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Abstract. Modal transition systems and featured transition systems
are widely recognised as fundamental behavioural models for software
product lines. Modal transition systems with variability constraints are
equally expressive as featured transition systems. This is proved by pro-
viding transformation of the latter into the former, and a transformation
of the former into the latter which are both sound and complete. First,
our results contribute to the expressiveness hierarchy of such basic mod-
els studied in many papers. Second, it provides an automatic algorithm
from FTS to MTS that preserves the original (compact) branching struc-
ture, thus paving the way for using the model checking of FTSs with the
variability model checker VMC.

Keywords: Behavioural model · Formal specification · Featured tran-
sition system · Modal transition system.

1 Background

Software systems are more and more often developed and managed as software
product lines (SPLs) to tackle the variability inherent to a collection of individual
customization [27]. The variability among the instances of highly-configurable,
variant-rich systems is expressed in terms of features, which conceptualise pieces
of functionality or aspects of a system that are relevant to the stakeholders [1].
Formal models for the specification and verification of SPL behaviour have been
the subject of extensive research throughout the last decade [21, 23, 19, 22, 24,
14, 2, 18, 13, 28, 25, 26, 4, 7].

Behavioral models for SPL are based on the superimposition of multiple
Labeled Transition Systems (LTS), each of which represents a different variant
(a product model), in a single LTS enriched with feature-based variability (a
family model). A family’s products (ordinary LTS) can be derived from the
enriched LTS by resolving this variability. This boils down to deciding which
‘variable’ behavior to include in a specific product and which not, based on the
combination of features defining the product.
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In [11] three of the most fundamental behavioural models for SPLs were
compared with respect to their expressive power: MTSs, FTSs and so-called PL-
LTSs. @ALL: introdurre FTSs and MTSs They are the two models studied in [9].
While PL-LTSs form the semantic model of the product line process algebra PL-
CCS introduced in [22]. PL-CCS extends Milner’s calculus of communicating
systems with a variants operator XOR enabling the modelling of alternative
behaviour. The expressiveness results in [11] state that MTSs are less expressive
than PL-LTSs, which in turn are less expressive than FTSs.

In a very recent corrigendum to [11], contained in [29], the authors of [11]
reported that their definition of PL-LTSs is more restrictive than the one origi-
nally introduced in [22], upon which they have proved that adopting the original
and more liberal definition, PL-LTSs are equally expressive as FTSs.

It is important to note that the results in [11, 29] are based on LTS-based
SPL models with a possibly infinite number of states. Moreover, in [11] products
derived from an FTS do not need to preserve the FTS’ branching structure (viz.
a product may contain more states than the FTS it is derived from) and they
may be infinite in number.

2 Contributions of [9]

In [3], we informally presented an automatic technique to transform an FTS into
an MTSυ, but we merely sketched a proof of the soundness of this model trans-
formation. Subsequently, in [9], we contributed to the expressiveness hierarchy
of fundamental behavioral models for SPL studied in [11], by proving finite-state
MTSυ to be equally expressive as finite-state FTS. Formally:

– We prove that MTSυ are at least as expressive as FTS by defining an algo-
rithm that transforms any FTS into an MTSυ and by proving its soundness
and completeness (i.e. an MTSυ results with the same set of variant LTS as
the original FTS).

– We prove that MTSυ are even equally expressive as FTS by defining an algo-
rithm that transforms any MTSυ into an FTS and by proving its soundness
and completeness (i.e. an FTS results with the same set of variant LTS as
the original MTSυ).

Our paper complements the expressiveness hierarchy given in [11] with an ex-
pressiveness result for finite-state behavioural SPL models.

Since the transformation algorithm from FTS to MTSυ preserves the original
(compact) branching structure, we thus pave the way for using an (optimized)
algorithm to achieve family-based SPL model checking of FTS with the Vari-
ability Model Checker VMC [10, 5]. VMC is a tool for modeling and analyzing
behavioral SPL models, which currently accepts only MTSυ defined as MTS
(specified in a high-level modal process algebra) together with a set of variabil-
ity constraints (specified as propositional logic formulae).
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3 Conclusion and future works

In [9], we proved that finite-state MTSυs are equally expressive as finite-state
FTSs. This result complements the expressiveness results that were reported
in [11, 29] for behavioural SPL formalisms with possibly infinite states, viz. MTSs
are less expressive than FTSs (with a generalised product-derivation relation),
which are equally expressive as PL-LTSs.

In the future, we plan to implement such an optimized model transformation
as a front-end of VMC, which would allow VMC to offer SPL model check-
ing of temporal logic properties over either FTS or MTSυ. VMC is the most
recent member of the KandISTI product line of model checkers developed at
ISTI–CNR over the past decades, including UMC [8] and CMC [20]. KandISTI’s
model checkers offer explicit-state on-the-fly model checking of functional proper-
ties expressed in specific action- and state-based branching-time temporal logics
derived from ACTL [16], the action-based version of CTL [12]. Their common
model-checking engine has been highly optimised, due to which millions of states
can now be verified in minutes.

Currently, efficient SPL model checking over FTSs can be done by using
dedicated family-based model checkers like ProVeLines [15] or, alternatively, by
using highly optimized off-the-shelf model checkers like SPIN or mCRL2, which
have recently been made amenable to family-based SPL model checking over
FTS [17, 6].
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27. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer (2005)

28. Tribastone, M.: Behavioral Relations in a Process Algebra for Variants. In: Pro-
ceedings of the 18th International Software Product Line Conference (SPLC’14).
pp. 82–91. ACM (2014)

29. Varshosaz, M.: Test Models and Algorithms for Model-Based Testing of Software
Product Lines, Licentiate thesis. Halmstad University Dissertations, vol. 30. Halm-
stad University Press (2017)


