
Journal of Algebra 543 (2020) 170–197
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Heavily separable functors ✩

Alessandro Ardizzoni a, Claudia Menini b,∗

a University of Turin, Department of Mathematics “G. Peano”, via Carlo Alberto 
10, I-10123 Torino, Italy
b University of Ferrara, Department of Mathematics, Via Machiavelli 35, Ferrara, 
I-44121, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 December 2018
Available online 10 October 2019
Communicated by Nicolás 
Andruskiewitsch

MSC:
primary 16H05
secondary 18D10

Keywords:
Separable functors
Separable extensions
Monads
Corings
Monoidal categories

Prompted by an example related to the tensor algebra, we 
introduce and investigate a stronger version of the notion of 
separable functor that we call heavily separable. We test this 
notion on several functors traditionally connected to the study 
of separability.

© 2019 Elsevier Inc. All rights reserved.

✩ This paper was written while both authors were members of the “National Group for Algebraic and 
Geometric Structures and their Applications” (GNSAGA-INdAM). We would like to thank the referee for 
the careful reading and the useful comments.
* Corresponding author.

E-mail addresses: alessandro.ardizzoni@unito.it (A. Ardizzoni), men@unife.it (C. Menini).
URLs: http://sites.google.com/site/aleardizzonihome (A. Ardizzoni), 

http://sites.google.com/a/unife.it/claudia-menini (C. Menini).
https://doi.org/10.1016/j.jalgebra.2019.10.008
0021-8693/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2019.10.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:alessandro.ardizzoni@unito.it
mailto:men@unife.it
http://sites.google.com/site/aleardizzonihome
http://sites.google.com/a/unife.it/claudia-menini
https://doi.org/10.1016/j.jalgebra.2019.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2019.10.008&domain=pdf


A. Ardizzoni, C. Menini / Journal of Algebra 543 (2020) 170–197 171
Introduction

Given a field k, the functor P : Bialg
k
→ Veck, assigning to a k-bialgebra B the 

k-vector space of its primitive elements, admits a left adjoint T, assigning to a vector 
space V the tensor algebra TV endowed with its canonical bialgebra structure such that 
the elements in V become primitive. By investigating the properties of the adjunction 
(T, P), together with its unit η and counit ε, we discovered that there is a natural 
retraction γ : PT → Id of η, i.e. γ ◦ η = Id, fulfilling the condition γγ = γ ◦ PεT. 
The existence of a natural retraction of the unit of an adjunction is, by Rafael Theorem, 
equivalent to the fact that the left adjoint is a separable functor. It is then natural 
to wonder if the above extra condition on the retraction γ corresponds to a stronger 
notion of separability. In the present paper, we show that an affirmative answer to this 
question is given by what we call a heavily separable (h-separable for short) functor 
and we investigate this notion in case of functors usually connected to the study of 
separability.

Explicitly, in Section 1 we introduce the concept of h-separable functor and we recover 
classical results in the h-separable case such as their behavior with respect to composition 
(Lemma 1.4). In Section 2, we obtain a Rafael type Theorem 2.1. As a consequence we 
characterize the h-separability of a left (respectively right) adjoint functor either with 
respect to the forgetful functor from the Eilenberg-Moore category of the associated 
monad (resp. comonad) in Proposition 2.3 or by the existence of an augmentation (resp. 
grouplike morphism) of the associated monad (resp. comonad) in Corollary 2.7.

Section 3 is devoted to the investigation of the h-separability of the induction functor 
ϕ∗ and of the restriction of scalars functor ϕ∗ attached to a ring homomorphism ϕ :
R → S. In Proposition 3.1, we prove that ϕ∗ is h-separable if and only if there is a ring 
homomorphism E : S → R such that E◦ϕ = Id. Characterizing whether ϕ∗ is h-separable 
(in this case we say that S/R is h-separable) is more laborious. In Proposition 3.4, 
we prove that S/R is h-separable if and only if it is endowed with what we call a 
h-separability idempotent, a stronger version of a separability idempotent. In Lemma 3.6
we show that the ring epimorphisms (by this we mean epimorphisms in the category of 
rings) provide particular examples of h-separability. Next we investigate the particular 
case when Im(ϕ) ⊆ Z(S), which holds e.g. when R is commutative and S is an R-algebra. 
In Theorem 3.11 we discover that, in this case, S/R is h-separable if and only if ϕ is a ring 
epimorphism. Moreover S becomes commutative. As a consequence, in Proposition 3.12
we show that a h-separable algebra over a field k is necessarily trivial. In Proposition 3.18
we show that the twisted semigroup ring is h-separable over the base ring R only in trivial 
cases. As a consequence, in Corollary 3.19 we show that the monoid ring and the matrix 
ring are h-separable over the base ring only in trivial cases.

In Section 4 we investigate the h-separability of the induction and forgetful functors 
attached to a coring. In particular the latter leads to the notion of h-coseparable coring. In 
Theorem 4.3 we characterize an h-coseparable A-coring C by the existence of a suitable 
A-bimodule map α : C ⊗A C → A. In Theorem 4.4 we show that an h-coseparable 
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coalgebra over a field k is necessarily trivial as a consequence of the analogous result 
for algebras we already proved. In Theorem 4.5, we establish that the induced functor 
attached to a coring is h-separable if and only if this coring has an invariant grouplike 
element. Then we investigate the h-separability of the induction functor and its right 
adjoint attached to a bimodule RΣS such that ΣS is finitely generated and projective. 
Our results on these functors are summarized in Theorem 4.8 and Theorem 4.9. As a 
consequence in Corollary 4.11 and Corollary 4.12 we obtain further characterizations 
of the h-separability of the functors ϕ∗ and ϕ∗ mentioned above. The latter corollary 
implies the h-coseparability of the Sweedler coring attached to a ring homomorphism 
ϕ : R → S that splits as a ring homomorphism.

Finally in Section 5 we provide a more general version of our starting example (T, P)
involving monoidal categories and bialgebras therein.

1. Heavily separable functors

In this section we collect general facts about heavily separable functors.

Definition 1.1. For every functor F : B → A we set

FX,Y : HomB (X,Y ) → HomA (FX,FY ) : f �→ Ff

Recall that F is called separable if there is a natural transformation

P−,− := PF
−,− : HomA (F−, F−) → HomB (−,−)

such that PX,Y ◦ FX,Y = Id for every X, Y objects in B.
We say that F is heavily separable (h-separable for short) if it is separable and the 

PX,Y ’s make commutative the following diagram for every X, Y, Z ∈ B.

HomA (FX,FY ) × HomA (FY, FZ)
PX,Y ×PY,Z

◦

HomB (X,Y ) × HomB (Y,Z)

◦

HomA (FX,FZ)
PX,Z

HomB (X,Z)

where the vertical arrows are the obvious compositions. On elements the above diagram 
means that PX,Z(f ◦ g) = PY,Z(f) ◦ PX,Y (g).

Remark 1.2. We were tempted to use the word “strongly” at first, instead of “heavi-
ly”, but a notion of “strongly separable functor” already appeared in the literature in 
connection with graded rings in [7, Definition 3.1].

Remark 1.3. The Maschke’s Theorem for separable functors asserts that for a separable 
functor F : B → A a morphism f : X → Y splits (resp. cosplits) if and only if F (f)
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does. Explicitly, if F (f) ◦ g = Id (resp. g ◦ F (f) = Id) for some morphism g then 
f ◦ PY,X (g) = Id (resp. PY,X (g) ◦ f = Id). If F (f) ◦ g = Id and F (f ′) ◦ g′ = Id
for f : X → Y, f ′ : Y → Z, then f ◦ PY,X (g) = Id and f ′ ◦ PZ,Y (g′) = Id so that 
f ′ ◦ f ◦ PY,X (g) ◦ PZ,Y (g′) = Id so that PY,X (g) ◦ PZ,Y (g′) is a section of f ′ ◦ f . Since 
F (f ′ ◦ f) ◦ g ◦ g′ = Id, we also have f ′ ◦ f ◦ PZ,X (g ◦ g′) = Id so that PZ,X (g ◦ g′) is 
another section of f ′ ◦ f . In general these two sections may differ but not in case F is 
h-separable. Thus we get a sort of functoriality of the splitting. A similar remark holds 
for cosplittings. We thank J. Vercruysse for this observation.

Lemma 1.4. Let F : C → B and G : B → A be functors.

i) If F and G are h-separable so is GF .
ii) If GF is h-separable so is F .
iii) If G is h-separable, then F is h-separable if and only if so is GF .

Proof. i) By [15, Lemma 1] we know that GF is separable with respect to PGF
X,Y :=

PF
X,Y ◦PG

FX,FY . As a consequence, since F and G are h-separable, the following diagram

HomA (GFX,GFY ) × HomA (GFY,GFZ)

PG
FX,FY

×PG
FY,FZ

◦

HomB (FX, FY ) × HomB (FY, FZ)

◦

PF
X,Y

×PF
Y,Z

HomC (X, Y ) × HomC (Y, Z)

◦

HomA (GFX,GFZ)

PG
FX,FZ

HomB (FX, FZ)

PF
X,Z

HomC (X,Z)

commutes so that GF is h-separable.
ii) By [15, Lemma 1] we know that FX,Y cosplits naturally through PF

X,Y := PGF
X,Y ◦

GFX,FY . On the other hand, since G is a functor and GF is h-separable the following 
diagram commutes

HomB (FX, FY ) × HomB (FY, FZ)
GFX,FY ×GFY,FZ

◦

HomA (GFX,GFY ) × HomA (GFY,GFZ)

◦

PGF
X,Y

×PGF
Y,Z

HomC (X, Y ) × HomC (Y, Z)

◦

HomB (FX, FZ)

GFX,FZ

HomA (GFX,GFZ)

PGF
X,Z

HomC (X,Z)

so that F is h-separable.
iii) It follows trivially from i) and ii). �

Remark 1.5. The present remark was pointed out by J. Vercruysse. If the functor F :
B → A is a split monomorphism, meaning that there is a functor G : A → B such 
that GF = Id, then F is h-separable. This follows by setting PX,Y := GX,Y as in 
Definition 1.1. It can also be proved by means of Lemma 1.4,ii).

Lemma 1.6. A full functor is faithful if and only if it is h-separable.
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Proof. Let F : B → A be a full functor. If F is faithful we have that the canonical map 
FX,Y : HomB (X,Y ) → HomA (FX,FY ) is invertible so that we can take PX,Y := F−1

X,Y . 
Since F is a functor, the following diagram commutes

HomB (X,Y ) × HomB (Y,Z)
FX,Y ×FY,Z

◦

HomA (FX,FY ) × HomA (FY, FZ)

◦

HomB (X,Z)
FX,Z

HomA (FX,FZ)

Reversing the horizontal arrows we obtain that F h-separable.
Conversely, if F is h-separable it is in particular separable whence faithful. �

Lemma 1.7. A functor isomorphic to a h-separable functor is h-separable.

Proof. Let α : F → G be an isomorphism of functors where G : B → A is h-separable 
with respect to PG

X,Y . Let τX,Y : HomA (FX,FZ) → HomA (GX,GZ) be defined by 
τX,Y (f) := αY ◦ f ◦ α−1

X . Then F is h-separable with respect to PG
X,Y ◦ τX,Y . �

2. Heavily separable adjoint functors

In this section we investigate h-separable functors which are adjoint functors.

Theorem 2.1 (Rafael type theorem). Let (L,R, η, ε) be an adjunction where L : B → A.

(i) L is h-separable if and only if there is a natural transformation γ : RL → IdB such 
that γ ◦ η = Id and

γγ = γ ◦RεL. (1)

(ii) R is h-separable if and only if there is a natural transformation δ : IdA → LR such 
that ε ◦ δ = Id and

δδ = LηR ◦ δ. (2)

Proof. The second part of the statement follows from the first one by duality, thus we 
only have to establish (i).

First recall that, by Rafael Theorem [18, Theorem 1.2], the functor L is separable if 
and only if there is a natural transformation γ : RL → IdB such that γ ◦η = Id. Namely, 
given P−,− one defines γ by

γX = PRLX,X (εLX) (3)

so that, by naturality of P−,−, for every f : LX → LY , one has
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γY ◦Rf ◦ ηX = PRLY,Y (εLY ) ◦Rf ◦ ηX = PX,Y (εLY ◦ LRf ◦ LηX)

= PX,Y (f ◦ εLX ◦ LηX) = PX,Y (f).

Conversely, given γ, for every f : LX → LY , one defines

PX,Y (f) := γY ◦Rf ◦ ηX. (4)

This correspondence between P−,− and γ is clearly bijective.
Assume that (1) holds. Then, for all f ∈ HomA (LX,LY ) and g ∈ HomA (LY,LZ), 

we have

PY,Z (g) ◦ PX,Y (f) (4)= γZ ◦Rg ◦ ηY ◦ γY ◦Rf ◦ ηX
nat.γ= γZ ◦ γRLZ ◦RLRg ◦RLηY ◦Rf ◦ ηX
(1)= γZ ◦RεLZ ◦RLRg ◦RLηY ◦Rf ◦ ηX
= γZ ◦Rg ◦RεLY ◦RLηY ◦Rf ◦ ηX

= γZ ◦Rg ◦Rf ◦ ηX (4)= PX,Z (g ◦ f)

so that PY,Z (g) ◦ PX,Y (f) = PX,Z (g ◦ f) and hence L is h-separable. Conversely, if the 
latter condition holds for every X, Y, Z and f, g as above, we have

γγX = γX ◦ γRLX
(3)= PRLX,X (εLX) ◦ PRLRLX,RLX (εLRLX)

= PRLRLX,X (εLX ◦ εLRLX) (4)= γX ◦R (εLX ◦ εLRLX) ◦ ηRLRLX

= γX ◦RεLX ◦RεLRLX ◦ ηRLRLX = γX ◦RεLX

so that (1) holds. �
Remark 2.2. Note that the equality (1) means that, for every B ∈ B, γB coequalizes the 
parallel pair (RεLB, RLγB). If we add the condition γ◦η = Id, as in Theorem 2.1, we get 
that the pair (B, γB) belongs to RLB, i.e. the Eilenberg-Moore category of the monad 
(RL,RεL, η) and hence the following right-hand side diagram is a split coequalizer. In 
fact, given a monad (T, μ : TT → T, η : Id → T ) on the category B and an object 
(X, ξ : TX → X) in the Eilenberg-Moore category TB, of this monad, by [4, Lemma 
4.4.3 ] the following left-hand side diagram is a split coequalizer.

TTX
μX

Tξ
TX

ηTX

ξ
X

ηX

RLRLB
RεLB

RLγB
RLB

ηRLB

γB
B

ηB

In particular this coequalizer is absolute, i.e. preserved by every functor defined on B.
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A similar remark holds for δ as in Theorem 2.1 in connection with the Eilenberg-Moore 
category BLR of the comonad (LR,LηR, ε).

Proposition 2.3. Let (L,R) be an adjunction.

(i) The functor L is h-separable if and only if the forgetful functor U : RLB → B is a 
split epimorphism i.e. there is a functor Γ : B → RLB such that U ◦ Γ = IdB.

(ii) The functor R is h-separable if and only if the forgetful functor U : BLR → B is a 
split epimorphism i.e. there is a functor Γ : B → BLR such that U ◦ Γ = IdB.

Proof. We just prove (i), the proof of (ii) being similar. By Theorem 2.1, L is h-separable 
if and only if there is a natural transformation γ : RL → IdB such that γ ◦ η = Id and 
(1) holds. For every B ∈ B, define ΓB := (B, γB). Then ΓB ∈ RLB, as observed in 
Remark 2.2. Moreover any morphism f : B → C fulfills f ◦γB = γC ◦RLf by naturality 
of γ. This means that f induces a morphism Γf : ΓB → ΓC such that UΓf = f . We 
have so defined a functor Γ : B → BRL such that U ◦ Γ = IdB.

Conversely, let Γ : B → RLB be a functor such that U ◦ Γ = IdB. Then, for every 
B ∈ B, we have that ΓB = (B, γB) for some morphism γB : RLB → B. Since ΓB ∈ BRL

we must have that γB ◦ ηB = B and γB ◦ RLγB = γB ◦ RεLB. Given a morphism 
f : B → C, we have that Γf : ΓB → ΓC is a morphism in RLB, which means that 
f ◦ γB = γC ◦ RLf i.e. γ := (γB)B∈B is a natural transformation. By the foregoing 
γ ◦ η = Id and (1) holds. �
Corollary 2.4. Let (L,R) be an adjunction.

(i) Assume that R is strictly monadic (i.e. the comparison functor is an isomorphism of 
categories). Then the functor L is h-separable if and only if R is a split epimorphism.

(ii) Assume that L is strictly comonadic (i.e. the cocomparison functor is an isomor-
phism of categories). Then the functor R is h-separable if and only if L is a split 
epimorphism.

Proof. We just prove (i), the proof of (ii) being similar. Since the comparison functor 
K : A → BRL is an isomorphism of categories and U ◦ K = R, we get that R is a 
split epimorphism if and only if U is a split epimorphism. By Proposition 2.3, this is 
equivalent to the h-separability of L. �
Remark 2.5. Corollary 2.4 will allow us to show, in Remark 5.3, that the tensor algebra 
functor T : Veck → Alg

k
is separable but not h-separable.

Definition 2.6. Following [11, Section 4] we say that a grouplike morphism for a comonad 
(C,Δ : C → CC, ε : C → Id) is a natural transformation δ : Id → C such that ε ◦ δ = Id
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and δδ = Δ ◦ δ. Dually an augmentation for a monad (M,m : MM → M,η : Id → M)
is a natural transformation γ : M → Id such that γ ◦ η = Id and γγ = γ ◦m.

An immediate consequence of the previous definition and Theorem 2.1 is the following 
result.

Corollary 2.7. Let (L,R, η, ε) be an adjunction.

(i) L is h-separable if and only if the monad (RL,RεL, η) has an augmentation.
(ii) R is h-separable if and only if the comonad (LR,LηR, ε) has a grouplike morphism.

3. Heavily separable ring homomorphisms

Let ϕ : R → S be a ring homomorphism. The induction functor ϕ∗ := S ⊗R (−) :
R-Mod → S-Mod is the left adjoint of the restriction of scalars functor ϕ∗ : S-Mod →
R-Mod. This section is devoted to the h-separability of these functors.

Proposition 3.1. Let ϕ : R → S be a ring homomorphism. Then the induction functor 
ϕ∗ is h-separable if and only if there is a ring homomorphism E : S → R such that 
E ◦ ϕ = Id.

Proof. By [8, Theorem 27, page 100], we know that ϕ∗ is separable if and only if there 
is a morphism of R-bimodules E : S → R such that E (1S) = 1R. Given γ for ϕ∗ as in 
Theorem 2.1, one defines E(s) := (γR)(s ⊗R 1R). Given E, one defines γM : S⊗R M →
M : s ⊗R m �→ E (s)m, for every M ∈ R-Mod, such that γ ◦ η = Id where the unit η
is defined by ηM : M → S ⊗R M : m �→ 1S ⊗R m. All natural transformations γ such 
that γ ◦ η = Id are of this form: this is checked by the naturality of γ applied to the left 
R-module map fm : R → M : r �→ rm available for all left R-module M and m ∈ M .

The equality (1) rewrites as E (x)E (y)m = E (xy)m for every x, y ∈ S and m ∈ M , 
for every M ∈ R-Mod. Thus (1) is equivalent to ask that E is multiplicative. Summing 
up ϕ∗ is h-separable if and only if there is a morphism of R-bimodules E : S → R

which is a ring homomorphism. This is equivalent to ask that E : S → R is a ring 
homomorphism such that E ◦ ϕ = Id. �

It is known that ϕ∗ is separable if and only if S/R is separable (see [15, Proposition 
1.3]) if and only if it admits a separability idempotent. We are so lead to the following 
definition.

Definitions 3.2. 1) S/R is h-separable if the functor ϕ∗ : S-Mod → R-Mod is h-separable.
2) A heavy separability idempotent (h-separability idempotent for short) of S/R is 

an element 
∑

i ai ⊗R bi ∈ S⊗R S such that 
∑

i ai ⊗R bi is a separability idempotent, i.e.∑
aibi = 1,

∑
sai ⊗R bi =

∑
ai ⊗R bis for every s ∈ S, (5)
i i i
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which moreover fulfills∑
i,j

ai ⊗R biaj ⊗R bj =
∑
i

ai ⊗R 1S ⊗R bi. (6)

Remark 3.3. Note that a h-separability idempotent e :=
∑

i ai⊗Rbi is exactly a grouplike 
element in the Sweedler’s coring C := S⊗RS such that se = es for every s ∈ S i.e. which 
is invariant. Note that 1S ⊗R 1S is always a grouplike element in C but it is not invariant 
in general.

Proposition 3.4. S/R is h-separable if and only if it has a h-separability idempotent.

Proof. We observed that ϕ∗ is the right adjoint of the induction functor ϕ∗ := S⊗R (−). 
Recall that S/R is separable if and only if the map S⊗R S → S splits as an S-bimodule 
map. The splitting is uniquely determined by a so-called separability idempotent i.e. an 
element 

∑
i ai ⊗R bi ∈ S ⊗R S such that (5) hold. Using this element we can define 

δ : Id → ϕ∗ϕ∗ such that ε ◦ δ = Id by δM : M → S ⊗R M : m �→
∑

i ai ⊗R bim. This 
natural transformation satisfies (2) if and only if

(S ⊗R δM) ◦ δM = (S ⊗R ηM) ◦ δM.

Let us compute separately the two terms of this equality on any m ∈ M ,

(S ⊗R δM) (δM) (m) =
∑
i

ai ⊗R (δM) (bim) =
∑
i,j

ai ⊗R aj ⊗R bjbim

(5)=
∑
i,j

ai ⊗R biaj ⊗R bjm,

(S ⊗R ηM) (δM) (m) =
∑
i

ai ⊗R (ηM) (bim) =
∑
i

ai ⊗R 1S ⊗R bim.

Thus δ satisfies (2) if and only if (6) holds true. �
Corollary 3.5. Let ϕ : R → S and ψ : S → T be ring homomorphisms.

1) If T/S and S/R are h-separable so is T/R.
2) If T/R is h-separable so is T/S.
3) If S/R is h-separable then T/S is h-separable if and only if so is T/R.

Proof. It follows by Definition 3.2, Lemma 1.4 and the equality ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗. �
Lemma 3.6. Let ϕ : R → S be a ring homomorphism. The following are equivalent.

(i) The map ϕ is a ring epimorphism (i.e. an epimorphism in the category of rings);
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(ii) the multiplication m : S ⊗R S → S is invertible;
(iii) 1S ⊗R 1S is a separability idempotent for S/R;
(iv) 1S ⊗R 1S is a h-separability idempotent for S/R.

If these equivalent conditions hold true then S/R is h-separable.
Moreover 1S ⊗R 1S is the unique separability idempotent for S/R.

Proof. (i) ⇔ (ii) follows by [19, Proposition XI.1.2 page 226].
(i) ⇔ (iii) follows by [19, Proposition XI.1.1 page 225].
(iii) ⇔ (iv) depends on the fact that 1S ⊗R 1S always fulfills (6).
By Proposition 3.4, (iv) implies that S/R is h-separable.
Let us check the last part of the statement. If 

∑
i ai ⊗R bi is another separability 

idempotent, we get

∑
i

ai ⊗R bi =
∑
i

ai1S ⊗R 1Sbi = 1S ⊗R 1S
∑
i

aibi
(5)= 1S ⊗R 1S . �

Example 3.7. We now give examples of ring epimorphisms ϕ : R → S.
1) Let S be a multiplicative closed subset of a commutative ring R. Then the canonical 

map ϕ : R → S−1R is a ring epimorphism, cf. [3, Proposition 3.1]. More generally we 
can consider a perfect right localization of R as in [19, page 229].

2) Consider the ring of matrices Mn (R) and the ring Tn (R) of n ×n upper triangular 
matrices over a ring R. Then the inclusion ϕ : Tn (R) → Mn (R) is a ring epimorphism. 
In fact, given ring homomorphisms α, β : Mn (R) → B that coincide on Tn (R) then they 
coincide on all matrices. To see this we first check that α (Eij) = β (Eij) for all i > j,

α (Eij) = α (EijEjj) = α (Eij)α (Ejj) = α (Eij)β (Ejj) = α (Eij)β (EjiEij)

= α (Eij)β (Eji)β (Eij) = α (Eij)α (Eji)β (Eij) = α (EijEji)β (Eij)

= α (Eii)β (Eij) = β (Eii)β (Eij) = β (EiiEij) = β (Eij) .

Thus α (Eij) = β (Eij) for every i, j. Now, given r ∈ R we have

α (rEij) = α (rEiiEij) = α (rEii)α (Eij) = β (rEii)β (Eij) = β (rEiiEij) = β (rEij) .

As a consequence α (M) = β (M) for all M ∈ Mn (R) as desired.
3) Any surjective ring homomorphism ϕ : R → S is trivially a ring epimorphism.

Remark 3.8. A kind of dual to Lemma 3.6, establishes that a k-coalgebra homomorphism 
ϕ : C → D is a coalgebra monomorphism if and only if the induced functor MC → MD

is full, see [14, Theorem 3.5]. Since this functor is always faithful, by Lemma 1.6 it is in 
this case h-separable.
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Proposition 3.9. Let ϕ : R → S be a ring homomorphism. Then S/R is h-separable if 
and only if S/ϕ (R) is h-separable.

Proof. Write ϕ = i ◦ϕ where i : ϕ (R) → S is the canonical inclusion and ϕ : R → ϕ (R)
is the corestriction of ϕ to its image ϕ (R). By Lemma 3.6, we have that ϕ (R) /R is h-
separable. By Corollary 3.5, S/R is h-separable if and only if S/ϕ (R) is h-separable. �

The well-known Maschke theorem establishes that the group ring, if the group is 
finite and the characteristic does not divide the cardinality of the group, is separable. It
is likewise well-known that the ring of matrices is separable, see e.g. [9, Example II, page 
41]. In Corollary 3.19, we will show that they are both h-separable only in trivial cases.

3.1. Heavily separable algebras

3.10. Let R be a commutative ring, let S be a ring and let Z (S) be its center. We recall 
that S is said to be an R-algebra, or that S is an algebra over R, if there is a unital ring 
homomorphism ϕ : R → S such that ϕ (R) ⊆ Z (S). In this case we set

r · s = ϕ (r) · s for every r ∈ R and s ∈ S.

Since Im (ϕ) ⊆ Z (S), we have r · s = s · r for every r ∈ R and s ∈ S and

r · 1S = ϕ (r) · 1S = ϕ (r) · ϕ (1R) = ϕ (r · 1R) = ϕ (r) for every r ∈ R

so that R1S = Im (ϕ) ⊆ Z (S).

Theorem 3.11. Let ϕ : R → S be a ring homomorphism such that ϕ (R) ⊆ Z (S) (with R
not necessarily commutative). Then S/R is h-separable if and only if the canonical map 
ϕ : R → S is a ring epimorphism. Moreover if one of these conditions holds, then S is 
commutative.

Proof. First we prove the statement for R commutative (i.e. S is an R-algebra).
(⇒). Let 

∑
i ai⊗Rbi be an h-separability idempotent. Since ϕ (R) ⊆ Z (S), we get that 

the map τ : S⊗RS → S⊗RS, τ (a⊗R b) = b ⊗Ra, is well-defined and left R-linear. Hence 
we can apply S⊗R τ on both sides of (6) to get 

∑
i,j ai⊗R bj⊗R biaj =

∑
i ai⊗R bi⊗R1S . 

By multiplying, we obtain 
∑

i,j aibj ⊗R biaj =
∑

i aibi ⊗R 1S . By (5), we get

∑
i,j

aibj ⊗R biaj = 1S ⊗R 1S . (7)

By (5) and using the map τ , we get that 
∑

t atsbt ∈ Z (S), for all s ∈ S. Therefore we 
have
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s = 1S · 1S · s (7)=
∑
i,j

aibjbiajs =
∑
i,j

ai (bj) bi (aj) s (1S)

(6)=
∑
i,j,t

aibjbi (atsbt) aj =
∑
i,j,t

aibjbiaj (atsbt)
(7)=

∑
t

atsbt ∈ Z (S) .

We have so proved that S ⊆ Z (S) and hence S is commutative. Now, we compute

∑
i

ai ⊗R bi
(5)=

∑
i,j

aiajbj ⊗R bi
S=Z(S)=

∑
i,j

ajaibj ⊗R bi
(5)=

∑
i,j

aibj ⊗R biaj

so that 
∑

i ai ⊗R bi = 1S ⊗R 1S by (7). We conclude by Lemma 3.6.
(⇐) It follows by Lemma 3.6.
Let us come back to the general case when R is not necessarily commutative. By 

Proposition 3.9, S/R is h-separable if and only if S/ϕ(R) is h-separable. Since ϕ(R) ⊆
Z (S), it is commutative and hence, by the previous part of the proof we get that S/ϕ(R)
is h-separable if and only if the canonical inclusion ϕ(R) ↪→ S is a ring epimorphism. 
Since the map R → ϕ(R) : r �→ ϕ(r) is surjective, we get that ϕ(R) ↪→ S is a ring 
epimorphism if and only if ϕ is a ring epimorphism. �

The following result establishes that there is no non-trivial h-separable algebra over 
a field k.

Proposition 3.12. Let A be a h-separable algebra over a field k. Then either A = k or 
A = 0.

Proof. By Theorem 3.11, the unit u : k → A is a ring epimorphism. By Lemma 3.6, we 
have that A ⊗kA ∼= A via multiplication. Since A is h-separable over k, it is in particular 
separable over k. By [16, page 184], the separable k-algebra A is finite-dimensional. Thus, 
from A ⊗k A ∼= A we deduce that A has either dimensional one or zero over k. �
Example 3.13. C/R is separable but not h-separable. In fact, by Proposition 3.12, C/R

is not h-separable. On the other hand e = 1
2 (1 ⊗ 1 − i⊗ i) is a separability idempotent 

(it is the only possible one). It is clear that e is not a h-separability idempotent.

Remark 3.14. Let A and B be commutative rings and let R = A × B be their product. 
Denote by pA : R → A and pB : R → B the canonical projections. Then A becomes 
an R-algebra via pA and B becomes an R-algebra via pB. Moreover R = A ×B is their 
product in the category of R-algebras. Since R/R is clearly h-separable, the product of 
R-algebras may be h-separable.

Lemma 3.15. Let A and B be R-algebras and let S = A × B be their product in the 
category of R-algebras. Set e1 := (1A, 0B) ∈ S and e2 := (0A, 1B) ∈ S. The following are 
equivalent.
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(i) S/R is h-separable.
(ii) A/R and B/R are h-separable and e1 ⊗R e2 = 0 = e2 ⊗R e1.

Proof. First, by Theorem 3.11 and Lemma 3.6, the conditions (i) and (ii) can be replaced 
respectively by

• 1S ⊗R 1S is a separability idempotent of S/R
• 1A ⊗R 1A and 1B ⊗R 1B are separability idempotents of A/R and B/R respectively 

and e1 ⊗R e2 = 0 = e2 ⊗R e1.

Note also that, if the first condition holds, then, for i �= j we get

ei ⊗R ej = ei1S ⊗R 1Sej = 1S ⊗R 1Seiej = 0

so that e1 ⊗R e2 = 0 = e2 ⊗R e1. Thus the latter condition can be assumed to hold.
Denote by pA : S → A and pB : S → B the canonical projections ad by iA : A → S

and iB : B → S the canonical injections.
Since 1S = e1 + e2 and e1 ⊗R e2 = 0 = e2 ⊗R e1, we get that 1S ⊗R 1S = e1 ⊗R e1 +

e2 ⊗R e2. For every s ∈ S we have

s⊗R 1S = se1 ⊗R e1 + se2 ⊗R e2

= s (1A, 0B) ⊗R (1A, 0B) + s (0A, 1B) ⊗R (0A, 1B)

= (pA (s) , 0B) ⊗R (1A, 0B) + (0A, pB (s)) ⊗R (0A, 1B)

= (iA ⊗R iA) (pA (s) ⊗R 1A) + (iB ⊗R iB) (pB (s) ⊗R 1B)

Similarly 1S ⊗R s = (iA ⊗R iA) (1A ⊗R pA (s)) + (iB ⊗R iB) (1B ⊗R pB (s)).
As a consequence, for every s ∈ S, the equality s ⊗R 1S = 1S ⊗R s holds if and only if

(iA ⊗R iA) (pA (s) ⊗R 1A) + (iB ⊗R iB) (pB (s) ⊗R 1B)

= (iA ⊗R iA) (1A ⊗R pA (s)) + (iB ⊗R iB) (1B ⊗R pB (s))

if and only if

pA (s) ⊗R 1A = 1A ⊗R pA (s) and pB (s) ⊗R 1B = 1B ⊗R pB (s) .

Since pA and pB are surjective, we get that to require that s1S ⊗R 1S = 1S ⊗R 1Ss
for every s ∈ S is equivalent to require that

a1A ⊗R 1A = 1A ⊗R 1Aa and b1B ⊗R 1B = 1B ⊗R 1Bb

for every a ∈ A, b ∈ B. We have so proved that 1S ⊗R 1S is a separability idempotent 
of S/R if and only if 1A ⊗R 1A and 1B ⊗R 1B are separability idempotents of A/R and 
B/R under the assumption e1 ⊗R e2 = 0 = e2 ⊗R e1. �
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The following result is similar to [9, Corollary 1.7 page 44].

Lemma 3.16. Let R be a commutative ring. Let A and B be R-algebras. Then, if B/R is 
h-separable, so is (A⊗R B) /A. As a consequence if both A/R and B/R are h-separable, 
so is (A⊗R B) /R.

Proof. Since B/R is h-separable, by Theorem 3.11, we have that the unit uB : R → B is 
a ring epimorphism. By Lemma 3.6 this means that 1B⊗R1B is a separability idempotent 
of B/R. Thus also (1A ⊗R 1B)⊗A(1A ⊗R 1B) is a separability idempotent of (A ⊗RB)/A.

As a consequence also A ⊗R uB : A ⊗R R → A ⊗R B is a ring epimorphism by the 
same lemma. If A/R is h-separable, then the unit uA : R → A is a ring epimorphism 
too. Thus the composition

R
uA

A ∼= A⊗R R
A⊗RuB

A⊗R B,

i.e. the unit of A ⊗R B, is an epimorphism. By Theorem 3.11, (A⊗R B) /R is h-
separable. �

The following result is due to the referee.

Proposition 3.17. Let R be a commutative ring and let S be any R-algebra that is free as 
an R-module. Then S/R is h-separable if and only if either S = 0 or S ∼= R.

Proof. Assume S/R is h-separable. If R = 0 then S = 0 as S is an R-algebra. If R �= 0, 
by Krull’s theorem we have a maximal ideal I of R. Set k := R/I. By Lemma 3.16, we 
deduce that (k⊗R S) /k is h-separable. By Proposition 3.12, we conclude that k ⊗RS = k

and hence the R-module S is free of rank zero or one and hence either S = 0 or S ∼= R. 
We have so proved that S/R is h-separable implies S = 0 or S ∼= R. The other implication 
is trivial. �
3.2. Heavily separable twisted semigroup ring

Let R be a ring, G be a group and consider RG, the group ring. S. Caenepeel posed 
the following problem: to characterize whether RG/R is h-separable. In order to give a 
complete answer to this question and also to the question whether the matrix ring is 
h-separable, we will use the following construction that can be found in [17].

Let G be a semigroup and let R be a ring with identity. A twisting from G into R is a 
map ω : G ×G → Z (R) which satisfies ω (i, j)ω (ij, t) = ω (i, jt)ω (j, t) for all i, j, t ∈ G. 
The twisted semigroup ring of G over R with twisting ω, denoted by RωG, is the R-ring 
with basis G and multiplication defined, for all i, j ∈ G, by

i ·ω j := ω (i, j) ij,
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and extended by linearity. It follows easily that RωG is an associative R-ring (not nec-
essarily with identity, so it is just an R-bimodule with an R-bilinear and associative 
multiplication). Since RG is an R-bimodule via r

(∑
i∈G rii

)
r′ :=

∑
i∈G rrir

′i, the mul-
tiplication becomes as follows

(∑
i∈G

rii

)
·ω

⎛⎝∑
j∈G

r′jj

⎞⎠ :=
∑
i,j∈G

rir
′
jω (i, j) ij.

Proposition 3.18. Assume that the twisted semigroup ring RωG is a unitary R-ring (i.e. 
a monoid in the monoidal category of R-bimodules) with unit ϕ : R → RωG. If (RωG) /R
is h-separable then either R = 0 or |G| = 0, 1.

Proof. Set 1RωG := ϕ (1R) :=
∑

i∈G uii for some ui ∈ R. Since ϕ is R-bilinear we 
have rϕ (1R) = ϕ (r) = ϕ (1R) r and hence 

∑
i∈G ruii =

∑
i∈G uiri. As a consequence 

rui = uir for all i ∈ G and r ∈ R. In other words ui ∈ Z := Z (R). Since the codomain 
of ω is exactly Z, it makes sense to consider the twisted semigroup ring ZωG. By the 
foregoing 1RωG ∈ ZωG so that ZωG is a unitary Z-ring.

Since RωG is a unitary R-ring we must have ϕ (r)x = rx for all r ∈ R, x ∈ RωG. In 
particular ϕ (r) i = ri for all i ∈ G.

If r ∈ Ker (ϕ) and i ∈ G we have ri = ϕ (r) i = 0 = ϕ (0R) i = 0Ri so that r = 0R. 
Thus ϕ is necessarily injective if G �= ∅.

Assume RωG/R is h-separable. Let e :=
∑

i,j∈G ri,ji ⊗R j be a h-separability idem-
potent with ri,j ∈ R almost all zero. For all r ∈ R we have re =

∑
i,j∈W rri,ji ⊗R j

and

er =
∑
i,j∈G

ri,ji⊗R jr =
∑
i,j∈G

ri,ji⊗R rj =
∑
i,j∈G

ri,jir ⊗R j =
∑
i,j∈G

ri,jri⊗R j.

From re = er we get ∑
i,j∈G

rri,ji⊗R j =
∑
i,j∈G

ri,jri⊗R j

Since the tensor product of free modules remains free, the set {i⊗R j | i, j ∈ G} is a basis 
for S⊗R S as a left R-module. As a consequence, the equality above implies rri,j = ri,jr

for all r ∈ R. Thus ri,j ∈ Z.
Set e′ :=

∑
i,j∈G ri,ji ⊗Z j ∈ ZωG ⊗Z ZωG. Note that the map α : ZωG ⊗Z ZωG →

RωG ⊗RR
ωG : i ⊗Zj �→ i ⊗Rj is injective as {i⊗Z j | i, j ∈ G} is a basis for ZωG ⊗ZZ

ωG. 
For all x =

∑
t∈G xtt ∈ ZωG we have

α (xe′) = α

⎛⎝ ∑
xtt ·ω ri,ji⊗Z j

⎞⎠ = α

⎛⎝ ∑
xtri,jω (t, i) ti⊗Z j

⎞⎠

i,j,t∈G i,j∈G
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=
∑
i,j∈G

xtri,jω (t, i) ti⊗R j = xe,

α (e′x) = α

⎛⎝ ∑
i,j,t∈G

ri,ji⊗Z j ·ω xtt

⎞⎠ = α

⎛⎝ ∑
i,j,t∈G

ri,ji⊗Z xtω (j, t) jt

⎞⎠
= α

⎛⎝ ∑
i,j,t∈G

ri,jxtω (j, t) i⊗Z jt

⎞⎠ =
∑

i,j,t∈G

ri,jxtω (j, t) i⊗R jt = ex.

From xe = ex and the injectivity of α we get that xe′ = e′x. Moreover

mZωG (e′) = (mRωG ◦ α) (e′) = mRωG (e) = 1

The map β : ZωG ⊗ZZ
ωG ⊗ZZ

ωG → RωG ⊗RRωG ⊗RRωG : i ⊗Z j⊗Zk �→ i ⊗Rj⊗Rk is 
also injective, by a similar argument on the basis. Since e is a h-separability idempotent, 
we have

β

⎛⎝ ∑
i,j∈G

∑
i′,j′∈G

ri,ji⊗Z j ·ω (ri′,j′i′) ⊗Z j′

⎞⎠
= β

⎛⎝ ∑
i,j∈G

∑
i′,j′∈G

ri,ji⊗Z ri′,j′ω (j, i′) ji′ ⊗Z j′

⎞⎠
ri,j∈Z

= β

⎛⎝ ∑
i,j∈G

∑
i′,j′∈G

ri,jri′,j′ω (j, i′) i⊗Z ji′ ⊗Z j′

⎞⎠
=

∑
i,j∈G

∑
i′,j′∈G

ri,jri′,j′ω (j, i′) i⊗R ji′ ⊗R j′

=
∑
i,j∈G

∑
i′,j′∈G

ri,ji⊗R j ·ω (ri′,j′i′) ⊗R j′

=
∑
i,j∈G

ri,ji⊗R 1G ⊗R j = β

⎛⎝ ∑
i,j∈G

ri,ji⊗Z 1G ⊗Z j

⎞⎠
and hence we can cancel β obtaining that e′ is a h-separability idempotent. Thus 
(ZωG) /Z is h-separable. Since Z is commutative and ZωG is a free left Z-module with 
basis G, we deduce that either ZωG = 0 or ZωG ∼= Z by Proposition 3.17. Thus Z = 0
(and hence R = 0) or |G| = 0, 1. �
Corollary 3.19. Let R �= 0 be a ring.

1) Let G be a monoid and let RG be the monoid ring. If RG/R is h-separable then 
|G| = 1.

2) Consider the matrix ring Mn (R), n ≥ 1. If Mn (R) /R is h-separable then n = 1.
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Proof. It follows by Proposition 3.18 and the following observations.
1) If G is a monoid and ω (i, j) = 1R for all i, j, then RωG = RG is the ordinary 

monoid algebra.
2) Set I := {1, . . . , n}. Then G := I × I is a semigroup where (i, j) (s, t) := (i, t). Set 

ω ((i, j) , (s, t)) := δj,s ∈ Z (R). Then⎛⎝∑
i,j

ri,j (i, j)

⎞⎠ ·ω

(∑
s,t

r′s,t (s, t)
)

=
∑
i,j,s,t

ri,jr
′
s,tω ((i, j) , (s, t)) (i, j) (s, t)

=
∑
i,j,s,t

ri,jr
′
s,tδj,s (i, t)

so that RωG is isomorphic to the ring of matrices Mn (R) through the assignment 
(i, j) ↔ Eij . �
Remark 3.20. Note that the twisted semigroup ring RωG needs not to be a unitary 
R-ring in general. To see this, take the same semigroup G = I × I as in 2) of the proof 
of Corollary 3.19. Set ω ((i, j) , (s, t)) = 1R. If R �= 0 then RωG has no identity unless 
n = 1. In fact, if 1RωG =

∑
i,j ri,j (i, j) is an identity then

(s, t) = 1RωG ·ω (s, t) =

⎛⎝∑
i,j

ri,j (i, j)

⎞⎠ ·ω (s, t) =
∑
i,j

ri,j (i, t)

for all s, t. Thus 
∑

j ri,j = δi,s. Since s is arbitrary, if n > 1 we can take either s = i or 
s �= i. This leads to 1R = 0R, a contradiction. Thus n = 1.

4. Heavily (co)separable corings

Consider an A-coring C. The induction functor R := (−) ⊗A C: Mod-A → MC is the 
right adjoint of the forgetful functor L : MC → Mod-A, see e.g. [5, Lemma 3.1]. In this 
section we investigate the h-separability of these functors.

Definition 4.1. An A-coring (C,Δ, ε) will be called h-coseparable if and only if the for-
getful functor L : MC → Mod-A is h-separable.

Remark 4.2. Note that a h-coseparable coring is in particular coseparable by [5, Corol-
lary 3.6].

Theorem 4.3. An A-coring (C,Δ, ε) is h-coseparable if and only if there is an A-bimodule 
map α : C ⊗A C → A such that α ◦ Δ = ε and for all x, y, z ∈ C,∑

x1α (x2 ⊗A y) =
∑

α (x⊗A y1) y2. (8)
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∑
α (x⊗A y1)α (y2 ⊗A z) = α (xε (y) ⊗A z) . (9)

Proof. By [5, Theorem 3.5], the forgetful functor L : MC → Mod-A is separable if and 
only if there is an A-bimodule map α : C ⊗A C → A such that α ◦ Δ = ε and, for all 
x, y ∈ C, the formula (8) holds true. We know that L is h-separable if and only if there 
is γ : RL → Id, where R := (−) ⊗A C : Mod-A → MC is the induction functor, such 
that γ ◦ η = Id and (1) holds. Given γ of this form we can set α := ε ◦ γC. The proof 
of [5, Theorem 3.5] shows that α ◦ Δ = ε and, for all x, y ∈ C, the formula (8) holds 
true. Moreover γC can be expressed in terms of α as γC (x⊗A y) =

∑
x1α (x2 ⊗A y) =∑

α (x⊗A y1) y2. We compute

(ε ◦ (γγ)C) (x⊗A y ⊗A z) = (ε ◦ γC ◦RLγC) (x⊗A y ⊗A z) = α (γC ⊗A C) (x⊗A y ⊗A z)

= α
(∑

α (x⊗A y1) y2 ⊗A z
)

=
∑

α (x⊗A y1)α (y2 ⊗A z)

and

(ε ◦ (γ ◦RεL) C) (x⊗A y ⊗A z) = (ε ◦ γC ◦RεLC) (x⊗A y ⊗A z)

= α (εLC ⊗A C) (x⊗A y ⊗A z) = α (xε (y) ⊗A z)

In view of (1) evaluated on C we obtain (9).
Conversely, given α as in the statement, by the proof of [5, Theorem 3.5] we can define 

γ : RL → Id by setting γN (n⊗A x) :=
∑

n0α (n1 ⊗A x) for every (N, ρ) ∈ MC , n ∈
N, x ∈ C. Moreover γ ◦ η = Id. Let us show that (1) holds as well. Indeed we have

((γγ)N) (n⊗A x⊗A y) = (γN ◦RLγN) (n⊗A x⊗A y)

= (γN) (γN ⊗A C) (n⊗A x⊗A y)

= (γN)
(∑

n0α (n1 ⊗A x) ⊗A y
)

=
∑

(n0α (n1 ⊗A x))0 α ((n0α (n1 ⊗A x))1 ⊗A y)

ρ∈Mod-A=
∑

n0α (n1α (n2 ⊗A x) ⊗A y)

(8)=
∑

n0α (α (n1 ⊗A x1)x2 ⊗A y)

=
∑

n0α (n1 ⊗A x1)α (x2 ⊗A y)

(9)=
∑

n0α (n1ε (x) ⊗A y)

and

((γ ◦RεL)N) (n⊗A x⊗A y) = (γN) (εLN ⊗A C) (n⊗A x⊗A y)

= (γN) (nε (x) ⊗A y)
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=
∑

(nε (x))0 α ((nε (x))1 ⊗A y)

=
∑

n0α (n1ε (x) ⊗A y) . �
Theorem 4.4. Let C be a h-coseparable coalgebra over a field k. Then C = k or C = 0.

Proof. If C is h-coseparable it is in particular coseparable. Thus C is cosemisimple and 
hence C is direct sum of simple subcoalgebras. Let D be such a subcoalgebra and let 
i : D → C be the canonical inclusion. If α : C ⊗ C → k is the map of Theorem 4.3, 
then α ◦ (i⊗ i) : D ⊗ D → k fulfills the same properties of α for D. Thus the same 
theorem ensures that D is h-coseparable. Since D is simple, it is finite-dimensional by the 
fundamental theorem for coalgebras. Thus the algebra D∗ = Homk (D,k) is h-separable 
over k. In fact, if we consider the functor Π : MD → D∗-Mod that maps a comodule 
(M,ρ) to the module (M,μρ) where μρ (f ⊗m) :=

∑
m0f (m1) and we denote by ϕ :

k → D∗ the unit of the algebra D∗, then ϕ∗ ◦ Π = L : MD → k-Mod is the forgetful 
functor. Since D is finite-dimensional, the functor Π is an isomorphism. Since D is 
h-coseparable we also have that L is h-separable. If Λ is an inverse for Π, by Lemma 1.6
it is h-separable. Now ϕ∗ = ϕ∗◦Π ◦Λ = L ◦Λ and the latter is h-separable by Lemma 1.4. 
Thus ϕ∗ is h-separable and hence D∗/k is h-separable. By Proposition 3.12, we get 
D∗ = k, 0. Hence D = k, 0. Assume C �= 0. Then C is a group-like coalgebra of the 
form kG for some non-empty set G ⊆ C. The properties of α rewrite as follows for every 
x, y, z ∈ G.

α (x⊗ x) = 1, xα (x⊗ y) = α (x⊗ y) y, α (x⊗ y)α (y ⊗ z) = α (x⊗ z) .

From the equality in the middle and the fact that α (x⊗ y) ∈ k, by linear indepen-
dence of the grouplike elements we obtain α (x⊗ y) = 0 for x �= y. Thus α (x⊗ y) =
δx,yα (x⊗ x) = δx,y whence the third equality becomes δx,yδy,z = δx,z. If G contains two 
elements x �= y and we take z := x, we get δx,yδy,x = δx,x i.e. 0k = 1k so that k = 0 and 
hence C = kG = 0, a contradiction. Therefore |G| = 1 and hence C = k. �

Consider an A-coring C and its set of invariant elements CA = {c ∈ C | ac = ca , 
for every a ∈ A}. In [5, Theorem 3.3], it is proved that the induction functor R :=
(−)⊗A C: Mod-A → MC is separable if and only if there is an invariant element e ∈ CA

such that εC (e) = 1. Next result provides a similar characterization for the h-separable 
case.

Theorem 4.5. Given an A-coring C, the induction functor R := (−)⊗AC : Mod-A → MC

is h-separable if and only if C has an invariant grouplike element.

Proof. Since L � R, by Corollary 2.7, R is h-separable if and only if the comonad 
(LR,LηR, ε) has a grouplike morphism. A grouplike morphism for this particular 
comonad is equivalent to an invariant grouplike element for the coring C i.e. an element 
e ∈ CA such that εC (e) = 1 and ΔC (e) = e ⊗A e. �
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Remark 4.6. Let C be an A-coring. We recall that, by [5, Lemma 5.1], if A is a right 
C-comodule via ρA : A → A ⊗AC, then g = ρA (1A) is a grouplike element of C. Conversely 
if g is a grouplike element of C, then A is a right C-comodule via ρA : A → A ⊗AC defined 
by ρA (a) = 1A ⊗A (g · a). Moreover, if g is a grouplike element of C, then, by [5, page 
404], g is an invariant element if and only if A = AcoC := {a ∈ A | ag = ga}.

Examples 4.7. 1) Let B be a bialgebra and let A be a right B-comodule algebra via the 
trivial coaction ρ : A → A ⊗B : a �→ a ⊗1B. Then, by [6, 33.2], we have that C := A ⊗B

is an A-coring with coproduct A ⊗ΔB , counit A ⊗ ε and A-bimodule structure given by 
a′′(a ⊗b)a′ = a′′aa′⊗b. The corresponding grouplike element in C is g = ρ(1A) = 1A⊗1B
which is invariant.

2) Let A be a commutative ring and let C be an A-coalgebra, see [6, 1.1]. Then C is, 
in particular, an A-coring and any grouplike element in C is automatically invariant.

3) Let A be an arbitrary ring and let S be a set. Any s ∈ S is an invariant grouplike 
element in the grouplike coring C = A(S), see [6, 17.5].

The referee suggested to investigate the h-separability of the following functors. Let 
RΣS be a bimodule such that ΣS is finitely generated and projective. Let σ∗ := (−) ⊗RΣ
be the induction functor and let σ∗ := (−) ⊗S Σ∗ be its right adjoint where Σ∗ :=
HomS(Σ, S). The Eilenberg-Moore category (Mod-S)σ∗σ∗ comes out to be isomorphic to 
the category MC of right comodules over the comatrix R-coring C := Σ∗ ⊗R Σ defined 
in [10]. Dually, if we consider the endomorphism ring E := EndS(Σ) ∼= Σ ⊗S Σ∗ and the 
canonical morphism ϕ : R → E , defined by ϕ(r)(s) = rs for all r ∈ R and s ∈ Σ, then 
the Eilenberg-Moore category σ∗σ∗(Mod-R) comes out to be isomorphic to the category 
Mod-E . Thus we have the following diagram where Kc and K are the cocomparison and 
the comparison functor respectively, L ◦Kc = σ∗ and ϕ∗◦K = σ∗. Here L � R denote the 
same adjunction of the beginning of this section in the particular case of the comatrix 
coring.

(Mod-S)σ∗σ∗ ∼= MC ⊥
L

Mod-S K

R
σ∗

Mod-RKc

σ∗ �

⊥
ϕ∗

Mod-E ∼= σ∗σ∗(Mod-R)
ϕ∗

Note that we have considered the right-hand version of the adjunction ϕ∗ � ϕ∗ in order 
to relate it to right comodules over C.
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Theorem 4.8. In the above setting, the following assertions are equivalent.

(i) σ∗ is h-separable;
(ii) L is a split epimorphism;

(iii) R is h-separable;
(iv) C := Σ∗ ⊗R Σ has an invariant grouplike element;
(v) σ∗ is monadic and E/R is h-separable;

(vi) K is an equivalence and ϕ∗ is h-separable.

Proof. (i) ⇔ (ii) follows by Proposition 2.3(ii).
(ii) ⇔ (iii) follows by Corollary 2.4(ii), once observed that L is strictly comonadic 

(the cocomparison functor of L � R is the identity).
(iii) ⇔ (iv) follows by Theorem 4.5.
(v) ⇔ (vi). By definition E/R is h-separable if and only if ϕ∗ is h-separable. On the 

other hand, σ∗ is monadic means that the comparison functor K is an equivalence of 
categories.

(vi) ⇒ (i). By Lemma 1.6, K is h-separable. Now apply Lemma 1.4 to the equality 
ϕ∗ ◦K = σ∗.

(i) ⇒ (vi). Since σ∗ is h-separable, it is in particular separable. By the dual version 
of [13, Proposition 3.16], which can be applied since the category Mod-S is Cauchy 
complete (every idempotent morphism splits) and the opposite of a Cauchy complete 
category is Cauchy complete, we have that σ∗ is monadic i.e. K is an equivalence of 
categories. If Λ denotes a quasi-inverse for K, then Λ is h-separable by Lemma 1.6. We 
get ϕ∗ ∼= ϕ∗ ◦K ◦ Λ = σ∗ ◦ Λ and the latter is h-separable by Lemma 1.4. Hence ϕ∗ is 
h-separable by Lemma 1.7. �
Theorem 4.9. In the above setting, the following assertions are equivalent.

(i) σ∗ is h-separable;
(ii) ϕ∗ is a split epimorphism;

(iii) ϕ∗ is h-separable;
(iv) there is a ring homomorphism E : E → R such that E ◦ ϕ = Id;
(v) σ∗ is comonadic and C is h-coseparable;

(vi) Kc is an equivalence and L is h-separable.

Proof. (i) ⇔ (ii) follows by Corollary 2.3(i)
(ii) ⇔ (iii) follows by Corollary 2.4(i), once observed that ϕ∗ is always strictly 

monadic (the comparison functor of ϕ∗ � ϕ∗ is the identity).
(iii) ⇔ (iv) follows by Proposition 3.1.
(v) ⇔ (vi). By definition C is h-coseparable if and only if L is h-separable. On the 

other hand, σ∗ is comonadic means that the cocomparison functor Kc is an equivalence 
of categories.
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(vi) ⇒ (i). By Lemma 1.6, Kc is h-separable. Now apply Lemma 1.4 to the equality 
L ◦Kc = σ∗.

(i) ⇒ (vi). Since σ∗ is h-separable, it is in particular separable. By [13, Proposi-
tion 3.16], which can be applied since the category Mod-R is Cauchy complete, we have 
that σ∗ is comonadic i.e. Kc is an equivalence of categories. If Λ denotes a quasi-inverse 
for K, then Λ is h-separable by Lemma 1.6. We get L ∼= L ◦ Kc ◦ Λ = σ∗ ◦ Λ and the 
latter is h-separable by Lemma 1.4. Hence L is h-separable by Lemma 1.7. �
Remark 4.10. The functor σ∗ is monadic, i.e. the comparison functor K = (−) ⊗S Σ∗ :
Mod-S → σ∗σ∗ (Mod-R) ∼= Mod-E is an equivalence, provided ΣS is a progenerator (this 
follows by Morita Theory since E = EndS(Σ), see [19, Proposition IV.10.7, page 108]).

The functor σ∗ is comonadic, i.e. the cocomparison functor Kc = (−)⊗RΣ : Mod-R →
(Mod-S)σ

∗σ∗ ∼= MC is an equivalence, if Σ is a faithfully flat left R-module, [10, Theo-
rem 3.10].

Now let ϕ : R → S be a ring homomorphism. Consider ϕ∗ := (−) ⊗R S : Mod-R →
Mod-S and the restriction of scalars functor ϕ∗. Take Σ := RSS with right regular action 
and left action induced by ϕ. In this case C = S ⊗R S is the Sweedler S-coring, E ∼= S, 
K = Id (i.e. ϕ∗ is always strictly monadic) and Kc = (−) ⊗R S. Moreover (S-Mod)ϕ∗ϕ∗

is (see e.g. [6, pages 252–253]) the category Desc (S/R) = (S-Mod)ϕ∗ϕ∗ of descent data 
associated to the ring homomorphism ϕ.

Let R := (−) ⊗S C : Mod-S → MC be the induction functor and let L : MC → Mod-S
be the forgetful functor.

As a consequence of Theorem 4.8 and Theorem 4.9 we obtain the following corollaries.

Corollary 4.11. In the above setting, the following assertions are equivalent.

(i) ϕ∗ is h-separable (i.e. S/R is h-separable);
(ii) L is a split epimorphism;

(iii) R is h-separable;
(iv) C has an invariant grouplike element.

Corollary 4.12. In the above setting, the following assertions are equivalent.

(i) ϕ∗ is h-separable;
(ii) ϕ∗ is a split epimorphism;

(iii) there is a ring homomorphism E : S → R such that E ◦ ϕ = Id;
(iv) ϕ∗ is comonadic and the Sweedler S-coring is h-coseparable.

Remark 4.13. Corollary 4.11 establishes a relation among the functors ϕ∗, L, R and the 
Sweedler coring. In particular it retrieves Remark 3.3 from a different point of view.
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Remark 4.14. The equivalence between (iii) and (iv) in Corollary 4.12, provides an 
analogue of [5, Corollary 3.7], once observed that ϕ∗ is comonadic provided that S is a 
faithfully flat left R-module [8, Proposition 109]. By mimicking the proof of [5, Corollary 
3.7], we can give a direct proof of the fact that the Sweedler S-coring C := S ⊗R S is 
h-coseparable if ϕ∗ is h-separable. In fact, given a ring homomorphism E : S → R such 
that E ◦ ϕ = Id, we can define α : C ⊗S C → S by setting α ((x⊗R y) ⊗S (z ⊗R t)) :=
xE (yz) t, for all x, y, z, t ∈ S. One easily checks that α fulfills α ◦Δ = ε, (8) and (9), for 
all x, y, z ∈ C.

5. Example on monoidal categories

In the present section M denotes a preadditive braided monoidal category such that

• M has equalizers and denumerable coproducts;
• the tensor products are additive and preserve equalizers and denumerable coproducts.

In view of the assumptions above, we can apply [12, Theorem 2, page 172] to get an 
adjunction (T, Ω) and [1, Theorem 4.6] to get an adjunction (T,P) as in the following 
diagram

Bialg(M) �

P

Alg(M)

Ω

M Id
T

M
T

Here Alg(M) denotes the category of algebras (or monoids) in M, Bialg(M) is the 
category of bialgebras (or bimonoids) in M, the functors � and Ω are the obvious 
forgetful functors and, by construction of T, we have � ◦T = T .

It is noteworthy that, since Ω has a left adjoint T , then Ω is strictly monadic (the 
comparison functor is a category isomorphism), see [2, Theorem A.6].

Let V ∈ M. By construction ΩTV = ⊕n∈NV ⊗n, see [1, Remark 1.2]. Denote by 
αnV : V ⊗n → ΩTV the canonical inclusion and note it is natural in V . The unit 
η : IdM → ΩT of the adjunction (T,Ω) is defined by ηV := α1V while the counit 
ε : TΩ → Id is uniquely defined by

Ωε (A,m, u) ◦ αnA = mn−1 for every n ∈ N (10)

where mn−1 : A⊗n → A denotes the iterated multiplication of an algebra (A,m, u)
defined by m−1 = u, m0 = IdA and, for n ≥ 2, mn−1 = m ◦

(
mn−2 ⊗A

)
.

Denote by η, ε the unit and counit of the adjunction (T,P).
Consider the natural transformation ξ : P → Ω� defined by

P
ηP

ΩTP = Ω�TP Ω�ε Ω�.
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We have ε� ◦ Tξ = ε� ◦ TΩ�ε ◦ TηP = �ε ◦ εTP ◦ TηP = �ε i.e.

ε� ◦ Tξ = �ε. (11)

Since ξ, in view of the adjunction (T, Ω), is uniquely determined by the latter equality, we 
get that ξ is exactly the natural transformation of [1, Theorem 4.6], whose components 
are the canonical inclusions of the subobject of primitives of a bialgebra B in M into 
Ω�B.

Define the functor

(−)+ : Bialg (M) → M

that assigns to every bialgebra A the kernel (A+, ζA : A+ → Ω�A) of the counit εΩ�A :
Ω�A → 1 of the underlying coalgebra of A (i.e. the equalizer of εΩ�A and the zero 
morphism) and to every morphism f the induced morphism f+.

Since ζA is natural in A we get a natural transformation ζ : (−)+ → Ω� which is by 
construction a monomorphism on components.

Lemma 5.1. The natural transformation ξ : P → Ω� factors through the natural trans-
formation ζ : (−)+ → Ω� (i.e. there is ξ̂ : P → (−)+ such that ξ = ζ ◦ ξ̂) which is a 
monomorphism on components.

Proof. Given A ∈ Bialg (M) we have that ξ and ζ are defined by the following kernels.

PA
ξA

ξ̂A

Ω�A

Id

(uΩ�A⊗Ω�A)l−1
Ω�A+(Ω�A⊗uΩ�A)◦r−1

Ω�A−ΔΩ�A

Ω�A⊗ Ω�A

m1(εΩ�A⊗εΩ�A)

A+ ζA
Ω�A

εΩ�A 1

Since the right square above commutes, there is a unique morphism ξ̂A : PA → A+ such 
that ζA ◦ ξ̂A = ξA. The naturality of ζA and ξA in A implies the one of ξ̂A so that 
ζ ◦ ξ̂ = ξ. �

There is a unique morphism ωV : ΩTV → V such that

ωV ◦ αnV = δn,1IdV , for every n ∈ N. (12)

Given f : V → W a morphism in M, by naturality of αn, we get for every n ∈ N,

ωW ◦ ΩTf ◦ αnV = ωW ◦ αnW ◦ f⊗n = δn,1f
⊗n = δn,1f = f ◦ ωV ◦ αnV

so that ωW ◦ΩTf = f ◦ωV which means that ω := (ωV )V ∈M is a natural transformation 
ω : ΩT → IdM.
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Lemma 5.2. The natural transformation ω fulfills ω ◦ η = Id and

ωω ◦ ΩTζT = ω ◦ ΩεT ◦ ΩTζT. (13)

Proof. We have

ωV ◦ ηV = ωV ◦ α1V
(12)= IdV

and hence ω ◦ η = Id. Let us check (13). For every V ∈ M we compute

ωωV ◦ ΩTζTV ◦ αn (−)+ TV

= ωV ◦ ΩTωV ◦ ΩTζTV ◦ αn (−)+ TV = ωV ◦ αnV ◦ (ωV )⊗n ◦ (ζTV )⊗n

= δn,1 (ωV )⊗n ◦ (ζTV )⊗n = δn,1ωV ◦ ζTV.

On the other hand

ωV ◦ ΩεTV ◦ ΩTζTV ◦ αn (−)+ TV = ωV ◦ ΩεTV ◦ αnΩ�TV ◦ (ζTV )⊗n

= ωV ◦ ΩεTV ◦ αnΩTV ◦ (ζTV )⊗n

(10)= ωV ◦mn−1
ΩTV ◦ (ζTV )⊗n

.

Hence we have to check that

δn,1ωV ◦ ζTV = ωV ◦mn−1
ΩTV ◦ (ζTV )⊗n

.

For n = 0 we have

δ0,1ωV ◦ ζTV = 0 = ωV ◦ α0V = ωV ◦ uΩTV = ωV ◦m−1
ΩTV ◦ (ζTV )⊗0

.

For n = 1 we have

δ1,1ωV ◦ ζTV = ωV ◦ ζTV = ωV ◦m0
ΩTV ◦ (ζTV )⊗1

.

For n ≥ 2 we have δn,1ωV ◦ζTV = 0. In order to prove that also ω◦mn−1
ΩTV ◦(ζTV )⊗n = 0

we need first to give a different expression for ωV ◦mΩTV . To this aim, for every m, n ∈ N, 
we compute (we use the identifications V ⊗ 1 ∼= V ∼= 1 ⊗ V )

ωV ◦mΩTV ◦ (αmV ⊗ αnV )

= ωV ◦ αm+nV = δm+n,1IdV

= δm,1δn,0IdV⊗1 + δm,0δn,1Id1⊗V

= rV ◦ (δm,1IdV ⊗ δn,0Id1) + lV ◦ (δm,0Id1 ⊗ δn,1IdV )

= rV ◦ (ωV ⊗ εΩTV ) ◦ (αmV ⊗ αnV ) + lV ◦ (εΩTV ⊗ ωV ) ◦ (αmV ⊗ αnV )

= (rV ◦ (ωV ⊗ εΩTV ) + lV ◦ (εΩTV ⊗ ωV )) ◦ (αmV ⊗ αnV ) .
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Since the tensor products preserve denumerable coproducts, the equalities above yield 
the identity

ωV ◦mΩTV = rV ◦ (ωV ⊗ εΩTV ) + lV ◦ (εΩTV ⊗ ωV ) .

Using it, we obtain

ωV ◦mn−1
ΩTV ◦ (ζTV )⊗n

= ωV ◦mΩTV ◦
(
mn−2

ΩTV ⊗ ΩTV
)
◦ (ζTV )⊗n

= (rV ◦ (ωV ⊗ εΩTV ) + lV ◦ (εΩTV ⊗ ωV )) ◦
(
mn−2

ΩTV ⊗ ΩTV
)
◦ (ζTV )⊗n

= rV ◦
(
ωV ◦mn−2

ΩTV ⊗ εΩTV

)
◦ (ζTV )⊗n + lV ◦

(
εΩTV ◦mn−2

ΩTV ⊗ ωV
)
◦ (ζTV )⊗n

= rV ◦
(
ωV ◦mn−2

ΩTV ◦ (ζTV )⊗n−1 ⊗ εΩTV ◦ ζTV
)

+ lV ◦
(
(εΩTV ◦ ζTV )⊗n−1 ⊗ ωV ◦ ζTV

)
.

The last two summands are zero as εΩTV ◦ ζTV = εΩ�TV ◦ ζTV = 0 by definition 
of ζ. �
Remark 5.3. As observed, the comparison functor K : Alg (M) → MΩT is an isomor-
phism of categories. By Corollary 2.4, T is h-separable if and only if Ω : Alg (M) → M
is a split epimorphism. Let us prove, by contradiction, that this is not the case. As-
sume that there is a functor Γ : M → Alg (M) such that ΩΓ = Id. Let V ∈ M. Then 
ΓV = (V,mV, uV ) for some morphisms mV : V⊗V → V and uV : 1 → V . Let f : V → V

be the zero morphism. Then Γf : ΓV → ΓV is an algebra morphism and ΩΓf = f . Thus 
f is unitary i.e. uV = f ◦ uV = 0 ◦ uV = 0. Hence IdV = mV ◦ (V ⊗ uV ) ◦ r−1

V = 0. 
As a consequence any morphism h : V → W would be zero as h = h ◦ IdV for every 
V, W ∈ M. Hence HomM (V,W ) = {0}. This happens only if all objects are isomorphic 
to the unit object 1, i.e. if the skeleton of M is the trivial monoidal category (T ,⊗,1), 
where Ob (T ) = {1}, HomT (1,1) = {Id1} and the tensor product is given by 1⊗ 1 = 1
and Id1 ⊗ Id1 = Id1. This is evidently a restrictive condition on M. Thus, in general 
T : M → Alg (M) is not heavily separable. On the other hand the equality ω ◦ η = Id
obtained in Lemma 5.2 means that the functor T : M → Alg (M) is separable.

As a particular case, we get that the functor T : Veck → Alg
k

is separable but not 
h-separable.

Theorem 5.4. Set γ := ω ◦ ξT : PT → IdM. Then γ ◦ η = Id and γγ = γ ◦PεT. Hence 
the functor T : M → Bialg (M) is h-separable.

Proof. We compute

γ ◦ η = ω ◦ ξT ◦ η def. ξ= ω ◦ Ω�εT ◦ ηPT ◦ η
= ω ◦ Ω�εT ◦ ΩTη ◦ η = ω ◦ Ω�εT ◦ Ω�Tη ◦ η = ω ◦ η = Id.
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Moreover

Ωε� ◦ ξTξ = Ωε� ◦ Ω�Tξ ◦ ξTP
def.ξ= Ωε� ◦ ΩTΩ�ε ◦ ΩTηP ◦ Ω�εTP ◦ ηPTP

= Ω�ε ◦ Ωε�TP ◦ ΩTηP ◦ Ω�εTP ◦ ηPTP

= Ω�ε ◦ Ω�εTP ◦ ηPTP

= Ω�ε ◦ Ω�TPε ◦ ηPTP

= Ω�ε ◦ ηP ◦ Pε
def.ξ= ξ ◦ Pε

so that

γγ = ωω ◦ ξTξT = ωω ◦ Ω�TζT◦ξTξ̂T = ωω ◦ ΩTζT◦ξTξ̂T
(13)= ω ◦ ΩεT ◦ ΩTζT◦ξTξ̂T = ω ◦ Ωε�T ◦ ξTξT = ω ◦ ξT ◦ PεT = γ ◦ PεT �

Finally, we would like to explain how the construction above works when M is the 
category Veck of vector spaces over a field k. In this case Bialg(Veck) = Bialg

k
and 

P : Bialg
k
→ Veck becomes the functor that assigns to a k-bialgebra B the k-vector 

space of its primitive elements and acts on morphisms as the restriction on primitive 
elements. Its left adjoint T, assigns to a vector space V the tensor algebra TV , where 
ΩTV := ⊕n∈NV ⊗n, endowed with its canonical bialgebra structure where the elements 
in V are primitive. To a linear map f : V → W it assigns the bialgebra map Tf :
TV → TW , where ΩTf := ⊕n∈Nf⊗n. The linear map ωV : ΩTV → V defined by (12), 
is just the canonical projection onto V . The map γV : PTV → V is the restriction 
of ωV to PTV . It is known that the primitive elements in PTV are homogeneous, i.e. 
PTV = ⊕n∈N(PTV ∩ V ⊗n), see e.g. [20, 9.10.2]. Thus, γV is given by the projection 
on the space of primitive elements of homogeneous degree 1.
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