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Abstract: The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and 
NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth 
factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development. 
Loss of function alterations in these genes can lead to nervous system development problems; 
conversely, activating alterations harbor oncogenic potential, promoting cell proliferation/survival 
and tumorigenesis. Chromosomal rearrangements are the most clinically relevant alterations of 
pathological NTRK activation, leading to constitutionally active chimeric receptors. NTRK fusions 
have been detected with extremely variable frequencies in many pediatric and adult cancer types, 
including central nervous system (CNS) tumors. These alterations can be detected by different 
laboratory assays (e.g., immunohistochemistry, FISH, sequencing), but each of these approaches has 
specific advantages and limitations which must be taken into account for an appropriate use in 
diagnostics or research. Moreover, therapeutic targeting of this molecular marker recently showed 
extreme efficacy. Considering the overall lack of effective treatments for brain neoplasms, it is 
expected that detection of NTRK fusions will soon become a mainstay in the diagnostic assessment 
of CNS tumors, and thus in-depth knowledge regarding this topic is warranted. 

Keywords: central nervous system; glioma; pediatric tumors; molecular pathology; NTRK; gene 
fusion; targeted therapies; precision medicine 

 

1. Introduction 

Traditionally, tumor diagnosis and prognostic evaluation, as well as therapeutic management, 
were addressed by histological examination alone, which was based on tumor morphology and 
complementary immunohistochemical profiling. Nowadays this approach is no longer adequate for 
complete tumor characterization since molecular profiling has become necessary for optimal patient 
management [1–5]. As a result, diagnostic algorithms are undergoing substantial changes for many 
tumor types: this molecular revolution has been fully undertaken by the latest 2016 World Health 
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Organization (WHO) classification of central nervous system (CNS) neoplasms, as molecular markers 
(e.g., IDH1/IDH2 (Isocitrate dehydrogenase 1/2), 1p/19q codeletion, ATRX (transcriptional regulator 
ATRX), TP53 (tumor protein p53) etc.) have become mandatory for a conclusive diagnosis of many 
specific tumor entities [6–9]. Moreover, in the following few years since its publication, the 
diagnostic/prognostic/predictive importance of many additional molecular traits have been 
demonstrated and they are now being quickly translated into the routine clinical practice [10–12]. 

Despite the rarity, neurotrophic tropomyosin receptor kinase (NTRK) alterations recently gained 
attention because of the impressive therapeutic results achieved through their specific targeting. 
Since NTRK fusions have been found at significant frequencies in CNS tumors, which typically lack 
effective therapies, their detection is expected to soon become a mainstay in the diagnostic assessment 
of these tumors, and specific expertise in this topic will become mandatory. 

In this Review, we will discuss the biology and physiological role of TRK receptors as well as 
their role in pathological conditions, focusing on the recently collected knowledge in brain tumors. 

2. Biology of TRK Signaling 

2.1. Characteristics of NTRK Genes and of TRK Signaling  

Tyrosine receptor kinases are a group of cell-membrane high-affinity receptors sharing similar 
structures and intracellular signaling pathways, but with different mechanisms of activation and 
regulation. These receptors have specific growth factors as ligands and are involved in several 
fundamental functions for cell survival and activation, such as growth, differentiation, and apoptosis 
[13–16]. The oncogenic role of their alterations is well documented, as well as their possible 
exploitation as therapeutic targets [17–25].  

NTRK are part of this group, consisting in a family of genes (NTRK-1, NTRK-2, and NTRK-3) 
located on chromosomes 1 (1q22), 9 (9q22), and 15 (15q25) and encoding for the TRK-A, TRK-B, and 
TRK-C proteins, respectively [26]. They were first identified and described as oncogenes in colorectal 
cancer by Pulciani et al. in 1982 [27], and then recognized as high-affinity neurotrophin receptors in 
1989 [28]. They present the canonical structure of tyrosine kinase receptors, consisting of an 
intracellular domain with tyrosine-dependent kinase activity linked through the transmembrane 
structure to an extracellular domain made of two immunoglobulin-like high-affinity receptors and 
three leucine-rich motifs, the latter being specific of the NTRK family [13,14]. Specific neurotrophins, 
a subset of growth factors, are the main ligands of TRK proteins. TRK-A is probably the most studied 
and well-characterized receptor of the NTRK family and is preferentially bound by the nerve growth 
factor (NGF) [29]. Neurotrophin-3 (NT-3) binds TRK-C, while TRK-B has a lower binding specificity 
since both brain-derived growth factor (BDNF) and neurotrophin-4 (NT-4) can be ligands of this 
receptor [30–34]. Furthermore, also p75NTR, a membrane receptor, member of the tumor necrosis 
factor (TNF) receptor family, binds all the spectrum of neurotrophins described above and plays a 
crucial role in balancing cell survival versus death during CNS development.[35] Indeed, these last 
ligand-receptor relationships should be considered of low affinity [36,37]. p75NTR can also be 
considered a sort of “sparring partner” of TRK receptors, since their coexpression can enhance the 
activity of TRKs by improving the affinity between each TRK receptor and the corresponding ligands 
[38,39].  

TRK receptors activation by their ligands leads to homodimerization of the intracellular domain, 
followed by phosphorylation of several tyrosine residues and consequent activation of the 
downstream signaling cascades (Figure 1). So far, TRK-A tyrosine residues have been thoroughly 
defined (Y496, Y676, Y680, Y681, and Y791) and TRK-B and TRK-C show a similar intracellular 
domain and activity. The intracellular domain, once phosphorylated, engages at least three different 
signaling cascades: the Ras-mitogen-activated protein kinase (MAPK), the phospholipase C-γ (PLC-
γ), and the phosphatidylinositol 3-kinase (PI3-K) pathways. The final result of these interactions 
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causes the activation of the neural cells, enabling their development and maintenance [40,41]. 

 
Figure 1. Physiological and rearranged NTRK genes/TRK receptors and intracellular signaling. The 
PLC-γ, MAPK, and PI3-K intracellular pathways (here represented by the DAG/IP3, RAS/MEK/ERK, 
and PI3-K/AKT components, respectively) are activated either from the wild-type form of NTRK, and 
the chimeric fusion receptors (e.g., BCAN-NTRK1 and ETV6-NTRK3). However, the latter happens in 
a ligand-free constitutively activated fashion, leading to oncogenic activation. The NTRK inhibitors 
(TKI, here represented by entrectinib and larotrectinib) achieve their antitumor activity by interacting 
with the intracellular domain of the chimeric receptors, inhibiting the recruitment of the signaling 
pathway. 

Another important signal transduction mechanism of TRK signaling is represented by the 
endocytic pathway. After binding with their respective partners, TRK receptors can be internalized 
within signaling endosomes which then can be transported back to the cell body where they can exert 
their function.[42,43] This mechanism, although it has been demonstrated for multiple receptor types, 
is especially relevant for neurons, since the cell soma can be significantly distant from the axon 
extremity. In particular, it has been shown that both signaling at the distal axon extremity and the 
retrograde trafficking of TRK-A bound with NGF are both necessary for neuronal survival and 
development. 

Isoforms have been described for all three TRK, resulting from splicing variants of the NTRK 
genes and lacking specific subsets of exons [41]. Despite the consequent structural modifications, 
these isoforms keep the ability to transduce the signal once the ligand is bound [44–46]. However, 
each specific isoform presents peculiar characteristics both in terms of expression (e.g., expression in 
different tissues or with different timings) and activity [47–50].  

2.2. The Physiological Role of NTRK Signaling and Its Role in Non-Neoplastic Diseases 

The role of NTRK in the nervous system has been widely investigated (Figure 2): overall, TRK-
B is probably the most represented receptor (mainly located in cortex, cerebellum, striatum, and 
hippocampus), while TRK-A and TRK-C show more restricted expression profiles, the former being 
limited to mature forebrain cholinergic neurons, and the latter mainly observed during neuronal 
development [51,52]. TRKs activation promotes and regulates the growth and elongation of dendrites 
and axons regardless of the site of origin and of the specific function [52,53].  
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Figure 2. Neurophysiological functions of TRK signaling and possible consequences of its 
alterations. 

In the peripheral nervous system (PNS), neutrophins binding and NTRK signaling is required 
for the survival of sensory and sympathetic ganglia [52–56]. Loss of NTRK expression in the 
development phase of mice and zebrafish has several consequences on their sensory systems, such 
as gustatory deficits and hearing and vision impairment [57,58]. Within CNS, NTRK gene expression 
is fundamental for neuron migration to the cortical layer (in particular for cerebellar granule 
neurons), and for their growth and maturation. Moreover, the hippocampal long-term maturation is 
strictly associated with NTRK expression by resident neurons [55,59–62]. 

Because of the significant role played in the physiology of nervous system development and 
maintenance, the level of expression of NTRK genes has been widely studied in pathological non-
tumoral CNS conditions [63]. A significant downregulation of these receptors has been observed in 
the frontal cortex and in cholinergic basal nuclei of patients with Alzheimer’s disease. Moreover, a 
truncated isoform of TRK-B receptor resulted more expressed than the complete isoform in the 
cerebral cortex and the hippocampus of these patients. TRK-B truncated isoform lacks the 
intracellular tyrosine-dependent kinase domain, leading to a non-functional receptor [64]. 

Also, altered TRK signaling has been suggested in schizophrenia. Although the limited 
understanding of the pathogenetic mechanisms behind this disorder and the presumptive 
involvement of multiple genes, the 15q25 region has been identified as a possible culprit. This locus 
includes the NTRK3 gene: dysfunction of the corresponding TRK-C receptor could impair neural 
connections, plasticity, and development of the hippocampus and of the prefrontal cortex in these 
patients, together with a reduction of the overall levels of neurotrophins [65–67]. 

NTRK alterations have been proposed in many other neurological and psychiatric conditions, 
ranging from epilepsy (where increased levels of BDNF and of TRK-B resulted correlated with 
seizure induction and severity) to depression and addictive behaviors [67,68]. Additional data 
regarding the role of NTRK alterations in non-neoplastic diseases are now available, but this topic 
falls outside the scope of the present review. 

3. NTRK in Tumor Development  

3.1. The Oncogenic Role of NTRK: Fusions Versus Other Alterations 

The oncogenic activation of NTRK can occur in several ways, including structural chromosomal 
rearrangements leading to gene fusions, splice variants, mutations, copy number alterations and 
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increased expression. Considering their clinical relevance, these alterations can be clustered into two 
main groups: NTRK gene fusions leading to constitutively activated receptors versus the other 
mechanisms. Importantly, these other types of alterations are overall more frequent than NTRK 
fusions, but they cannot be effectively targeted with the currently available drugs (with the important 
exception of the NTRK mutations developed as a mechanism of resistance to therapeutic inhibition 
of NTRK fusions) and thus are presently considered non-druggable [69,70].  

Regarding fusions, more than fifty NTRK fusion partners have been reported so far, confirming 
the extremely promiscuous nature of this rearrangement. Nevertheless, the same type of gene 
structural rearrangement is preserved: the 3′ region of the NTRK gene is fused with the 5′ region of a 
partner gene. The resulting chimeric protein keeps the NTRK tyrosine kinase domain with the ability 
to activate the usual intracellular pathway, but it becomes ligand-independent thanks to the partner 
gene component. The fusion mechanism described above for NTRK oncogenic activation is 
comparable to those occurring in other oncogenes with a kinase-domain component, such as ALK 
and ROS1 [71–74]. Indeed, gene fusions of receptor tyrosine kinases is a common oncogenic 
mechanism shared by multiple tumor types and leading to oncogene addiction, although the 
specifically involved genes can vary between the different neoplasms. For instance, if we consider 
non-small cell lung cancer, fusions involving ALK, ROS1, RET, BRAF, EGFR, and NTRK have been 
reported.[75] 

Overall, NTRK fusions seem to be rarely present (<1%) in unselected large series of tumors; 
conversely, it can be practically considered a pathognomonic marker of specific rare neoplasms 
including breast secretory carcinomas, mammary analogue secretory carcinoma of the salivary 
glands, infantile fibrosarcomas and congenital/infantile mesoblastic nephroma, narrowing a 100% 
prevalence [76–80]. Of interest, tumors harboring NTRK fusions often (>50%) present other genomic 
co-alterations in genes related to the NTRK intracellular pathways, such as the MAPK and the PI3K 
signaling cascades, TP53-associated genes, cell-cycle regulatory proteins and other tyrosine kinases, 
although strong mitogenic/driver alterations are usually mutually exclusive [70,81]. 

The true oncogenic potential of non-fusion NTRK alterations, such as mutations, gene 
amplifications and alternative splicing has yet to be confirmed [49,50,82–86]. Moreover, as it will be 
furtherly discussed later, these alternative types of alterations can play a crucial role in tumor 
resistance against NTRK-fusions inhibitors and therefore are being increasingly investigated [70,87]. 

3.2. NTRK Alterations in Non-CNS Tumors 

Considered that NTRK was discovered as a potential oncogene in colorectal cancer (CRC) 
[27,88], and that tumors in which NTRK fusions can be considered pathognomonic belong to non-
CNS cell-lineages as well, the oncogenic potential of this signaling pathway is not restricted to tissues 
with NTRK physiological expression [76–80].  

Non-CNS NTRK-altered tumors include neoplasms with high incidence, but low frequency of 
NTRK fusions and rare tumors with extremely low incidence, but high frequency of this molecular 
hallmark. In this latter group, assessment of NTRK fusions can be used also as a diagnostic marker.  

Among the first group, which represents the sharp majority of cases, NTRK fusions occur in no 
more than 4% of CRCs and the detected fusions so far are the TPM3-NTRK1 [89–91], the LMNA-
NTRK1 [92], and the ETV6-NTRK3 [93]. CRC harboring NTRK, ALK, and ROS1 could be distinctively 
identified as tumors with high frequency of metastasis, poor prognosis, and specific mutational 
profile, characterized by high microsatellite instability (MSI) and RAS and BRAF wild-type status 
[70,94]. These observations can help aim NTRK assessment in this setting. The second main tumor 
type within this group is lung adenocarcinoma, in which NTRK rearrangements occur in about 3% 
of lesions. The main observed fusions are CD74-NTRK1, MPRIP-NTRK1, and TRIM24-NTRK2 [72,95]. 
Another carcinoma harboring NTRK as a potential oncogene is papillary thyroid carcinoma (PTC), 
with at least two different fusion products, TPM3-NTRK1 [96,97] and ETV6-NTRK3 [98]. 

The second group includes three entities, namely secretory carcinoma (either arising from breast 
or from salivary glands), congenital/infantile fibrosarcoma and congenital mesoblastic nephroma 
[76,99–101]. All these tumors present an NTRK fusion in more than 95% of cases, usually the ETV6-
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NTRK3. This fusion derives from a chromosomal translocation, t(12;15) (p13;q25), which combines 
exon 4, 5, or 6 of ETV6 and the kinase domain of NTRK3 [102].  

Considering that the potential therapeutic efficacy has been demonstrated across all tumor 
types, NTRK fusions have been evaluated in several other neoplastic entities, ranging from Spitz 
tumor and melanoma to sarcomas (especially in the pediatric population), pancreatic cancer and 
cholangiocarcinoma, and neuroendocrine tumors [103–109]. Variable frequencies of NTRK 
rearrangements have been observed, but they usually are <10%.  

3.3. NTRK Fusions in Pediatric CNS Tumors 

In Europe and North America, the outcome landscape of pediatric tumors has recently changed: 
CNS neoplasms overtook hematological neoplasms as the leading cause of death within this 
population mainly because of the limited efficacy of the available treatments [110,111]. For this 
reason, pediatric CNS tumors represent an unmet need in oncology, requiring novel approaches for 
management and treatment.  

Pediatric diffuse low and high-grade gliomas are undergoing significant changes in terms of 
diagnostic assessment, due to the increasing importance of molecular markers for classification and 
stratification [10,112,113]. These tumors also harbor peculiar molecular profiles which vary 
significantly from adult tumors, even in cases with similar histological features. Whenever a 
definitive diagnosis is achieved, the clinical behavior is still very heterogeneous and tumor 
recurrences are frequent even after multi-modal integrated treatments [112,114–117]. In particular, 
high-grade pediatric gliomas are associated with very limited outcomes and the possible treatments, 
which include radiotherapy, can lead to severe toxicities in children. A druggable target, like NTRK 
or other fusions, can thus actually have a major impact in this setting, improving disease control and 
allowing to delay other treatments with less favorable risk/benefit profiles [118]. 

NTRK alterations have been widely described in pediatric gliomas, both in low-grade and high-
grade lesions (Table 1). Pilocytic astrocytoma (PA) is the most common pediatric glioma and usually 
shows a good outcome, especially after complete surgical resection; however, since recurrences do 
occur, it has been thoroughly investigated to look for new potential therapeutic targets including 
druggable fusions. MAPK pathway is commonly altered in PA and BRAF is the most frequently 
involved gene (e.g., KIAA1549: BRAF fusion, BRAF V600E mutation), while KRAS, and NF1 
mutations can be observed in rare cases. Recently, NTRK fusions have also been observed in rare 
supratentorial PA with involvement of the NTRK2 gene [112,114,119]. 

Pediatric high-grade gliomas (pHGGs) are rare lesions with a dismal survival rate: the two-year 
survival rate for patients with supratentorial pHGGs range from 10 to 30 percent, and it is even lower 
(<10%) for diffuse intrinsic pontine gliomas (DIPGs). In this unsatisfactory scenario, molecular 
profiling of pHGGs seems imperative to improve the outcome of these patients by exploitation of 
specific therapeutic targets. As expected by their heterogeneity in terms of morphological features 
and clinical behavior, their molecular analysis showed a wide and challenging landscape, with 
several aberrant pathways and multiple mechanisms of tumor initiation/promotion being 
concurrently present. Although these findings are usually associated with intrinsic resistance to 
targeting of single alterations, a particular subset of non-brainstem high-grade gliomas has been 
identified in younger children (less than three years old) with high frequencies (up to 40%) of NTRK 
fusions (TPM3-NTRK1 and ETV6-NTRK3) without significant additional alterations, opening up new 
treatment scenarios for these selected cases [117,120–123]. Nevertheless, the overall NTRK-fusion rate 
of almost 4% observed in unselected cohorts of pediatric gliomas suggests its routine diagnostic 
assessment [70].  

So far, NTRK fusions have not been detected in ependymoma, another frequent pediatric tumor. 
Although chromosomal rearrangements are key drivers of this neoplasm (e.g., RELA-fusion), NTRK 
signaling is not likely to be specifically involved based on the available data [120]. 

NTRK rearrangements have been investigated and discovered with a notable frequency in mixed 
glioneuronal tumors, a rare group of pediatric epileptogenic CNS neoplasms. Once again, although 
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rare, NTRK (particularly NTRK1) fusions have been identified in both low-grade and high-grade 
glioneuronal tumors, ranging from ganglioglioma to diffuse leptomeningeal glioneuronal tumors 
[124–127].  

Medulloblastoma, one of the most common and highly aggressive CNS non-glial pediatric 
tumors, showed no NTRK fusions. However, increased expression of non-mutated receptors, TRK-C 
in particular, has been found to be associated with a better clinical outcome and prognosis, suggesting 
the potential exploitation of NTRK signaling as a prognostic rather than predictive marker [128–131]. 

3.4. NTRK Fusions in Adult CNS Tumors 

CNS tumors represent a challenging context also among adults with discouraging outcomes. 
Comprehensive molecular analyses of large cohorts of these tumors have been conducted, focusing 
on high grade gliomas (HGG) and glioblastoma (GBM), the latter being the most common glioma in 
adults with an extremely severe prognosis. IDH-wildtype GBM (the so-called primary glioblastoma) 
shows a broad spectrum of potentially targetable alterations, including a significant rate of fusions: 
chimeric fusion genes are often present, and involvement of all of the three NTRK genes has been 
demonstrated (Table 1), although with significant differences among the series [132,133]. Up to date, 
NTRK2 appears to be the most frequently involved gene (up to 11% of GBM), while NTRK1 fusions 
are definitely rarer (about 1%) and NTRK3 fusions seem to be extremely rare (one single case 
reported) [133–137]. Among low grade gliomas (LGG), a NTRK1 fusion was reported in an adult 
pilocytic astrocytoma [133].  

Expression and methylation of wild-type NTRK genes has been investigated in different types 
of gliomas as well, revealing that LGGs present higher expression of TRK receptors compared to 
HGGs. Although these findings need to be further confirmed, lower expression levels in tumoral cells 
seem to be associated with increased malignant potential and poorer prognosis [138,139]. 
Accordingly, higher expression of NTRK receptors in neuroblastomas was found to be associated 
with a better outcome. This finding is possibly due to immunoregulatory mechanisms, thus widening 
the potential range of modulatory effects associated with this signaling pathway [140]. 

Table 1. NTRK fusions in CNS tumors. 

Tumor Entity NTRK Fusions Frequency Most Frequently Reported NTRK 
Fusions 

Glioblastoma 

1.1% (Frattini et al.) [134] 
1.1% (Shah et al.) [135] 

2.6% (Zheng et al.) [124] 
1.2% (Kim et al.) [136] 

1.7% (Ferguson et al.) [133] 

BCAN-NTRK1 
NFASC-NTRK1 

ARHGEF2-NTRK1 
CHTOP-NTRK1 
GKAP-NTRK2 
KCTD8-NTRK2 
TBC1D2-NTRK2 

EML4-NTRK3 
Non-brainstem high-grade 

glioma 
10%–40% (Wu et al.)# [121] ETV6-NTRK3 

TPM3-NTRK1 
BTBD1-NTRK3  

VCL-NTRK2 
AGBL4-NTRK2 

DIPG° 4% (Wu et al.) [121] 

Pilocytic astrocytoma  16.6% (Ferguson et al.) [133] 
3.1% (Jones et al.) [114] 

BCAN-NTRK1 
NACC2-NTRK2 

QKI-NTRK2 
Anaplastic astrocytoma 2.3% (Ferguson et al.) [133] NOS1AP-NTRK2 

Glioma NOS 4.1% (Ferguson et al.) [133] SQSTM1-NTRK2 

Low-grade glioma 
0.7% (Zhang et al.) [112] 

0.43% (Stransky et al.) [72] 
4.3% (Ferguson et al.) [133] 

ETV6-NTRK3 
AFAP1-NTRK2 
VCAN-NTRK2 

High-grade glioneuronal 
tumor Case report (Kurozumi et al.) [127] ARHGEF2-NTRK1 
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Ganglioglioma Case report (Prabhakaran et al.) [124] TLE4-NTRK2 
#Age-dependent frequency (highest rate was observed in <3yy patients) 
°Diffuse Intrinsic Pontine Glioma 

4. NTRK as a Novel Therapeutic Target 

4.1. NTRK-Fusions Targeting: A Novel, Effective, Histology-Independent Anti-Neoplastic Treatment 

Drug development in oncology has significantly changed since the discovery of targetable 
molecular alterations. Since these alterations are shared among completely independent tumor sites 
and types, basket trials were initiated, testing cohorts of patients with common molecular targets, 
despite the different tumor entity [141]. However, in some cases (e.g., mutated BRAF-inhibitors) 
response to treatments was still histology or tissue-dependent and thus drug approval was limited 
to specific indications. More recently, pembrolizumab, an anti-PD1 immunomodulatory drug, 
received tissue-agnostic approval considered the efficacy in a wide range of advanced tumor types 
sharing mismatch repair deficiency or high microsatellite instability. Similarly, NTRK-inhibitors are 
receiving tissue-agnostic (FDA) or histology-independent (EMA) approval based on high efficacy in 
pediatric and adult tumors harboring NTRK fusion regardless of the tumor site or specific fusion 
partner. So far, two first-generation molecules (entrectinib and larotrectinib) received FDA 
therapeutic approval for the treatment of NTRK fusion-positive tumors and the latter recently gained 
EMA approval as well [41]. 

Entrectinib (RXDX-101) was the first drug developed against NTRK fusions, targeting also ALK 
and ROS1 fusion proteins and harboring a good delivery rate through the blood-brain barrier [142]. 
In phase-I and II trials (ALKA-372-001, STARTRK-1, STARTRK-2, and STARTRK-NG), it showed 
significant results in pediatric and adult solid tumors, with efficacy in both primary and secondary 
CNS tumors [69,143]. In a recent series of pediatric high-grade gliomas reported at ASCO 2019, all 4 
patients achieved a radiological response, including a complete response (2019 ASCO Annual 
Meeting, Abstract #: 10009). 

Larotrectinib (LOXO-101) is highly specific for NTRK fusions only, and its efficacy has been 
tested in several trials (registered on ClinicalTrials.gov: NCT02637687, NCT02122913, NCT02637687, 
and NCT02576431) [144,145], with a well-documented efficacy against CNS tumors [145], as recently 
confirmed [146].  

These results are important for two main reasons: (i) the overall rate of clinical and radiological 
responses is high (even close to 80%); (ii) response is usually durable, with patients achieving disease 
control for many months or even years. 

Ongoing clinical trials with entrectinib and larotrectinib are now focused on elucidating their 
activity profile (e.g., to assess possible correlations with the specific fusion partners) and safety data 
(Table 2). Moreover, development and clinical testing of second-generation NTRK inhibitors is 
already ongoing (e.g., repotrectinib-TPX-0005 and LOXO-195-BAY2731954) [147,148], in order to 
compare their efficacy with first-generation drugs and, more importantly, to tackle tumor resistance 
to them. 
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Table 2. Main clinical trials evaluating NTRK-fusion inhibitors. 

Molecule Population and 
Enrollment 

Allocation and 
Intervention Model 

Phase Primary Outcomes Start Date and 
Current Status 

Identifier 

Entrectinib 
(RXDX-101) 

Adult (minimum age: 18 
Years)—84 participants 

Non-Randomized—
Single Group 
Assignment 

I 

Dose limiting toxicity 
Maximum tolerated dose 
Recommended Phase II dose 
Overall response rate 

2014—Active, 
Not Recruiting 

NCT02097810 
RXDX-101-01 
(STARTRK-1) 

Entrectinib 
(RXDX-101) 

Adult (minimum age: 18 
Years)—300 participants 

(estimated) 

Non-Randomized—
Parallel Assignment 

II Objective response rate 2015—
Recruiting 

NCT02568267 
RXDX-101-02 
(STARTRK-2) 

Entrectinib 
(RXDX-101) 

Pediatric and Adult  
(maximum age: 22 

Years)—65 participants 

Non-Randomized—
Single Group 
Assignment 

I 
Maximum tolerated dose 
Recommended Phase II dose 
Objective response rate 

2016—
Recruiting 

NCT02650401 
RXDX-101-03 

(STARTRK-NG) 

Larotrectinib 
(LOXO-101) 

Pediatric and Adult  
(minimum age: 18 Years)—

6452 participants 

Non-Randomized—
Parallel Assignment II 

Proportion of patients with objective 
response 

2015—
Recruiting 

NCT02465060 
EAY131 

NCI-2015-00054 

Larotrectinib 
(LOXO-101) 

Pediatric and Adult 
(minimum age: 12 Years)—

320 participants 

Non-Randomized—
Parallel Assignment 

II Best overall response rate 2015—
Recruiting 

NCT02576431 
LOXO-TRK-15002 

(NAVIGATE) 

Larotrectinib 
(LOXO-101) 

Pediatric and Adult  
(maximum age: 21 Years) 

—174 participants 

Non-Randomized—
Parallel Assignment 

I/II 
Number and severity of adverse 
events (Phase I) 
Overall response rate (Phase II) 

2015—
Recruiting 

NCT02637687 
LOXO-TRK-15003 

(SCOUT) 

Larotrectinib 
(LOXO-101) 

Pediatric and Adult  
(from 12 Months to 21 

Years)—1000 participants 
(estimated) 

Non-Randomized—
Parallel Assignment 

II Objective response rate 2017—
Recruiting 

NCT03155620 
APEC1621SC 

NCI-2017-01251 

Larotrectinib 
(LOXO-101) 

Pediatric and Adult  
(from 12 Months to 21 

Years)—49 participants 

Non-Randomized—
Single Group 
Assignment 

II Objective response rate 
2017—

Recruiting 

NCT03213704 
APEC1621A 

NCI-2017-01264 

Larotrectinib 
(LOXO-101) 

Pediatric and Adult  
(maximum age: 30 

Years)—70 participants 

Non-Randomized—
Single Group 
Assignment 

II Objective response rate 2019—
Recruiting 

NCT03834961 
ADVL1823 

NCI-2019-00015 



Int. J. Mol. Sci. 2020, 21, 753 10 of 23 

 

Repotrectinib 
(TPX-0005) 

Pediatric and Adult (12 
Years and older)—450 

(estimated) 
 

Non-Randomized—
Single Group 
Assignment 

I/II 
Dose limiting toxicities 
Recommended Phase II dose 
Overall response rate 

2019—
Recruiting 

NCT03093116 
TPX-0005-01 
(TRIDENT-1) 

Repotrectinib 
(TPX-0005) 

Pediatric (4 Years to 12 
Years)—12 participants 

Non-Randomized—
Single Group 
Assignment 

I 
Dose limiting toxicities 
Pediatric recommended Phase II 
dose 

2019—
Recruiting 

NCT04094610 
TPX-0005-07 

 

Selitrectinib 
(LOXO-195) 

Pediatric and Adult 
(minimum age: 1 Month) 

Expanded Access 
(Individual Patients) 

NA NA 
2017—Available 

(Expanded 
Access) 

NCT03206931 

Selitrectinib 
(LOXO-195) 

Pediatric and Adult 
(minimum age: 1 Month)—

93 participants 

Non-Randomized—
Sequential 

Assignment 
I/II 

Maximum tolerated dose 
Recommended dose 
Overall response rate 

2017—
Recruiting 

NCT03215511 
LOXO-EXT-17005 

 
NA: Not applicable. 
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4.2. Resistance Mechanisms to First-Generation NTRK Inhibitors 

Acquired resistance during long-term treatment with targeted therapies is a major concern, as 
experienced with EGFR, ALK, and ROS1 inhibitors [149–154]. NTRK inhibitors make no exception to 
this statement, and disease progression has been now observed within the ongoing clinical trials.  

Notably, excluding sporadic cases whose failure was related to non-appropriate patient 
recruitment [155], at least two broad mechanisms of resistance have been detected. The first one is 
related to off-target alterations, which reactivate one of the cellular pathways associated with NTRK 
fusions, usually the MAPK. As a matter of fact, MAPK signaling cascade may get activated by several 
signal transducers not related to NTRK at all. Examples of this resistance mechanism are the 
acquisition of the BRAFV600E or KRASG12D mutations or MET amplification. Of note, in these cases, 
prompt treatment with drugs targeting the new resistance-related alterations enabled new tumor 
responses [156].  

The second tumor escape strategy (the so-called on-target resistance) is related to point 
mutations (i.e., solvent front, gatekeeper and xDFG mutations) of the NTRK fusion proteins, blocking 
drug binding. In this regard, next-generation NTRK inhibitors (e.g., repotrectnib—TPX-0005, LOXO-
195-BAY2731954) have been developed, showing promising efficacy in targeting these mutated 
fusion proteins [87,155,157]. 

These data open several questions that will be answered by the upcoming trials: can resistance 
to first-generation inhibitors be avoided by modulating the treatment over time? Should patients 
directly receive second-generation inhibitors? How should patients be monitored during treatment 
to promptly detect resistance? 

5. Testing for NTRK Fusions. Where Is Waldo?  

Based on the previous considerations, NTRK fusions must now be considered an important 
molecular marker in CNS tumors, which can enable significant improvement of patients’ outcome by 
specific targeting. So, how can we efficiently test for these alterations taken into consideration their 
rarity? 

NTRK oncogenic activation is a process that, starting from the chromosomal rearrangement, 
requires translation of the fusion gene and expression of the chimeric TRK protein. In light of these 
consequential steps, different laboratory assays can be used to find out whether a tumor is harboring 
a NTRK fusion (Table 3). Firstly, to investigate the DNA status, fluorescence in-situ hybridization 
(FISH) and DNA-based next-generation sequencing (NGS) can be used, while reverse transcription-
polymerase chain reaction (RT-PCR), real time-PCR and RNA-based NGS analyses can evaluate the 
transcribed RNA. Finally, immunohistochemical staining (IHC) can directly assess the protein 
product. 

Table 3. Available diagnostic assays for detecting NTRK fusions. 

Assay Type Advantages Limitations 
Turnaround 

Time 

Main Role in 
Potential 

Diagnostic 
Algorithms 

IHC 

• Commonly available 
• Limited cost 
• Minimal tissue required 
• Allows correlation with 
histology 
• Confirms protein expression 
• panTRK antibody available 

• Low sensitivity 
or specificity in 
specific settings 
• No information 
about the fusion 
partner 

1–2 days Screening 

FISH 

• Minimal tissue required 
• High sensitivity and 
specificity although false negative 
results are possible 

• Specific lab 
facilities required and 
expertise for 
interpretation 

3–5 days Confirmatory 
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• No information 
about the fusion 
partner 
• One probe-one 
gene evaluation, thus 
time-consuming and 
higher costs 

RT-PCR 
• Limited cost 
• High sensitivity and 
specificity 

• Requires 
knowledge about the 
fusion partners before 
testing and specific 
primers must be 
prepared 
• Good pre-
analytics required to 
preserve RNA 

5–7 days Confirmatory 

Real time-
PCR 

• Limited cost 
• High sensitivity 
• High specificity 

• Good pre-
analytics required to 
preserve RNA 
• It does not 
provide information 
regarding the specific 
fusion partners and it 
evaluates a pre-
determined set of 
rearrangements, thus 
novel or rare fusions 
will be missed 

5–7 days 
Screening/Confi

rmatory* 

RNA-NGS 

• Evaluation of all potential 
fusions in a sample if Total RNA 
is analyzed 
• Provides characterization of 
fusion partners 
• High sensitivity 
• High specificity 

• Specific lab 
facilities required and 
expertise for 
interpretation 
• High costs 
• Good pre-
analytics required to 
preserve RNA 
• Longer TAT 

1–3 weeks 
Screening/Confi

rmatory* 

DNA-NGS 

• It can provide an overall 
characterization of tumor 
molecular profile (mutations, 
CNV, tumor mutation burden…) 
• Provides characterization of 
fusion partners 
• High sensitivity with some 
caveats 
• High specificity 

• Chance of 
detecting non-
significant 
chromosomal 
rearrangements 
• Potential low 
sensitivity for specific 
fusions 
• Specific lab 
facilities required and 
expertise for 
interpretation 
• High costs 
• Longer TAT 

1–3 weeks Screening/Confi
rmatory* 

DNA/RNA-
NGS 

• It provides the most 
complete characterization of 
tumor molecular profile 
(mutations, CNV, tumor mutation 
burden, fusions…) 
• Provides characterization of 
fusion partners 

• Specific lab 
facilities required and 
expertise for 
interpretation 
• High costs 
• Longer TAT 

1–3 weeks 
Screening/Confi

rmatory* 
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• High sensitivity 
• High specificity 

* depending on each laboratory diagnostic routine workup of a sample (for instance based on tumor 
type) and available resources/facilities 

5.1. Immunohistochemistry 

IHC is a common, well-known and validated assay, with limited costs, and quick turnaround 
time (TAT), allowing histological correlations and also capable of intrinsically confirming the protein 
expression. The main limitation is that available antibodies are for the wild-type epitopes of TRK 
receptors, thus not specific for fusions and obviously they do not provide any information regarding 
the fusion partner. Different TRK antibodies are available, staining either single receptors (so far, 
antibodies for TRK-A and TRK-B are available as well as a cocktail of anti-TRK-A and anti-TRK-B) or 
all TRK proteins (pan-TRK antibody, clone EPR17341), which is also available for in vitro diagnostics 
(Ventana Medical Systems Inc., Tucson, AZ, USA). Of note, different staining patterns can be 
expected based on the involved genes: for example, NTRK3 fusions more often lead to a nuclear 
staining and a higher rate of false negatives (up to 45%) [77–80,106,158,159]. IHC can thus be used as 
an effective screening tool for most tumor types, but unfortunately specificity in CNS neoplasms 
seems to be low due to the physiological expression of NTRK in neural tissues. For instance, Solomon 
et al., reported an unsatisfactory specificity value of 20.8% in gliomas [160], thus screening by IHC 
should be avoided in this setting or used with extreme caution and confirmation by other techniques 
is warranted. A significant rate of false positive IHC results has also been observed in cases with 
smooth muscle or neuroendocrine differentiation and in small round cell tumors. Of note, in false 
positive samples, staining was limited to cytoplasm and/or cell membrane without nuclear staining. 

5.2. Fluorescence In-Situ Hybridization 

FISH-based assays are well-established to investigate chromosomal alterations, such as 
translocations, deletions, or amplifications, thus they could also be applied for evaluating NTRK 
fusions. Considered their promiscuous nature, break apart probes must be used which do not provide 
information on the fusion partner. Although, as it is true for IHC, FISH requires minimal formalin-
fixed paraffin-embedded material and enables a low TAT, a specific expertise for a correct 
interpretation is required. Moreover, since investigation of all three NTRK genes requires three 
independent assays, a FISH-based approach cannot be envisaged for screening [161]. On the other 
hand, FISH has been suggested as a confirmatory assay with high sensitivity and specificity, although 
evaluations of larger series of NTRK-fusion tumors are warranted to assess potential limitations. In 
particular, if the fusion breakpoint is non-canonical, a false negative result can be observed. 

5.3. DNA and RNA Molecular Testing 

The second group of assays that can be used to look for NTRK fusions is based on extraction and 
analysis of nucleic acids. These techniques vary significantly in terms of complexity, costs, TAT 
(which is usually longer than IHC or FISH), required material, information provided, and thus 
optimal indications. DNA or RNA can be successfully tested by different assays, but with some 
important caveats: (i) RNA is more prone to be damaged, especially in FFPE material, thus special 
attention must be payed to pre-analytics; (ii) RNA-based assays usually require simpler analyses as 
intronic regions have been already removed; (iii) DNA-based assays can detect rearrangements 
which are not even transcribed and thus lack any relevance, while, conversely, they can miss fusions 
involving large intronic regions [162]. 

Considering the specific techniques, RT-PCR can be used for orthogonal validation of a specific 
fusion, but fusion partners must be already known, and specific primers must be designed, thus, it 
cannot be used for screening despite the low costs. Real-time PCR-based assays are now 
progressively becoming available, allowing assessment of a wide range of combinations of specific 
rearrangements/partners through an overall inexpensive analysis. The main limitations of this 
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approach are that it usually does not provide information regarding the specific fusion partners and, 
since it evaluates a pre-determined set of rearrangements, rare or novel fusions will not be detected.  

Regarding NGS, DNA assays are becoming routinely used in diagnostics as they can assess a 
wide range of clinically relevant alterations (mutations, copy number variations, tumor mutation 
burden), but reporting time and costs are significant, and specific facilities and expertise are required. 
Chromosomal rearrangements can also be detected, but sensitivity depends on the probe coverage of 
the involved genes. For example, the breakpoint of NTRK3 fusions often occurs within a highly 
repetitive, intronic region, leading to high false negative rates. Indeed, Solomon et al. found a 76.9% 
sensitivity when evaluating NTRK3 fusions using the MSK-IMPACT DNA-based NGS assay [160]. 
Conversely, RNA-NGS, including total RNA analysis, represent the optimal tools to investigate the 
whole fusion landscape of a tumor sample with high sensitivity and specificity. Integrated 
DNA/RNA-NGS assays can thus be used to achieve complete molecular profiling of a tumor and they 
will probably enter the diagnostic routine practice in the coming years considered the demands posed 
by precision medicine, of which targeting of NTRK fusions is an example. 

Since every technique presents specific advantages and disadvantages, it is difficult to designate 
gold standard technique. Indeed, several algorithms have been already suggested, tailored to the 
different settings or tumor types. Most of them combine IHC staining as a screening tool, followed 
by confirmation through other techniques: following these algorithms, tumors are first evaluated by 
a rapid and cost-effective (but less specific) assay, allowing to focus more expensive, but highly 
specific tests on a smaller subset of cases [123,160,161,163–167]. For CNS tumors, considering the 
ever-increasing importance of extensive molecular profiling to achieve a correct 
diagnosis/classification, integration of NTRK fusion assessment in a dedicated NGS workflow seems 
desirable in the medium-term. However, as NGS availability is still limited for routine diagnostics in 
many centers and that IHC-screening efficacy is limited in this setting (because of a low specificity), 
real time-PCR assays could represent a good compromise in terms of cost-efficacy. 

Finally, the optimal strategy for molecular profiling at disease progression after NTRK fusions-
targeting should now be investigated. Present data suggest efficacy of liquid-based assessment, but 
given the wide range of both on-target and off-target resistance mechanisms, comprehensive assays 
seem to be necessary [156]. 

6. Conclusion  

Management of CNS tumors represents a challenging therapeutic issue as curative surgical 
resection is often not feasible, and radiotherapy may have significant negative long-term 
consequences on neurocognitive functions (especially in children). The efficacy of chemotherapy 
drugs is limited, also due to the fact that blood-brain barrier considerably limits the chance of drugs 
to reach the tumor. Although the recognition of NTRK as a potential oncogene is now dated, the 
proper understanding of the specific mechanisms involved and their appreciation as a potential 
therapeutic target is far more recent. Despite the rarity of NTRK fusions, the potential clinical benefit 
for the small group of patients harboring these alterations appears to be extremely significant, thus 
fully awareness by physicians caring for brain tumors is now mandatory. 
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