the best time for 104 

maize N status monitoring is between V10 and V12 growth stages. This is in line with the optimal sensing 105 

period  reported in the Trimble’s Greenseeker manufacturer’s manual 106 

(https://www.manualslib.com/download/1485318/Trimble-Greenseeker-Rt-200.html), a sensor widely used 107 

for NDVI determination at field scale. 108 

Several studies have demonstrated separately the potential advantages of soil-based and plant-based 109 

methods of driving variable N fertilisation in maize, while very few tried to investigate the possibility of 110 

integrating them (e.g. Longchamps and Khosla, 2015). The information from MZ delineation is potentially 111 

complementary to ground-based active sensors for crop N status monitoring, and could further improve NUE, 112 

economics and overall sustainability of maize cropping systems (Khosla et al., 2010; Roberts et al., 2012). The 113 

integration of the two approaches may allow tailoring N rate algorithms for each MZ independently, through 114 

the detection of both soil and crop properties correlated with crop productivity, then demonstrating the 115 

advantages derived by this data fusion, considering different information layers.  116 

This study aimed at verifying the hypothesis that uniform N management practices can be improved through 117 

PA techniques, taking advantage of a) proximal crop sensing and b) MZ delineation, and overall c) 118 

combination of the two strategies. The specific objectives of this study were to assess the influence of 119 

precision N management practices on i) maize grain yield, (ii) NUE, and (iii) farmer’s net return.  120 

Materials and methods 121 

Site and soil characteristics 122 

The experiment was carried out over three crop growing seasons (2014, 2015 and 2016) in four different 123 

experimental sites in north-eastern Colorado (USA), located in Fort Collins, Ault Iliff, and Atwood (Figure 1). 124 

The climate of the area is classified as semi-arid (Moshia et al., 2014), with a mean annual temperature of 125 

10.1 °C and a mean annual rainfall of 408 mm (U. S. Climate Data, 2018). 126 

Mean monthly temperature and cumulative monthly rainfall over the experimental period are shown in Table 127 

1. 128 

https://www.manualslib.com/download/1485318/Trimble-Greenseeker-Rt-200.html


Prior to the start of the experiment, maize was continuously cultivated on all experimental sites for a period 129 

of at least three years. 130 

The main soil properties of the experimental fields are summarised in Table 2. Soil samples were collected at 131 

0-20 cm depth prior to planting within each field, following a random-grid (40 m) spatial survey sampling 132 

design within the study area (Heltshe and Ritchley, 1984). Soil samples were then dried and analysed at a 133 

commercial laboratory (Ag Harris, Lincoln, NE). 134 

Management Zones delineation 135 

Management zones were used to characterise in-field variability, identifying areas of high, medium, and low 136 

productivity potential within the experimental sites. At Ault, Atwood, and Iliff sites, the delineation of MZ 137 

boundaries was accomplished through the Management Zone Analyst (MZA) free software, developed by 138 

Fridgen et al. (2004). The MZA uses a fuzzy k-means clustering algorithm to delineate MZ from geo-139 

referenced field information, that showed effective results for zone delineation in previous studies by Odeh 140 

et al. (1992). Different clustering variables were used in the delineation process, notably: elevation, bare-soil 141 

aerial imagery of the field, and soil apparent electrical conductivity (ECa). Bare-soil imagery was acquired after 142 

field preparation and before sowing, using Google Earth Pro (Google LLC, Mountain View, CA) to select dates 143 

when there was no canopy cover in the selected field. The images exported from Google Earth Pro were 144 

georectified with at least six ground control points using the ArcMap software (ESRI, Redlands, CA). Soil ECa 145 

was measured on each field prior to planting in spring through EM38 (Geonics Ltd., Mississauga, Ontario, 146 

Canada), an electrical conductivity meter that measures ECa on the basis of the principle of electromagnetic 147 

induction at two depths. Data were collected in vertical dipole orientation. Sensor was combined with a GPS 148 

and data loggers, mounted on an all-terrain vehicle travelling in parallel transects. High-resolution soil ECa 149 

readings were acquired when the soil was at field capacity. The ECa data was overlaid with the satellite 150 

imagery from Google Earth Pro in the ArcMap software. The rough field topography was extracted from ECa 151 

survey data using the elevation data recorded by a Trimble Ag114 DGPS (Trimble Navigation, Sunnyvale, CA) 152 

corrected by a VBS Omnistar (Omnistar, Houston, TX) signal providing a vertical resolution of about 2 m. 153 

Despite the low resolution for absolute topography measurements, the relative topography values were 154 



accurate enough to detect the overall spatial pattern of topography in each fields. A grid of points was laid 155 

on the entire surface of the study area using the Fishnet tool from ArcMap on a 2 m by 2 m cell. Using a raster 156 

sampling tool from ArcMap, each point was attributed to the corresponding information: the Red, Green and 157 

Blue pixel value from the geotiff extracted from Google Earth Pro (raster sampling), the deep and shallow ECa 158 

value as well as the elevation value (nearest point algorithm) from the ECa survey dataset. The point feature 159 

file was then converted into a table to be uploaded in the MZA software. The MZA software performed a 160 

fuzzy k-means clustering of the soil information used as input and provided simultaneously a range of cluster 161 

number. Mahalanobis distance was chosen as measure of similarity for allocating each individual observation 162 

to a particular cluster, as it is reported to be the most appropriate when correlation exists among variables 163 

(Fridgen et al., 2004). Other option settings were defined, considering fuzziness exponent of 1.5, maximum 164 

number of iterations of 300 and convergence criterion of 0.0001 according to Fridgen et al. (2004). The 165 

minimum and maximum number of zones was set to 2 and 6 respectively, in order to allow a sufficient 166 

differentiation avoiding at the same time excessive fragmentation of zones’ sub-areas. Moreover, after 167 

performing the clustering procedure, the software calculated two performance indices, i.e. Fuzziness 168 

Performance Index – FPI and Normalised Classification Entropy – NCE, that allowed the decision of the most 169 

appropriate number of MZ for each field. The FPI measures the degree of separation between the zones, 170 

while NCE indicates the amount of disorganisation of each partitioning (Fridgen et al., 2004). Consequently, 171 

the best number of MZ is achieved when both indices have the minimum value, leading to the least 172 

membership sharing and the greatest amount of organisation as a result of the clustering process. Therefore, 173 

by evaluating both FPI and NCE values, the optimal number of MZ was chosen. Finally, each geo-referenced 174 

soil measurement point was assigned to a specific management zone. The vector containing MZ values was 175 

transferred to the ArcMap software and converted into polygon features representing the MZ. The 176 

attribution of low, medium or high productivity potential of each management zone was reflective of the 177 

historical yield performances according to farmers’ knowledge of the field. In Fort Collins, MZ had already 178 

been defined prior to the project using bare soil imagery, coarse elevation, and yield and management history 179 

as layers for delineation. The Rapid Eye satellite imagery platform was used to acquire bare soil imagery of 180 

the field. It deploys the Jena-Optronik multi-spectral imager (Jena, Germany), in five distinct bands of the 181 



electromagnetic spectrum: Blue (440-510 nm), Green (520-590 nm), Red (630-690 nm), Red-Edge (690-730 182 

nm) and Near-Infrared (760-880 nm). Zone clustering was done using the AgriTrak Professional software 183 

(Agritrak L.L.C, Fort Morgan, CO, USA) described by Fleming et al. (1999). This method consisted of enhancing 184 

the contrast of the bare soil image into various strata or zones using the AgriTrak Professional software. 185 

Following which, the actual farmer of that field designated the zones with low, medium, or high productivity 186 

potential. The designation of zones was based on the historical knowledge of management practices and 187 

yield performance of that field. The delineated MZ in each experimental site are shown in Figure 2. 188 

Afterwards, QGIS open source software (http://qgis.org) was used to assign each yield point from the yield 189 

map obtained during the experiment to the corresponding MZ, through Voronoi polygons delineation. 190 

Subsequently, the information about the MZ corresponding to each yield point was added to the original 191 

dataset using QGIS. This procedure aimed to link each yield value to the productivity potential of the yield 192 

sampling point, expressed by the MZ. 193 

Experimental design and treatments 194 

This experimental setup at each site-year aimed at comparing four fertilisation practices, characterised by 195 

different N management in maize production: 196 

• traditional farmers’ management, with a uniform N rate (UR); 197 

• variable rate N management based on crop proximal sensing (VR-PS); 198 

• variable rate N management based on MZ delineation (VR-MZ); 199 

• variable rate N management based on both crop sensing and MZ delineation (VR-PSMZ). 200 

In each site-year, several N rates were tested, as shown in Table 3. For each site, during the first year of 201 

experiment a standard N dose (in bold in Table 3) was selected based on farmer's business as usual. During 202 

the second and third years of the experiment, the reference dose was slightly adjusted, if needed, in order 203 

to cope with crop needs. 204 

Moreover, in each site, other N rates were tested in order to fit with higher or lower productive MZs or NDVI 205 

responses. The respective rates were chosen according to expected levels of productivity based on expert 206 

knowledge derived from farm managers. Unfertilised treatments were added in site-years 1, 2, 3, 5, and 6. 207 



In the other site-years, farmers preferred to add a minimal N fertilizer of 50% of their usual N rate to avoid 208 

further yield loss. Nitrogen treatment strips were imposed at each site-year, however, the size of the 209 

treatment strips varied across the site-years (Table 3). The width of the strip corresponded to the width of 210 

the fertiliser sprayer used by the farmer and the length corresponded to the entire length of the field when 211 

possible. When not possible, the strips were long enough to contain at least 15 yield data points (based on 212 

the assumption that a commercial combine harvester generates about one yield data point at every 2.5 m 213 

length) for each zone by treatment section. Nitrogen treatment strips were randomly distributed 214 

(randomised using the Sample function in R without replacement and with the seed of the number generator 215 

set to 123) within the field. 216 

 217 

The comparison among the different fertilisation approaches was realised by selecting observations that fulfil 218 

specific conditions, then simulating the different fertilisation strategies. At each site-year the UR received 219 

various N rates distributed uniformly, without taking into account neither MZ, nor NDVI values obtained from 220 

PS.  221 

The VR-PS was analysed selecting  observations where increasing N rates were coupled with lower NDVI 222 

values and vice-versa, without accounting for MZ. Consequently, with the aim of identifying classes reflecting 223 

homogeneous crop vigour, NDVI values were clustered using k-means clustering to obtain NDVI classes. For 224 

each site-year, the number of NDVI classes was equal to the number of N levels. During data analysis, N rates 225 

were paired to NDVI classes, considering pairs where the highest N amount was coupled with the lowest crop 226 

vigour, then progressively considering lower N application at increasing crop vigour. The VR-MZ considered 227 

the observations where reduced N supply was coupled with lower productivity and increased N supply was 228 

coupled with higher productivity. Then, zones characterised by intermediate productivity received the 229 

standard N rate, while in high and low zones N rates was increased or reduced, respectively. The VR-PSMZ 230 

accounts for both soil productivity potential (through MZ) as well as crop N status (through in-season PS 231 

measurements). Three N rates were selected based on three NDVI classes (e.g. low NDVI received a high N 232 

rate), and these three selected N rates were modulated depending on which zone they were located in (e.g. 233 



very low N, low N and medium N for the low productivity zone). Depending on the number of N treatments 234 

available, not all site-years allowed a complete set of combinations.  235 

Crop agronomic management 236 

In all site-years, maize hybrids belonging to FAO maturity class 300 were grown. Standard agronomic 237 

techniques were adopted for all the crop growing seasons at each location. All field sites were conventionally 238 

tilled for planting, as presented in Table 4. Likewise, details of the agronomic management are reported in 239 

Table 5. In each site-year, the total amount of N fertiliser was localised in strips close to plant rows, at the 6th 240 

leaf crop stage development of maize (V6, according to Reitsma et al., 2009). All N was supplied using urea 241 

ammonium nitrate (UAN), a 32% N fertiliser. In order to prevent drought stress, irrigation was carried out by 242 

means of a centre - Pivot system in site-years 1, 2, and 3 (Table 3); and a surface furrow irrigation system in 243 

site-years 4, 5, and 7, and a lateral move irrigation system in site-year 6. Water was applied uniformly across 244 

the entire experimental area, until the end of the crop dough stage (R4). The irrigation scheduling was 245 

performed by collaborating with farmers, primarily on the basis of soil moisture measurements, previous 246 

occurrence of precipitation, and related weather data as well as visual assessment of the field. Adequate 247 

pesticide treatments were undertaken throughout the maize growth, enabling an optimal control of diseases 248 

and pests. Fields were treated with chemical herbicides to control weed development.  249 

Field measurements 250 

Ground-based crop reflectance measurements were performed on different dates, corresponding to maize 251 

growth stage between the development of the 2nd and the 12th leaf (V2 to V12) (Table 6). The Greenseeker 252 

(Trimble, Sunnyvale, California, USA) handheld active optical sensor was used to determine NDVI, detecting 253 

canopy reflectance in the visible red (wavelength 660 nm) and in the NIR (wavelength 770 nm) spectral 254 

regions. The measurements were taken by holding the instrument at a distance of about 0.8 m above the 255 

maize canopy, as suggested by the manufacturer’s instruction manual and reported in Solari et al. (2008). 256 

Reflectance measurements were acquired around noon, even though Padilla et al. (2019) demonstrated that 257 

radiation conditions did not alter NDVI values measured with active sensors. Being an active sensor not 258 

influenced by the sunlight (Solari et al., 2008; Schmidt et al., 2009), reflectance data was acquired walking at 259 



a constant speed alternatively along the crop rows. NDVI readings were acquired continuously on one of the 260 

central rows of each strip. Each NDVI measurement was georeferenced. 261 

Grain yield, adjusted to a moisture content of 15.5%, was determined at harvest. At physiological maturity 262 

maize was harvested with a combine harvester equipped with a GPS receiver and a yield monitor, ensuring 263 

that all grain yield sampling points are geo-referenced. Experimental plots were located on commercial fields, 264 

then a different combine harvester was used at each location except for the Atwood site, where data was 265 

collected by hand. In Fort Collins, the grain was harvested using a 6-row Case combine harvester model Case 266 

IH 1660 (Case Corporation, Racine, WI) equipped with an AgLeader (AgLeader Technology, Ames, IA) yield-267 

monitoring system. In Ault, the grain was harvested using an 8-row John Deere 9670 STS (Deere and 268 

Company, Moline, IL) combine harvester model equipped with a GreenStar yield-monitoring system. In Iliff, 269 

the grain was harvested using a 2-row John Deere 3300 (Deere and Company, Moline, IL) combine harvester 270 

model equipped with an AgLeader yield-monitoring system. Yield data was then cleaned following the 271 

procedures described in Khosla and Flynn (2008). In Atwood, a combine harvester equipped with a yield-272 

monitoring system was not available and therefore, the yield values were harvested by hand on a 3 m length 273 

of maize row at 75 locations regularly distributed throughout the study area and evenly distributed across N 274 

treatments. Hand harvested maize ears were then transported to a facility where kernels were separated 275 

from the maize ears, weighted and analysed for moisture content using a Dickey-John GAC 2100b (Dickey-276 

John Corp., Auburn, IL) grain analysis computer.  277 

 278 

Data analysis 279 

A database was built for each site-year. The databases reported the list of geo-referenced observations, each 280 

one referred to an area of 2*4 m2. For each area, N rate, belonging to a specific MZ, NDVI value and grain 281 

yield were provided. 282 

Then, partial factor productivity (PFPN) was determined for each area, as an indicator of maize NUE, according 283 

to Cassman et al. (1996): 284 

𝑃𝐹𝑃𝑁 =
𝑌

𝑁𝑇
    (1) 285 



where Y represents grain yield and NT is the total amount of N applied, both expressed in kg ha-1. 286 

Consequently, it was not possible to calculate PFPN where no fertiliser was applied. Considering the 287 

agronomic output that can be obtained at a certain level of all N resources in the cropping system, PFPN could 288 

be considered a useful integrative NUE index. Indeed, PFPN takes into account total available N derived from 289 

both soil and N applied fertiliser (Cassman et al., 1996; Ladha et al., 2005).  290 

Additional data columns containing NDVI classes were added to the original dataset, with the aim of 291 

identifying classes reflecting homogenous crop vigour. The NDVI classes were created using k-means 292 

clustering with the k-means function in the R stats package (R Core Team, 2018). For each site-year, the 293 

number of NDVI classes was equal to the number of N levels established for the experimental site. 294 

A statistical procedure was applied in order to check the significance of the difference in grain yield among 295 

precision fertilisation practices and uniform practices. As grain yield depends mostly on N rate, the check of 296 

the significance was performed based on the same N rate for both practices. Average field grain yield and N 297 

rate for each precision fertilisation practices were calculated as the total grain yield or supplied N divided by 298 

the corresponding strip area. Corresponding values of grain yield in uniform practice were derived from 299 

interpolation of a linear model applied to the different site-years. The linear model was applied only to 300 

uniform N application data and expressed grain yield as a function of N rate accounting for an additive 301 

component due to site-year effects (Equation 2).  302 

 𝑌𝑖𝑒𝑙𝑑 = µ + (𝑠𝑖𝑡𝑒_𝑦𝑒𝑎𝑟) + 𝛽 ∗  𝑁𝑟𝑎𝑡𝑒 (2) 

where  is the grand mean of all data, site_year is the fixed effect representing the shift from the grand mean 303 

of each site-year, Nrate is the covariate representing the N rate uniformly supplied, while  is its coefficient. 304 

The statistical assumptions of homogeneity of variances and normality hypothesis of the residuals were 305 

graphically checked, as suggested by Zuur et al. (2010). Moreover, Laara (2009) stated that for large datasets 306 

the central limit theorem implies approximate validity of the statistical methods that require normality. 307 

Therefore, with the aim of comparing precision N fertilisation practices with uniform application of the same 308 

N amount, t tests were calculated for each PA approach against the corresponding value fitted on the LM 309 

model using the following Equation 3: 310 



 
𝑡 =

𝑥̅ − 𝑓𝑖𝑡𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

√𝑆𝐸𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑆𝐸𝑃𝐴 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 
(3) 

 311 

Where  is the average grain yield of a given PA approach, fitted values are the grain yields for uniform N 312 

application predicted by the LM for the same N rate, and SEuniform and SEPA approaches are the standard errors of 313 

uniform and precision agriculture approaches, respectively. 314 

In order to underline the Nrate effect, both grain yields represented by  and fitted values where shifted by 315 

site-year to be represented on a single equation, according to Equation 4.  316 

 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 − (𝑠𝑖𝑡𝑒_𝑦𝑒𝑎𝑟) (4) 

 317 

The same procedure was applied to PFPN values, but including also the reciprocal of N rate as covariate, with 318 

the aim of introducing the hyperbolical components into the model (Equation 5). 319 

 320 

 
𝑃𝐹𝑃𝑁 = µ + (𝑠𝑖𝑡𝑒_𝑦𝑒𝑎𝑟) + 𝛾1 ∗ 𝑁𝑟𝑎𝑡𝑒 + 𝛾2 ∗

1

𝑁𝑟𝑎𝑡𝑒
 

(5) 

where again  is the grand mean, site_year is the effect related to the site-year, while Nrate represents the 321 

N rate uniformly supplied, and n are its coefficients. 322 

Finally, an economic evaluation was conducted, with the aim of assessing the influence of precision N 323 

management practices on farmers’ net return. Net return above N fertiliser cost (RANC) was calculated as 324 

the difference between grain yield market value and N fertiliser cost (Bachmaier and Gandorfer, 2009). The 325 

calculation was computed as previously reported in Casa et al. (2011). Maize grain prices were based on 326 

Agricultural Statistics (2017) published by USDA. The values employed were 0.15 $ kg-1, 0.14 $ kg-1, and 0.13 327 

$ kg-1, for 2014, 2015, and 2016, respectively. The price of UAN fertiliser was obtained from a fertiliser retail 328 

dealer in Colorado which was equal to approximately 16 000 $ metric ton-1 (15.70 $ kg-1). Then, aiming at 329 

assessing the influence of precision N management practices PFPN, grain yield, and RANC, radar charts were 330 

created for each location and year of the experiment. The considered variables (i.e. PFPN, grain yield, and 331 

RANC) were standardised by centring on zero (by subtracting the mean) and further scaling them dividing by 332 



the standard deviation, so that they have a standard deviation equal to 1. This procedure allowed 333 

incorporating the different variables on a comparable scale. 334 

Lastly, the presence or absence of a spatial pattern in grain yield data was investigated through Moran’s I 335 

test (Moran, 1950); following which, the spatial structure was described with a semivariogram, which is a 336 

plot of semivariances as a function of distances between the observations. Geostatistical methods 337 

implemented in the library GeoR (Ribeiro and Diggle, 2016) were used for the estimation of the empirical 338 

semivariogram. After that, standard theoretical variogram models (exponential, Gaussian, and spherical) 339 

were fitted to the empirical semivariogram. With the aim of assessing the theoretical model that best fitted 340 

the empirical semivariogram, the goodness of fit was evaluated through the Akaike’s Information Criterion 341 

(AIC), then taking into account also the complexity of the given model. For each year and location, the model 342 

that showed the lowest AIC value was considered the most appropriate to represent the experimental 343 

semivariogram, according to McBratney and Webster (1986). Semivariograms were described using range 344 

(i.e. the distance at which observations are no longer spatially autocorrelated), sill (representing the 345 

maximum variance of the field relative to grain yield, disregarding the spatial structure), and nugget (i.e. the 346 

microscale variation or measurement error). Statistical analysis was performed using R software version 3.4.3 347 

(R Core Team, 2018) and R Studio version 1.1.183 (RStudio Team, 2016). 348 

Results 349 

Mean temperature during the growing season correlates with the obtained grain yield, with higher values in 350 

site-year 3 and lower in site-years 1, 4, 5 (Table 1). Also annual total precipitation highlighted a different 351 

amount among the site-years (Table 1).  352 

Figure 3 shows the overall yield response to N rates, expressed as the average N application at field scale, 353 

across the site-years and the N management strategies. Site-year effect was removed according to Equation 354 

4. 355 



The linear model used in the study was suitable at fitting the experimental data (R2=0.61). Nrate was 356 

significant (P(F) = 0.000, df numerator = 1, df denominator = 4139); site-year was significant as well (P(F) = 357 

0.000, df numerator = 6, df denominator = 4139).  358 

In general, for uniform N management practices maize grain yield increased with increasing N rates. The 359 

application of the linear model to uniform treatments allowed to parametrise the crop response function to 360 

increasing N rates. Precision N management yields were then compared with uniform application, 361 

considering the average amount of N applied on the whole treatment. A general trend cannot be highlighted. 362 

In particular, VR-PS and VR-PSMZ maintained grain yield with respect to the uniform application of the same 363 

N amount in five site-years, while VR-MZ did in six. Moreover, in three site-years, VR-PSMZ improved grain 364 

yield, while VR-PS and VR-MZ did in other one site-year. 365 

Figure 3 shows PFPN values obtained through the different N management practices in each site-year, 366 

corresponding to each N supply after removing site-year effect. 367 

The linear model referred to uniform N application and used to express PFPN as a function of N rate properly 368 

fitted PFPN values obtained in the present experiment (R2=0.92). Nrate and 1/Nrate were significant (P(F) = 369 

0.000, df numerator = 1, df denominator = 3390); site-year was significant as well (P(F) = 0.000, df numerator 370 

= 6, df denominator = 3390)  371 

Overall, PFPN values decreased with increasing N rates. As expected, in all site-years the lowest PFPN was 372 

obtained with the highest uniform N supply. Figure 4 clearly highlights the potential of precision fertilisation 373 

techniques to increase PFPN. Hence, in most site-years, PFPN values obtained through precision fertilisation 374 

practices lay over the curve fitted on uniform N rates. 375 

Table 7 shows grain yield and PFPN values obtained with precision fertilisation practices, compared to uniform 376 

supply of the same N amount through Student’s t test, as described in Equation 3. 377 

In site-years 1 and 5, precision fertilisation practices did not positively affect grain yield, it resulted in similar 378 

grain yield as compared to the uniform application of the same N rate. In the other site-years, the impact on 379 

grain yield was different, depending on both site-year and the precision N management practice. In 380 

particular, in site-year 2, VR-MZ reduced grain yield by approximately 9% compared to uniform supply of the 381 

same N amount. Conversely, both VR-PS and VR-PSMZ raised grain yield, by 16% and 8%, respectively. In site-382 



year 3, VR-MZ increased grain yield by 11%, while VR-PSMZ led to a grain yield reduction (-12%). Moreover, 383 

N supply based on proximal sensing did not affect grain yield. In site-year 4, VR-MZ obtained a grain yield 384 

value similar to that of the same uniform N supply, while both VR-PS and VR-PSMZ led to a moderate 385 

reduction, approximately equal to 7% and 10%, respectively. In site-year 6, VR-PSMZ improved grain yield by 386 

9%, while the other precision N fertilisation practices did not affect grain yield. Lastly, in site-year 7, VR-PSMZ 387 

increased grain yield with respect to uniform application of the same N amount (+12%), while both N supply 388 

based on proximal sensing or MZ delineation obtained similar grain yield levels. Then, despite differences 389 

among the site-years, maize grain yield improvement seems to not to be the main outcome of precision 390 

fertilisation practices. 391 

In general, precision N fertilisation practices increased PFPN compared to uniform supply of the same N 392 

amount (Table 7). However, only in site-years 2 and 4, PFPN improvement resulted to be significant. In 393 

particular, in site-year 2, VR-PS increased PFPN by approximately 52%. In site-year 4 VR-MZ and VR-PS 394 

improved PFPN by 25% and 27% respectively. 395 

Radar charts were used to represent the positioning of each N fertilisation practices according to their 396 

respective contribution to PFPN, grain yield, and RANC for each year and location (Figure 5). 397 

A rational N management would lead to reductions in N losses and improvement in crop yield and PFPN. In 398 

each year and location of this study, the N fertilisation management that allowed to obtain the highest RANC 399 

was considered the best N fertilisation practice. Indeed, RANC value is a useful indicator that takes into 400 

account the effect of N management both on grain yield and PFPN. The highest RANC coupled with the highest 401 

PFPN values were observed in site-years 1, 5, and 6. In the other site-years, RANC value was shown to be 402 

mostly related to the grain yield levels, achieving the highest value corresponding to higher grain yield levels. 403 

Moreover, in site-year 6, VR-PSMZ resulted the most profitable N fertilisation practice, leading to the highest 404 

PFPN coupled with a negligible, but significant, grain yield decrease (2%).  405 

Finally, theoretical semivariogram models were used to analyse the spatial patterns in grain yield data in each 406 

site-year, with the aim of linking the presence of a spatial structure in grain yield data with the application of 407 

precision N fertilisation strategies. Results reported in Table 8 showed the presence of spatial structure in 408 

most (5 out of 7 site-years) of the site--years in this study, with the exception of site-year 1 and 7. Exponential 409 



model was the best fit for the experimental semivariogram on the basis of AIC, apart from grain yield data 410 

acquired in site-year 2 that were best described through a Gaussian model. The range of spatial structure, 411 

setting the limit of the autocorrelation and beyond which spatial structure does not exist anymore, varied 412 

among the different site-years. In particular, the range of spatial dependency was 9 m in site-year 6 while in 413 

site-year 2 and 3 it was 11 m and 16 m, respectively. In site-year 4 and 5, spatial range values were higher 414 

and estimated to be 102 and 43 m, respectively. The range of spatial autocorrelation indicated the scale of 415 

spatial variability detected in the field. Higher range values are related to large scale variability, and vice 416 

versa. Semivariograms of grain yield, together with their approximate theoretical models, are reported in 417 

Figure 6. 418 

 419 

Discussion 420 

In traditional maize cropping system in Colorado, N fertiliser is usually applied uniformly and at high rates 421 

(around 225 kg ha-1), as farmers want to ensure that N is not the limiting factor in their maize production 422 

system. Mean N fertilisation in the region varied between 100 and 250 kg ha-1 depending on the different 423 

locations, with a mean annual uptake of about 215 kg N ha-1 (Inman et al., 2005). Although N requirements 424 

become larger with increasing grain yield, crop production and N application are not linearly correlated. In 425 

general, the results obtained in this study highlighted a trend where the highest N supply is combined with 426 

the lower PFPN. This was anticipated as in theory, a field where no nitrogen is added would result with an 427 

infinite PFPN (i.e. divided by zero) even though yield could be very low. In order to appeal farmers, N 428 

application should be conveniently reduced in order to maintain grain yield, thus increasing PFPN. This finding 429 

was particularly evident in the experiment conducted in site-years 1, 2, and 3 where, by reducing uniform N 430 

supply to 180 kg ha-1, PFPN significantly improves by 25 to 49%, against a grain yield reduction varying 431 

approximately from 1.5 to 11% with respect to the value recorded supplying the highest N rate. 432 

In general, PFPN decreased with increasing N rates, confirming previous results reported by Barbieri et al. 433 

(2008) and Ma and Biswas (2016). This may indicate that maize was unable to absorb or utilise N at higher N 434 



rates. Another possible explanation is that higher N amount increased also N losses in the environment, 435 

which exceeded crop N uptake (Delgado et al., 2005). In this study, the total amount of N fertiliser was applied 436 

in experimental strips around the 6th leaf crop growth stage development. Splitting N application so that N 437 

supply is synchronised with maize uptake may improve nitrogen use by the crop, as suggested by Sharma 438 

and Bali (2018).  439 

Overall, variable rate N management did not increase grain yield with respect to uniform N application when 440 

the same total N amount was used. This finding agrees with previous results by Ma et al. (2014). Indeed, 441 

where statistical differences in grain yield were detected, precision fertilisation practices increased or 442 

reduced maize grain yield of approximately 10%, corresponding to about 1 Mg ha-1. However, crop yield and 443 

N efficiency should both be considered for agroecosystem improvement (Jin et al., 2012). Results from this 444 

study clearly demonstrated the potential of precision fertilisation techniques for increasing PFPN. 445 

The economic evaluation suggests that the optimisation of N management not only improved the 446 

environmental sustainability of the agricultural system, but also positively affected farmers’ economic return 447 

above N fertiliser cost. Improving PFPN is a promising tool to also increase the profitability for the farmers. 448 

Farmers choose the best fertilisation practice on the basis of RANC maximisation. However, it appears 449 

evident that RANC is largely affected by maize grain yield, due to the large influence of fertiliser application 450 

on maize production value. Consequently, the results strengthened the hypothesis that a compromise 451 

between achieving high yield and increasing PFPN is essential. 452 

Variable rate input application requires to quantitatively assess spatial variability of grain yield at a field scale 453 

(Kravchenko et al., 2005). The analysis of semivariogram models determined the range of spatial dependency, 454 

allowing the link between the spatial structure of grain yield and the performance of the different N 455 

management practices. Indeed, range determination allowed choosing the best fertilisation practice, that 456 

can maximise RANC. 457 

On the whole, N application based on crop proximal sensing during the growing season was shown to be the 458 

best precision N management practice when the range of spatial variability is lower than 16 m. Conversely, 459 

for higher range, up to 102 m, N supply based on MZ delineation performed better. These results agree with 460 

previous findings by Schepers et al. (2004), that have reported that MZs are a promising tool to identify 461 



spatial variability in grain yield for spatial range higher than 16 m, leading to the identification of distinct 462 

spatial patterns. Uniform N application was the best approach where no spatial dependency was detected. 463 

As shown in site-year 5, for intermediate range value (43 m), the integration of crop proximal sensing and 464 

MZ delineation improved both PFPN and grain yield with respect to PS alone, but negatively affected RANC. 465 

In general, the high level of spatial structure corresponds to a high potential for variable rate N application 466 

to increase the profitability for the farmer. The only exception was represented by site-year 3, where the 467 

most profitable N management was uniform N application of 240 kg ha-1, despite the presence of spatial 468 

autocorrelation. Therefore, in these situations where spatial patterns were not highlighted or the variability 469 

in crop vigour across the field led to a moderate difference in grain yield, site-specific management is not 470 

suitable. Indeed, in site-year 5, despite a range equal to 43 m, the best fertilisation practice was uniform 471 

application of 40 kg N ha-1. 472 

Furthermore, N application based on crop proximal sensing during the growing season was shown to be 473 

suitable especially when maximum grain yield difference among the NDVI classes was substantial (CV>20%). 474 

In this experiment, such high value has been recorded only in site-year 2 and 5 (data not shown), where the 475 

best N management were VR-PS and VR-PSMZ respectively, confirming that crop N status monitoring can be 476 

used to more efficiently apply N inputs. Both in site year 4 and 7, as well as in site-year 3, grain yield difference 477 

among the NDVI classes showed CV values varying between 10 and 15%. In these situations, VR-PS could not 478 

potentially be a promising tool to manage in-field micro-variability. However, in site-year 3, VR-PS has shown 479 

to be a promising fertilisation practice to increase PFPN. But considering the moderate variation of grain yield 480 

among NDVI classes, the increment of N rate used in the present study should have been fairly large to 481 

compensate for small differences in crop vigour, leading to low yield level. Hence, this approach needs to be 482 

further tested with finer levels of N supply. Indeed, Kitchen et al. (2010) and Roberts et al. (2010) have stated 483 

that crop sensing can be used to more efficiently tune N inputs. However, they have considered N increments 484 

of 34 kg ha-1 while in the present study the experimental setup established 60 kg N ha-1 increments. In site-485 

year 1 and 5, grain yield did not vary among the NDVI classes, showing a high uniformity across the field. 486 

Consequently, N supply based on crop proximal sensing is not a suitable approach. Moreover, in site-year 4 487 



and 5, the factor that induced grain yield variability may have a range longer than the range that can be 488 

optimal for using proximal crop sensing to drive N fertilisation. 489 

The delineation of management zone defines sub-field regions with similar yield-limiting factors, for which a 490 

single rate of a specific crop input is appropriate (Schepers et al., 2004; Vrindts et al., 2005).  491 

However, in site-year 7, grain yield did not vary across the management zone (data not shown), assessing 492 

that, despite different yield-limiting factors, the yield potential is similar across the field. In such a situation, 493 

uniform N supply was proven to be the most profitable practice. 494 

In site-year 4, N supply on the basis of MZ delineation achieved the best compromise between high grain 495 

yield and PFPN values, evaluated on the basis of RANC. This can be mainly attributed to the reduction of N 496 

supply in the low productivity areas, according to a previous study by Koch et al. (2004). In site-years 4 and 497 

5, furrow irrigation method was adopted over multiple years. Furrow irrigation transports soil particles and 498 

subsequently nutrients, inducing an important soil macro-variability that creates areas with different fertility 499 

within the field. This large-scale variability is confirmed by the presence of a spatial range of 102 m. 500 

Consequently, N management on the basis of the different MZ is able to better consider soil macro-501 

variability. However, in site-year 5, the uniform application of 40 kg N ha-1 led to the highest PFPN, combined 502 

with a negligible grain yield loss. Interestingly, the synergic use of MZ delineation and PS for driving N 503 

application improved both PFPN and grain yield with respect to PS alone. A possible explanation is that crop 504 

proximal sensing during the growing season can well asses crop micro-variability, but is less effective in 505 

evaluating field macro-variability. Conversely, VR-MZ is an optimal N management practice when the field 506 

exhibit a strong macro-variability, with areas with similar yield limiting factors. Consequently, the 507 

combination of proximal sensing and MZ delineation can be a promising tool to consider both large and small 508 

scale sources of variability. Therefore, the integration of soil-based and plant-based methods to drive 509 

fertiliser applications can be considered a promising tool for N use efficiency without impacting grain yield, 510 

strengthening the hypothesis that supported the present study. Then, the present study confirmed the 511 

potential of precision fertilisation to improve maize cultivation sustainability, but also highlighted that the 512 

choice of the optimal N fertilisation strategy needs to be related to the range of spatial variability detected 513 

in the field. 514 



 515 

Conclusions 516 

The achievement of both high yield and high NUE is needed to increase sustainability without negatively 517 

impacting crop productivity. 518 

Precision fertilisation practices have been shown to be promising tools for improving PFPN without negatively 519 

impacting maize grain yield, thus increasing farmers’ profitability. However, adaptation to specific agro-520 

environments is needed. 521 

The quantitative evaluation of the spatial patterns in grain yield has been demonstrated to be an important 522 

tool to guide precision agriculture application. Variable rate N management based on MZ delineation is the 523 

best practice when large-scale variability is detected. Conversely, variable rate N management based on crop 524 

proximal sensing is more suitable when the yield-limiting factors are related to a small-scale variability. Their 525 

integration can be helpful to manage both macro and micro-variability that may exist in a crop field, further 526 

improving maize fertilisation, and enhancing the overall sustainability of the cropping system. 527 

However, the need of considering whether the higher economic revenue can compensate for added cost for 528 

services or technologies required for variable rate N supply appears evident. 529 
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Fort Collins Site (2014-16)

Type: Research field

Study area: 1.3 ha

Slope: <1%

Soil type: Aridic Argiustolls

Ault Site (2014-15)

Type: Commercial field

Study area:1.3 ha

Slope: 2.8%

Soil type: Ustic Torriorthents

Atwood Site (2014)

Type: Research field

Study area: 1.3 ha

Slope: <1%

Soil type: Aridic Argiustolls

Iliff Site (2014)

Type: Commercial field

Study area: 0.2 ha

Slope: <1%

Soil type: Fluvaquentic Endoaquolls
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Table 1: Description of average climatic data for each site and each year for the crop growing seasons (May 1 st to 

September 30th) of 2014-16. Table includes NOAA’s normal weather conditions for the crop growing season from 1981 

to 2010 for each location. 

Site Year Average temperature (°C) Total precipitations (mm) 

Fort Collins 

2014 17.4 236 

2015 17.9 254 

2016 18.2 89 

1981-2010 17.9 227 

Ault 

2014 17.7 259 

2015 18.1 227 

1981-2010 19.8 215 

Iliff 

2014 18.9 369 

1981-2010 19.9 303 

Atwood 

2014 18.2 435 

1981-2010 19.0 290 

 



Table 2: Main soil properties of the four experimental sites. Mean, minima (Min.), maxima (Max.), median (Med.) and standard deviation (SD) values are reported. Sampling 

design consisted of random-within-grid inside the study area on a square grid of 40 m. 

Soil properties Fort Collins (n=82) Ault (n=6) Iliff (n=13) Atwood (n=12) 

 Mean Min. Max. Med. SD Mean Min. Max. Med. SD Mean Min. Max. Med. SD Mean Min. Max. Med. SD 

Sand (%)a 539 47 63 53 3 64 58 69 63 4 39 29 47 41 5 56 50 59 56 2 

Silt (%)a 14 8 20 14 2 14 4 24 15 8 23 20 26 24 2 21 17 24 21 2 

Clay (%)a 33 25 35 33 2 22 18 27 23 4 38 31 47 37 4 23 22 26 23 1 

Organic matter (%)b 2 1 2 2 0 1 1 1 1 0 2 2 3 3 0.2 1 1 1 1 0 

pHc 8 8 8 8 0 8 8 8 8 0 8 8 8 8 0 8 8 8 8 0 

Nitrate N (mg kg-1)d 14 4 39 11 8 8 7 9 7 1 16 10 24 16 4.3 10 7 14 9 2 

CEC (meq /100 g)e 31 27 34 31 1 25 23 27 26 2 33 29 36 33 1.8 21 17 26 20 3 

Available P (mg kg-1)f 19 5 73 11 14 46 7 86 450 40 26 16 37 25 7.6 55 18 124 50 32 

Exchangeable K (mg kg-1)g 318 238 496 306 59 255 225 303 252 30 695 592 826 686 74 320 240 386 319 47 

Superscript indicates the method of measurement: a: hydrometer, b: loss-on-ignition, c: 1:1 water-soil, d: Cd reduction, e: Summation of exchangeable K, Ca, Mg 

and neutralisable acidity, f: Olsen method, g: ammonium acetate 



Table 3: Width of N strips and N rates (kg ha-1) considered in the different locations and year of the experiment. Values 

in bold represent standard dose used by farmers. 

Site-year Location Year Width of N strips (m) N rates (kg ha-1) 

1 Fort Collins 2014 4.6 0 -85 – 170 – 255 

2 Fort Collins 2015 4.6 0 – 60 – 120 – 180- 240 - 300 

3 Fort Collins 2016 4.6 0 – 60 – 120 – 180- 240 

4 Ault 2014 7.5 40 – 80 - 120 

5 Ault 2015 7.5 0 – 40 – 80 – 120 

6 Iliff 2014 2.3 0 – 75 – 150 – 225 

7 Atwood 2014 6.9 100 – 170 – 275 

 



Table 4: Date and type of tillage operation for each site-year. 

 

 

Site-year Date Type of tillage operation 

1 

20th November 2013 Disk harrow 

28th March 2014 Brillion mulcher 

1st April 2014 Brillion mulcher 

2 30th April 2015 Spring-tooth harrow 

3 

25th November 2015 Disk harrow 

25th April 2015 Brillion mulcher 

4 15th April 2014 Field cultivator 

5 20th April 2015 Field cultivator 

6 11th April 2014 Strip tillage 

7 

18th November 2013 Disk harrow 

15th April 2014 Brillion mulcher 



Table 5: Details of the agronomic management. 

Site-year Maize hybrid Relative days to maturity Seeding date 
Seed rate 

(seed ha-1) 
Fertiliser application Harvesting date 

1 Dekalb DKC46-20RIB 96 29th April 2014 84 000 11th June 2014 30th October 2014 

2 Dekalb DKC46-20RIB 96 27th May 2015 84 000 30th June 2015  19th November 2015 

3 Dekalb DKC46-20RIB 96 6th May 2016 93 900 21st June 2016 21st October 2016 

4 Pioneer P0474 104 5th May 2014 84 000 17th June 2014 24th October 2014 

5 Pioneer 35F48AM1 105 2nd May 2015 93 900 23rd June 2015 12th November 2015 

6 Pioneer P0157AM 101 19th May 2014 84 000 24th June 2014 23rd October 2014 

7 Pioneer P0474 104 7th May 2014 84 000 17th June 2014 26th November 2014 

 



Table 6: Dates of NDVI measurements in the different years and locations. 

Site-year Dates of NDVI readings Maize growth stage 

1 June, 26th V6-V7a 

2 

July, 10th V8-V10 

July, 14th V10 

July, 17th V10-V11 

July, 21st V11-V12 

3 

June, 27th V9 

July, 5th V12 

July, 8th V14 

4 

June, 26th V6-V7 

June, 17th V8-V10 

5 

June, 23th V10 

July, 1st V10-V11 

July, 7th V11-V12 

6 July, 23rd V2 

7 June, 17th V3-V4 

a: Vn stage: development of the n leaf 



Table 7: Grain yield and PFPN values obtained with uniform or variable rate application of the same N amount, compared through 

Student’s t test.  

Site -year PNMPa N rate (Kg ha-1)  
Grain yield (Mg ha-1) PFPN

b 

Uniform PNMP P(t) Uniform PNMP P(t)  

1 

VR-MZ 117 10.2 10.4 n. s. c 0.082 0.099 n. s. 

VR-PS 174 10.4 10.3 n. s. 0.06 0.069 n. s. 

VR-PSMZ 170 10.6 10.4 n. s. 0.061 0.073 n. s. 

2 

VR-MZ 112 10.2 9.3 0.002 0.086 0.098 n. s. 

VR-PS 119 9.4 10.9 0.000 0.081 0.123 0.007 

VR-PSMZ 158 10 10.8 0.001 0.064 0.08 n. s. 

3 

VR-MZ 169 10.9 12.1 0.000 0.061 0.078 n. s. 

VR-PS 132 10.4 9.9 n. s. 0.074 0.105 n. s. 

VR-PSMZ 125 10.3 9.1 0.007 0.078 0.093 n. s. 

4 

VR-MZ 88 9.9 10 n. s. 0.109 0.136 0.047 

VR-PS 80 9.8 9.1 0.004 0.118 0.15 0.042 

VR-PSMZ 81 9.8 8.8 0.000 0.118 0.102 n. s. 

5 

VR-MZ 82 9.8 9.9 n. s. 0.116 0.142 n. s. 

VR-PS 109 10 9.7 n. s. 0.088 0.106 n. s. 

VR-PSMZ 80 9.8 9.7 n. s. 0.119 0.13 n. s. 

6 

VR-MZ 130 10.4 10.1 n. s. 0.075 0.084 n. s. 

VR-PS 120 9.5 9.9 n. s. 0.081 0.094 n. s. 

VR-PSMZ 95 10 10.9 0.038 0.101 0.111 n. s. 

7 

VR-MZ 235 11.6 11.7 n. s. 0.050 0.052 n. s. 

VR-PS 151 10.6 10.7 n. s. 0.066 0.083 n. s. 

VR-PSMZ 160 10.7 12 0.001 0.063 0.069 n. s. 

aPNMP= precision N management practice;  bPFPN = partial factor productivity; cn.s. = not significant; bold underlined 

values highlight the highest values when comparing uniform and precision N management practices considering the 

same N supply. 



Table 8: Moran I p value, best theoretical variogram model, partial sill, range of spatial dependency, and nugget recorded in each location and year of the experiment. 

Site-year Moran I p value Model Partial sill Range (m) Nugget 

Best N 

management 

practice a 

1 - - - - - UR-85 

2 <0.01 gaussian 5.7 11.3 0.2 VR-PS 

3 <0.01 exponential 4.3 16.2 0.2 UR-240 

4 <0.01 exponential 3.0 101.9 0.5 VR-MZ 

5 <0.01 exponential 0.2 42.6 0.6 UR-40 

6 <0.01 exponential 2.4 8.8 0.0 VR-PSMZ 

7 - - - - - UR-170 

a: Nitrogen management practice that maximises Net return above N fertiliser cost (RANC), according to Figure 5 


