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Abstract

A class of Fredholm integral equations of the second kind, with respect to the exponential
weight function w(x) = exp(−(x−α + xβ)), α > 0, β > 1, on (0,+∞), is considered. The kernel
k(x, y) and the function g(x) in such kind of equations,

f(x)− µ
∫ +∞

0

k(x, y)f(y)w(y)dy = g(x), x ∈ (0,+∞),

can grow exponentially with respect to their arguments, when they approach to 0+ and/or +∞.
We propose a simple and suitable Nyström-type method for solving these equations. The

study of the stability and the convergence of this numerical method in based on our results
on weighted polynomial approximation and “truncated” Gaussian rules, recently published in
Acta Math. Hungar., 142 (2014), 167–198, and IMA J. Numer. Anal. 34 (2014), 1654–1685,
respectively.

Moreover, we prove a priori error estimates and give some numerical examples. A comparison
with other Nyström methods is also included.
Keywords: Fredholm integral equation; Nyström method; weighted polynomial approxima-
tion; Gaussian quadrature formula; orthogonal polynomials; truncation; error estimate.
MCS classification (2000): 65R10, 65D30, 65D32, 41A55.
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1 Introduction

The aim of this paper is to approximate the solution of integral equations of
the form

f(x)− µ
∫ +∞

0

k(x, y)f(y)w(y)dy = g(x) , x ∈ (0,+∞), (1.1)

with the exponential weight function

w(x) = exp
[
−
( 1

xα
+ xβ

)]
, α > 0, β > 1, (1.2)

and the parameter µ ∈ R. The kernel (x, y) 7→ k(x, y) and the function
x 7→ g(x) can grow exponentially with respect to their arguments, when they
approach to 0+ and/or +∞.

The weight functions similar to (1.2) have been considered in statistics.
Following Stoyanov [20, §7.1] we mention here a simple example with the
inverse Gaussian distribution (IG) with “easy” parameters, say (1, 1), i.e., a
random variable θ ∼ IG, with density function

w(x) =


e√
2π

x−3/2 exp
[
−1

2

(
x+

1

x

)]
, if x > 0,

0, if x ≤ 0.

In terms of the modified Bessel function of the second kind, its moments can
be expressed in the form (cf. [17])∫ +∞

0

xkw(x) dx = e

√
2

π
Kk−1/2(1), k ∈ N0.

Also, this kind of weights on (0,+∞) were appeared in a consideration on
expansions of confluent hypergeometric functions in terms of Bessel functions
by Temme [21], as well as in the so-called Laurent-Hermite-Gauss quadrature
rules investigated by Gustafson and Hagler [5] and Hagler [6].

Integral equations of the form (1.1), with proper assumptions on the ker-
nel k and the function g, can occur in mathematical finance in computing
distributions of geometrical brownian motion (see [3, 7, 8]).
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However, as far as we know, the numerical treatment of this kind of integral
equations does not appear in the literature. In this paper we are going to
study integral equations of the form (1.1) in some suitable function space
with weighted uniform metric and to approximate the solution by means of a
Nyström interpolant. We will prove that this method is stable and convergent
in the metric of the considered space. In order to prove the convergence of the
method we will use some recent results on polynomial approximation with
the weight w and related Gaussian quadrature rule, obtained by the authors
in [15, 13, 14, 16].

Therefore, the results in this paper are new.
For the sake of completeness, we observe that in the weight w, given by

(1.2), the C∞−function exp [−x−α] appears. Therefore one could think to
introduce a new kernel function k(x, y) exp [−y−α] and, provided the function
g fulfills some proper assumptions, to approximate the solution of equation
(1.1) by using a Nyström interpolant based on Laguerre zeros, as in [10] (see
also [4, 11, 9]). In Section 4 we will show that this procedure is in general
more expensive and less precise. This fact is also one of the motivations of
this paper.

The paper is structured as follows. In Section 2 we recall some basic facts
and give some preliminary results. In Section 3 we introduce our numerical
method and prove the main results. In Section 4 we will compare our method
with the one based on Laguerre zeros. Finally, in Section 5 we show some
numerical examples.

2 Basic facts and preliminary results

In the sequel c, C will stand for positive constants which can assume different
values in each formula and we shall write C 6= C(a, b, . . .) when C is indepen-
dent of a, b, . . .. Furthermore A ∼ B will mean that if A and B are positive
quantities depending on some parameters, then there exists a positive con-
stant C independent of these parameters such that (A/B)±1 ≤ C.

Moreover, the symbols ‖·‖I and ‖·‖ will denote the uniform norm in some
interval I and in (0,+∞), respectively.
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Finally, we will denote by Pm the set of all algebraic polynomials of degree
at most m. As usual N, Z, R, will stand for the sets of all natural, integer,
real numbers, while Z+ and R+ denote the sets of positive integer and positive
real numbers, respectively.

2.1 Function spaces with weighted uniform metric

Letting

u(x) = (1 + x)δ
√
w(x) , δ >

1

2
, (2.1)

where
w(x) = e−(x−α+xβ) , α > 0 , β > 1 ,

x ∈ (0,+∞), we introduce the function space

Cu :=

{
f ∈ C0(0,+∞) : lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
, (2.2)

with the norm
‖f‖Cu := ‖fu‖ = sup

x∈(0,+∞)

|f(x)u(x)| .

We emphasize that the space Cu contains functions, defined on the real
semiaxis (0,+∞), which can grow exponentially both for x → 0+ and for
x→ +∞. Moreover, Cu is a Banach space.

For 1 ≤ r ∈ Z, we define the Sobolev-type spaces

Wr = W∞
r (u) =

{
f ∈ Cu : f (r−1) ∈ AC(0,+∞), ‖f (r)ϕru‖ <∞

}
,

with the norm
‖f‖Wr

= ‖fu‖+ ‖f (r)ϕru‖ ,
ϕ(x) =

√
x.

In order to define further function spaces, we introduce the following mod-
uli of smoothness. For each f ∈ Cu r ≥ 1 and 0 < t < t0, we set

Ωr
ϕ(f, t)u = sup

0<h≤t

∥∥∆r
hϕ (f)u

∥∥
Ih(c)

,
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where
Ih(c) =

[
h1/(α+1/2),

c

h1/(β−1/2)

]
,

c > 1 is a fixed constant, and

∆r
hϕf(x) =

r∑
i=0

(−1)i
(
r

i

)
f (x+ (r − i)hϕ(x)) , ϕ(x) =

√
x .

We remark that the behavior of this modulus of smoothness is independent
on the constant c (see [14]).

Then we define the complete rth modulus of smoothness by

ωrϕ(f, t)u = Ωr
ϕ(f, t)u + inf

q∈Pr−1

‖(f − q)u‖(0,t2/(2α+1)]

+ inf
q∈Pr−1

‖(f − q)u‖[c t−2/(2β−1),+∞),

with c > 1 a fixed constant.
For any f ∈ Wr, r ≥ 1 and t < t0, we have (see [14])

Ωr
ϕ(f, t)u ≤ C inf

0<h≤t
hr‖f (r)ϕru‖Ih(c) , (2.3)

where C is independent of f and t.
By means of the main part of the modulus of smoothness, we can define

the Zygmund-type spaces

Zs := Z∞s,r(u) = {f ∈ Cu : Ms(f) <∞} ,

where

Ms(f) := sup
t>0

Ωr
ϕ(f, t)u

ts
, r > s , s ∈ R+ ,

with the norm
‖f‖Zs = ‖f‖Lpu +Ms(f) .

We remark that, in the definition of Zs, the main part of the rth modulus of
smoothness Ωr

ϕ(f, t)u can be replaced by the complete modulus ωrϕ(f, t)u, as
shown in [14].
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2.2 Weighted polynomial approximation

Let us denote by
Em(f)u = inf

P∈Pm
‖(f − P )u‖p

the error of best weighted polynomial approximation of a function f ∈ Cu.
The following Jackson, weak Jackson and Stechkin inequalities have been

proved in [14].

Theorem 1. For any f ∈ Cu and m > r ≥ 1, we have

Em(f)u ≤ C ωrϕ
(
f,

√
am
m

)
u

,

where am ∼ m1/β. Moreover, assuming Ωr
ϕ(f, t)u t

−1 ∈ L1[0, 1],

Em(f)u ≤ C
∫ √am/m

0

Ωr
ϕ(f, t)u

t
dt , r < m .

Finally, for any f ∈ Cu we get

ωrϕ

(
f,

√
am
m

)
u

≤ C
(√

am
m

)r m∑
i=0

(
i
√
ai

)r
Ei(f)u
i+ 1

.

In any case C is independent of m and f .

In particular, by Theorem 1 and (2.3), for any f ∈ Wr we get

Em(f)u ≤ C
(√

am
m

)r
‖f (r)ϕru‖ (2.4)

and, for any f ∈ Zs, we have

Em(f)u ≤ C
(√

am
m

)s
Ms(f) . (2.5)

Moreover, the following equivalences (see [14])

f ∈ Cu ⇔ lim
t→0

ωϕ(f, t)u = 0 ⇔ lim
m→∞

Em(f)u = 0 (2.6)

will be useful in the sequel.
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2.3 Gaussian rules

Let {pm(w)}m be the sequence of orthonormal polynomials related to w(x) =
e−x

−α−xβ . The zeros of pm(w) are located as follows

εm < x1 < x2 < · · · < xm < am ,

where the Mhaskar–Rahmanov-Saff numbers am and εm fulfill am ∼ m1/β and

εm ∼
(√

am/m
)2/(2α+1)

.
For any continuous function f the Gaussian rule related to the weight w

is given by ∫ +∞

0

f(x)w(x) dx =
m∑
k=1

λk(w)f(xk) + em (f) , (2.7)

where xk are the zeros of pm(w) and λk(w) are the Christoffel numbers.
In order to introduce our numerical method for solving equation (1.1), we

are going to consider a “truncated” gaussian rule. Fixed θ ∈ (0, 1), we define
two indexes j1 = j1(m) and j2 = j2(m) as

εm < εθm ≤ xj1 < · · · < xj2 ≤ aθm < am .

To be more precise, with θ ∈ (0, 1), j1 and j2 are such that

xj1 = max
1≤k≤m

{xk : xk ≤ εθm} , xj2 = min
1≤k≤m

{xk : xk ≥ aθm} , (2.8)

and, if {xk : xk ≤ εθm} or {xk : xk ≥ aθm} is empty, we set xj1 = x1 or
xj2 = xm, respectively.

Then we consider the following “truncated” Gaussian rule∫ +∞

0

f(x)w(x) dx =

j2∑
i=j1

λi(w)f(xi) + e∗m(f) (2.9)

and for any f ∈ Cu2 we have (see [15])

|e∗m(f)| ≤ C
{
EM(f)u2 + e−cm

ν ∥∥fu2
∥∥} , (2.10)
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where

M =

⌊(
θ

θ + 1

)
m

⌋
, ν =

(
1− 1

2β

)
2α

2α + 1
, C 6= C(m, f), and c 6= c(m, f).

In particular, recalling the results in Section 2.2, for any f ∈ Wr(u
2), we

get

|e∗m(f)| ≤ C
(√

am
m

)r
‖f‖Wr(u2)

and, for any f ∈ Zs(u2), we have

|e∗m(f)| ≤ C
(√

am
m

)s
‖f‖Zs(u2) .

2.4 Compactness of linear operators in Cu

Let A : Cu → Cu be a linear operator. Then, following the Hausdorff defini-
tion, A is compact in Cu if and only if the limit condition

lim
m→∞

sup
‖f‖Cu=1

Em(Af)u = 0 (2.11)

holds. Taking into account (2.6), condition (2.11) can be rewritten in terms
of moduli of smoothness (see [22, pp. 44, 93–94]) as follows

lim
t→0

sup
‖f‖Cu=1

ωϕ(Af, t)u = 0 .

Coming back to equation (1.1), let us consider the operator K defined by

(Kf)(x) = µ

∫ +∞

0

k(x, y)f(y)w(y)dy , x ∈ (0,+∞) . (2.12)

Then, letting k(x, y) = ky(x) = kx(y), since

ωϕ(Kf, t)u ≤ |µ|‖fu‖ sup
y∈(0,+∞)

ωϕ(ky, t)uu(y)

∫ +∞

0

dy

(1 + y)2δ
,

if
u(y)ky ∈ Cu uniformly w.r.t. y, (2.13)
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then the operator K in Cu.
In an analogous way, the sequence of operators {Am}m in Cu is collectively

compact, i.e., the set

S = {Amf ∈ Cu : m ≥ 1 and ‖fu‖ ≤ 1}

is relatively compact in Cu, if and only if the limit condition

lim
N→∞

sup
‖f‖Cu=1

sup
m∈N

EN(Amf)u = 0

holds, namely if and only if

lim
t→0

sup
‖f‖Cu=1

sup
m∈N

ωϕ(Amf, t)u = 0 .

In particular, for the sequence of operators

(Kmf) (x) = µ

j2∑
i=j1

λi(w)k(x, xi)f(xi) , (2.14)

obtained by applying the “truncated” Gaussian rule (2.9) to (Kf)(x) given
by (2.12), it is not difficult to show that the collective compactness follows
from the assumption

u(x)kx ∈ Cu uniformly w.r.t. x . (2.15)

3 The numerical method

Let us now introduce our numerical method for solving equation (1.1), i.e.,

f(x)− µ
∫ +∞

0

k(x, y)f(y)w(y)dy = g(x) , x ∈ (0,+∞),

where µ ∈ R,
w(y) = e−y

−α−yβ , α > 0 , β > 1 ,

the given functions k and g can grow exponentially (w.r.t. x, y) when x→ 0+

and/or x → +∞. Denoting the identity operator by I and the integral
operator by K, we can rewrite this equation as

(I −K) f = g .
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With u given by (2.1), we are going to study the equation (1.1) in the
space Cu defined in Section 2.1. Under the assumptions (2.13), the Fredholm
alternative holds true. So, if ker(I −K) = {0}, equation (1.1) admits unique
solution f ∗ ∈ Cu for any fixed g ∈ Cu.

In order to approximate the solution of (1.1), we are going to use a Nyström
method based on the “truncated” Gaussian rule defined in Section 2.3. To
this end, we introduce the sequence of operators {Km}m,

(Kmf) (x) = µ

j2∑
i=j1

λi(w)k(x, xi)f(xi) (3.1)

which is obtained by applying the “truncated” Gaussian rule (2.9) to (Kf)(x)
given by (2.12). Then we are going to solve in Cu the equations

fm(x)− (Kmfm)(x) = g(x) , m = 1, 2, . . . . (3.2)

Multiplying both sides of (3.2) by u(x), collocating at the quadrature knots
and letting ai = (fmu)(xi), bi = (gu)(xi), i = j1, . . . , j2, for m = 1, 2, . . ., we
obtain the linear systems of equations

ah − µ
j2∑
i=j1

λi(w)k(xh, xi)
u(xh)

u(xi)
ai = bh, h = j1, . . . , j2,

in the unknowns ah, i.e.,

j2∑
i=j1

[
δih − µλi(w)k(xh, xi)

u(xh)

u(xi)

]
ai = bh , h = j1, . . . , j2 . (3.3)

If (3.3) is unisolvent and (a∗j1, . . . , a
∗
j2

)T is its solution, then, by (3.2) and
(3.1), we can define the Nyström interpolant

f ∗m(x) = µ

j2∑
i=j1

λi(w)

u(xi)
k(x, xi)a

∗
i + g(x) (3.4)

which we will be an approximation of the solution f ∗ of equation (1.1) in
Cu-metric.

10



Notice that, due to the choice of the “truncated” Gaussian rule in place
of the ordinary Gaussian rule (2.7), the matrix of coefficients of the system

of equations (3.3), in notation V
(j1,j2)
m , has dimension j2− j1 + 1 instead of m

and this produces a reduction of the computational cost.
Let us prove the stability and convergence of our method.

Theorem 2. Let u be the weight in (2.1). Assume

(i) u(y)ky ∈ Cu uniformly w.r.t. y;
(ii) u(x)kx ∈ Cu uniformly w.r.t. x;
(iii) g ∈ Cu.

If ker(I − K) = {0}, the system of equations (3.3) is unisolvent and
well-conditioned.

Moreover, f ∗m converges to f ∗ in Cu and

‖(f ∗m − f ∗)u‖ ≤ C sup
x∈(0,+∞)

u(x)
{
EM (f ∗kx)u2 + e−cm

ν ∥∥f ∗kxu2
∥∥} (3.5)

where

M =

⌊(
θ

θ + 1

)
m

⌋
, ν =

(
1− 1

2β

)
2α

2α + 1
, C 6= C(m, f ∗), c 6= c(m, f ∗).

Proof. As already mentioned in Section 2.4, from the assumption (i), i.e.,
(2.13), the compactness of the operator K : Cu → Cu follows. So the Fred-
holm alternative holds for equation (1.1) and, if ker(I −K) = {0}, equation
(1.1) admits unique solution f ∗ ∈ Cu.

Now, using (2.10), we have

‖(Kf −Kmf)u‖ ≤ C sup
x∈(0,+∞)

{
EM(fkx)u2 + e−cm

ν ∥∥fkxu2
∥∥} , (3.6)

i.e., the sequence {Km}m strongly converges to the operator K.
Moreover, since {Km}m is collectively compact by (ii), i.e., (2.15), it follows

that
lim
m
‖(K −Km)Km‖Cu→Cu = 0
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and, using [1, Theorem 4.1.1] or [19, Theorem 2.1], for m ≥ m0, the operators
(I −Km)−1 exist and

‖(I −Km)−1‖Cu→Cu ≤
1 + ‖(I −K)−1‖Cu→Cu‖Km‖Cu→Cu

1− ‖(I −K)−1‖Cu→Cu‖(K −Km)Km‖Cu→Cu
≤ C < +∞.

Then, proceeding as in [1, pp. 112–113], we deduce that the matrix V
(j1,j2)
m

of the coefficients of system (3.3) is well conditioned, i.e.,

cond
(
V (j1,j2)
m

)
≤ cond(I −Km) ≤ C <∞ , C 6= C(m) .

Finally, the error estimate (3.5) immediately follows by (3.6).
From (3.5) we deduce that the order of convergence of our method depends

on the smoothness of the kernel k and the solution f ∗ of equation (1.1). Now,
we want to show a more explicit error estimate, depending on the smoothness
of the known functions k and g. In particular, from Theorem 2 we deduce
the following corollary.

Corollary 3. Let the assumptions of Theorem 2 be replaced by

(a) u(y)ky ∈ Wr(u) uniformly w.r.t. y;
(b) u(x)kx ∈ Wr(u) uniformly w.r.t. x;
(c) g ∈ Wr(u).

Then, for m sufficiently large, we have

‖(f ∗m − f ∗)u‖ = O

((√
am
m

)r)
,

where the constants in “O” are independent of m and f ∗.

Proof. We note that the assumptions on the given functions imply f ∗ ∈
Wr(u) and then f ∗kx ∈ Wr(u

2). Hence, by (3.5) and (2.4), we get (see for
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instance [12, Theorem 3.2])

‖(f ∗m − f ∗)u‖ ≤ C sup
x∈(0,+∞)

u(x)
{
EM (f ∗kx)u2 + e−cm

ν ∥∥f ∗kxu2
∥∥}

≤ C sup
x∈(0,+∞)

u(x)
{
‖f ∗u‖En (kx)u + ‖kxu‖En (f ∗)u

+e−cm
ν ‖f ∗u‖ ‖kxu‖

}
,

with n = bM/2c and the corollary follows from (2.4).
We note that, by (2.5), an analogous corollary holds if we replace the

Sobolev spaces Wr by the Zygmund spaces Zs.

4 Comparison with the Nyström method based on Laguerre zeros

The following observation is crucial. The integral∫ +∞

0

f(x)w(x) dx =

∫ ∞
0

f(x)e−x
−α−xβ dx (4.1)

can be evaluated by means of the Gaussian rule related to the weight w(x) =
e−x

−α−xβ , i.e.,

Gm(w, f) =
m∑
k=1

λk(w)f(xk) ,

as described in Section 2.3. On the other hand, this integral can be rewritten
as ∫ ∞

0

[
f(x)e−x

−α
]

e−x
β

dx =

∫ ∞
0

[
f(x)e−x

−α
]
σ(x) dx

and evaluated by using the Gaussian rule related to the Laguerre-type weight
σ(x) = e−x

β

, i.e.,

Gm(σ, g) =
m∑
k=1

λk(σ)g(tk) =
m∑
k=1

λk(σ)f(tk)e
−t−αk ,

where g(x) = f(x)e−x
−α

, tk = tm,k(σ) are the zeros of the mth Laguerre-type
polynomial pm(σ), satisfying

C
m2−1/β

≤ t1 < · · · < tm < Cm1/β ,
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and λk(σ) are the corresponding Christoffel numbers (see, e.g., [11, 9]).
Now, considering the coefficients of the two Gaussian rules, we observe

that for the first term of Gm(w, f) we have

λ1(w) ∼ w(x1)∆x1 ∼ e−x
−α
1 ∆x1 ∼ e−m

α(2β−1)
β(2α+1)

,

whereas the first term of Ḡm(σ, g) fulfills

λ1(σ)e−t
−α
1 ∼ σ(t1)∆t1e

−t−α1 ∼ ∆t1e
−t−α1 ∼ e−m

α(2β−1)
β

.

This last quantity is much smaller than λ1(w) for large values of m and
also smaller than the ordinary tolerance usually adopted in computation.
Therefore a certain number η = η(m) of summands of Gm(σ, g) do not give
any contribution. So, if Gm(w, f) computes the integral with a certain error,
one could obtain the same precision using the Laguerre-type rule for larger
values of m and with more evaluations of the function f . The following
example confirms this fact.

Example 1. We apply the Gaussian quadrature rules w.r.t. the expo-
nential weight w(x) = e−1/x3−x3

and the Laguerre weight σ(x) = e−x
3

for
calculating ∫ +∞

0

arctan

(
1 + x

4

)
e−1/x3−x3

dx ,

with f(x) = arctan
(

1+x
4

)
and g(x) = arctan

(
1+x

4

)
e−1/x3

. This integral can be
evaluated with a high precision using the Mathematica function NIntegrate.

In Table 1 we compare the relative errors obtained applying the two rules
for increasing values m, working in double arithmetic precision. We note that
underflow phenomena occurred in the case of Laguerre weights, while in the
case of w the symbol “—” means that the required precision has already been
obtained and the relative error is of the order of the machine epsilon.

We also want to observe that a similar argument applies a fortiori if we
compare the two truncated Gaussian rule related to w and σ. In fact, in
Gm(w, f) we can drop some terms related to the zeros close to ε(w) and
some other terms related to the zeros close to am(w), but in Gm(σ, g) we can

14



Table 1: Relative errors

m relative error of Gm(σ, g) relative error of Gm(w, f)

2 3.077× 10−1 5.891× 10−6

7 1.222× 10−2 1.256× 10−16

30 9.005× 10−7 —
60 1.584× 10−11 —

110 6.984× 10−16 —

drop only some terms related to the largest zeros without loss of accuracy
(see [11]).

Let us now compare the convergence of the two Gaussian rules. To this
aim, letting

v(x) = (1 + x)δw(x) = (1 + x)δe−x
−α−xβ , δ > 1 ,

x ∈ (0,+∞), we introduce the function space

Cv :=

{
f ∈ C0(0,+∞) : lim

x→0+
f(x)v(x) = 0 = lim

x→+∞
f(x)v(x)

}
,

with the norm
‖f‖Cv := ‖fv‖ = sup

x∈(0,+∞)

|f(x)v(x)| .

For more regular functions, we define the Sobolev-type spaces

W∞
r (v) =

{
f ∈ Cv : f (r−1) ∈ AC(0,+∞), ‖f (r)ϕrv‖ <∞

}
,

with the norm ‖f‖W∞r (v) = ‖fv‖+ ‖f (r)ϕrv‖, where ϕ(x) =
√
x.

Then it is known that for any f ∈ Cv, the Gaussian rule Gm(w, f) con-
verges to the integral (4.1). Moreover, if f ∈ W∞

r (v), r ≥ 1, we have (see
[15, 14]) ∣∣∣∣Gm(w, f)−

∫ ∞
0

f(x)w(x) dx

∣∣∣∣ ≤ C(
m1−1/(2β)

)r‖f‖W∞r (v).

The Laguerre–Gaussian rule deals with functions belonging to the space

Cv̄ :=

{
g ∈ C0[0,+∞) : lim

x→+∞
g(x)v̄(x) = 0

}
,

15



with v̄(x) = (1 + x)δe−x
β

, δ > 1,

‖g‖Cv̄ := ‖fv̄‖ = sup
x∈(0,+∞)

|f(x)v̄(x)| ,

and/or to the Sobolev-type space

W∞
r (v̄) =

{
g ∈ Cv̄ : g(r−1) ∈ AC(0,+∞), ‖g(r)ϕrv̄‖ <∞

}
,

with
‖g‖W∞r (v̄) = ‖gv‖+ ‖g(r)ϕrv̄‖ ,

ϕ(x) =
√
x and r ≥ 1. In analogy with the first Gaussian rule one has (see

[11, 9])

(∀g ∈ Cv̄) Gm(σ, g)→
∫ +∞

0

g(x)e−x
β

dx , m→∞ , (4.2)

and ∣∣∣∣Gm(σ, g)−
∫ +∞

0

g(x)e−x
β

dx

∣∣∣∣ ≤ C(
m1−1/(2β)

)r‖g‖W∞r (v) . (4.3)

Nevertheless, if g(x) = f(x)e−x
−α

with f ∈ Cv (i.e., in the case under
consideration), the convergence relation (4.2) is true while the error estimate
(4.3) is false in general. In fact, f ∈ Cv implies g ∈ Cv̄, but the norm
‖g‖W∞r (v̄) can be unbounded for f ∈ W∞

r (v) (so, although inequality (4.3)
holds). Therefore, the order of convergence of the Laguerre-Gaussian rule
Gm(σ, g) is lower than the one of the rule Gm(w, f).

From the previous observations we deduce that the Nyström interpolant
obtained by approximating the integral∫ +∞

0

[
k(x, y)f(y)e−y

−α
]

e−y
β

dy

by means of the Laguerre–Gaussian rule Gm(σ) will have a much larger num-
ber of summands with respect to the method proposed in this paper. This
fact implies that the corresponding linear system will have a much larger
order than the one in (3.3). We also want to emphasize that considering a

16



“truncated” version of Gm(σ) would not solve this problem, since it is due
to the exponential behaviour of the integrand close to 0 and the “truncated”
rule wold drop only the terms related to the largest zeros.

In conclusion, solving integral equations of the form (1.1) by using a
Nyström method based on the Laguerre–Gaussian rule would require a larger
computational cost (with possible underflow/overflow phenomena) and a
lower order of convergence, as shown in the next section.

5 Numerical examples

In the following examples the exact solutions are unknown and the cor-
responding tables show only the behaviour of the Nyström interpolants.
As in Section 4, all computations were performed in Mathematica,
Ver. 8.0. In particular, for constructing the corresponding Gaussian rules
(2.7) we use a procedure given in [15] and the Mathematica package
OrthogonalPolynomials (cf. [2] and [18]), which is freely downloadable
from the Web Site:

http://www.mi.sanu.ac.rs/~gvm/.
For the sake of brevity we omit the description of the numerical procedures

for the computation of the zeros of pm(w), the Christoffel numbers and the
Mhaskar–Rahmanov-Saff numbers εm and am. The interested reader can find
all the details about these procedures in [15, pp. 1676–1680].

Example 2. We consider the Fredholm integral equation of the second
kind

f(x)− 1

10

∫ +∞

0

cosh

(
y + 1

x+ 1

)
f(y)e−y

−3−y3

dy = sinh(x+ 3), x ∈ (0,+∞),

with k(x, y) = cosh((y+1)/(x+1)), w(x) = e−x
−3−x3

, and g(x) = sinh(x+3).
By (2.1) we choose the weight u(x) = (1 + x) e−(x−3+x3)/2 and consider the
equation in the space Cu given by (2.2). Since ‖K‖Cu→Cu < 1 this equation
admits a unique solution in Cu.

On the other hand, if we consider the weight the Laguerre-type weight
ũ(x) = (1 + x) e−x

3/2 and the associated function space Cũ, this equation

17
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admits a unique solution also in Cũ. In Table 2 we compare the two asso-
ciated Nyström methods, showing the correct decimal digits obtained in the
Nyström interpolants at given points for the same values of m.

Using one of the two the Gaussian rules we obtain the corresponding
Nyström interpolants f ∗m(x), given by (3.4), and f̃m. In Table 2 we give
values of these interpolants at the points x = 0.5, x = 1 and x = 5. The
same digits in f ∗m(x) and f ∗25(x) for m = 5(5)20 are bolded.

Table 2: Values of Nyström interpolants at x = 0.5, x = 1 and x = 5, for m = 5(5)20

m f∗m(0.5) – exponential weight u f̃m(0.5) – Laguerre weight ũ

5 17.067206691704378 17.060042557600486
10 17.067206693043214 17.06792305565905
15 17.067206693043214 17.06715565208371
20 17.067206693043214 17.067200301955914

m f∗m(1) – exponential weight u f̃m(1) – Laguerre weight ũ

5 27.676749186738305735 27.6713848546487190
10 27.676749187388134070 27.6773392594205800
15 27.676749187388135357 27.6767086020279940
20 27.676749187388135357 27.6767435168185499

m f∗m(5) – exponential weight u f̃m(5) – Laguerre weight ũ

5 1490.731036304753920402 1490.7275135882654744
10 1490.731036305188948542 1490.731492523212215
15 1490.731036305188949804 1490.73100663711270
20 1490.731036305188949804 1490.7310314344204

Since the kernel and the solution in this case are very smooth, we see a
very fast convegence of Nyström interpolants f ∗m(x), so that f ∗25(x) can be
taken as a very well approximation of the exact solution f ∗(x). On the other
hand, the Nyström interpolant based on Laguerre-type nodes converges more
slowly.

In both cases the matrices of the related linear systems are well-
conditioned. For instance the condition numbers of the matrices in (3.3)

Vm ≡ V
(j1,j2)
m , with j1 = 1 and j2 = m, for m = 5, 10, 15 , 20 (in the infinity-

norm) are 1.0218, 1.0260, 1.0271, 1.0284, respectively.
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Example 3. We consider the Fredholm integral equation of the second
kind

f(x)−
∫ +∞

0

cos(x+ y)f(y)e−y
−3−y3

dy = e1/x2

, x ∈ (0,+∞),

with k(x, y) = cos(x + y), w(x) = e−x
−3−x3

, and g(x) = e1/x2

. By (2.1) we
choose the weight u(x) = (1 +x) e−(x−3+x3)/2 and consider the equation in the
space Cu given by (2.2). Since ‖K‖Cu→Cu < 1 this equation admits a unique
solution in Cu.

In this case the function g increases exponentially for x → 0+, so it does
not belong to function spaces associated to generalized Laguerre weights. On
the other hand, if we multiply both sides of the equation by e−1/x2

, we obtain
the equivalent equation

f̃(x)−
∫ +∞

0

[
cos(x+ y)ey

−2−y−3−x−2
]
f̃(y)e−y

3

dy = 1, x ∈ (0,+∞),

with f̃(x) = f(x) e−1/x2

. This last equation admits a unique solution in
the space Cũ, with ũ(x) = (1 + x) e−x

3/2. In Table 3 we compare the two
associated Nyström methods, showing the correct decimal digits obtained in
the approximate solution at given points for the same values of m.

The method proposed in Section 3 is stable and the condition num-
bers of the matrices in (3.3) Vm ≡ V

(j1,j2)
m , with j1 = 1 and j2 = m, for

m = 10, 30 , 50, 70 (in the infinity-norm) are 1.0955, 1.1066, 1.1110, 1.1134,
respectively. On the other hand, the method based on Laguerre zeros is less
precise and applicable only for small values of m.

Example 4. Now we consider the equation

f(x)−
∫ +∞

0

| cos(x+ y)|5/4f(y)e−y
−2−y2

dy =
e(x3+8)/(4x)

x+ 4
, x ∈ (0,+∞),

with k(x, y) = | cos(x+ y)|5/4, w(x) = e−x
−2−x2

, and

g(x) =
e(x3+8)/(4x)

x+ 4
.
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Table 3: Values of the approximate solution at x = 0.5, x = 1 and x = 5, for m = 10(20)70

m f∗m(0.5) – exponential weight u f̃∗m(0.5) · e4 – Laguerre weight ũ

10 54.62464753294463 54.62349877451629
30 54.62466842772536 54.62466806769319
50 54.62466842781927 54.62466843181872
70 54.62466842781927 Underflow occurred in computation

m f∗m(1) – exponential weight u f̃∗m(1) · e – Laguerre weight ũ

10 2.6340588382504633 2.6337766902545059
30 2.6340654174597524 2.6340656449192323
50 2.6340654174976796 2.6340654201667359
70 2.6340654174976796 Underflow occurred in computation

m f∗m(5) – exponential weight u f̃∗m(5) · e0.04 – Laguerre weight ũ

10 1.2543661133492144 1.2531280168491409
30 1.2543856822837072 1.2543846501698619
50 1.2543856823546275 1.2543856832259046
70 1.2543856823546275 Underflow occurred in computation

We consider this equation in Cu, where u(x) = (1 + x) e−(x−2+x2)/2. Since
‖K‖Cu→Cu < 1 this equation admits a unique solution in Cu. By Theorem 2
and Corollary 3, since u(y)ky ∈ Z5/4(u) uniformly w.r.t. y, u(x)kx ∈ Z5/4(u)
uniformly w.r.t. x, while g is a smooth function, we have

‖(f ∗m − f ∗)u‖ = O

((√
am
m

)5/4
)

= O
(
m−15/16

)
,

taking into account that am ∼ m1/2.
Now, we apply the Gaussian quadratures for m = 10(10)50 and m =

100(50)300, with the corresponding truncation as in Example 8.2 in [15].
Following Table 2 from [15], we present here in Table 4 the indices j2 and j2

in “truncated sums” in (3.1) and (2.8) for θ = 1/20, as well as the condition

numbers of these reduced matrices V
(j1,j2)
m . Their dimensions are j2 − j1 + 1

instead of m as in the case of Gaussian formulae, dropping cm2 terms, c < 1,
in the matrix of coefficients in the system of linear equations.

The absolute errors of the corresponding weighted Nyström interpolants at
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Table 4: Absolute errors of the weighted Nyström interpolants f∗m(x) at x = 1/2, 1, 4, 8, for m = 10,
m = 100 and m = 200

m (j1, j2) cond(V
(j1,j2)
m ) x = 1/2 x = 1 x = 4 x = 8

10 (1, 6) 1.166 1.15(−4) 7.93(−4) 2.42(−6) 8.51(−17)
100 (7, 45) 1.212 3.59(−5) 6.60(−5) 1.11(−7) 1.61(−17)
200 (11, 90) 1.217 6.90(−7) 3.78(−6) 1.16(−8) 9.61(−19)

some selected x are also given in the same table (we have considered as exact
the approximated solution obtained for m = 300). Numbers in parentheses
indicate decimal exponents, e.g., 1.15(−4) means 1.15× 10−4. Moreover, the
values of the corresponding Nyström interpolants at the same selected points
x are given in Table 5.

Table 5: Values of Nyström interpolants f∗m(x) at x = 1/2, 1, 4, 8, for m = 10, m = 100 and
m = 200

m x = 1/2 x = 1 x = 4 x = 8

10 12.98424 1.990655 11.32452 950832.875282
100 12.98468 1.991643 11.32594 950832.875892
200 12.98488 1.991728 11.32602 950832.876026

Figure 1: The Nyström interpolant f∗m(x) for 0 ≤ x ≤ 10 (left) and for 1 ≤ x ≤ 3 (right), when
m = 300, j1 = 15, j2 = 134

The Nyström interpolant f ∗300(x) obtained with j1 = 15 and j2 = 134, for
0 ≤ x ≤ 10 and 1 ≤ x ≤ 3 is displayed in Figure 1.
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