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Abstract

We study dynamic contracting with adverse selection and limited commitment. A
�rm (the principal) and a worker (the agent) interact for potentially in�nitely many
periods. The worker is privately informed about his productivity and the �rm can
only commit to short-term contracts. The ratchet e¤ect is in place since the �rm has
the incentive to change the terms of trade and o¤er more demanding contracts when
it learns that the worker is highly productive.
As the parties become arbitrarily patient, the equilibrium outcome takes one of

two forms. If the prior probability of the worker being productive is low, the �rm
o¤ers a pooling contract and no information is ever revealed. In contrast, if this prior
probability is high, the �rm �res the unproductive worker at the very beginning of
the relationship.
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1 Introduction

Private information is pervasive in long-run relationships. Information revelation enhances

e¢ ciency as it helps in �nding the best plans of action. However, parties involved in

long-run relationships often fear that revealing their private information may worsen their

future terms of trade. This problem is aggravated when the privately informed party (the

agent) contracts with a party with a stronger bargaining position (the principal). These

relationships are thus shaped by the principal�s desire to elicit information and the agent�s

reluctance to reveal it.

The phenomenon above, known as the ratchet e¤ect, is present in several real-life situ-

ations. Roy (1952) presents evidence that under the piece-rate system �rms often worsen

the workers�terms of trade after good performance. Similarly, Litwack (1991) documents

how planners with small commitment power would use past outputs to establish future

production targets and future managerial compensation, and explains its detrimental e¤ect

on incentives.

Our paper contributes to the literature on the ratchet e¤ect by analyzing an in�nite

horizon contracting problem with short-term contracts. We consider the relationship be-

tween a worker and a �rm as our main interpretation. In each period, the worker can

produce a good of quality q 2 [0; 1] at a cost that is linear in q. At the outset of the

relationship, the worker is privately informed about his (persistent) marginal cost, which

can be either low or high. We let p0 denote the prior probability that the worker�s cost is

low. The �rm can only commit to short-term contracts which indicate the payment that

the worker is entitled to receive, in the current period, if he turns in a good of a certain

speci�ed quality. In each period in which the worker is employed, the �rm o¤ers a menu

with �nitely many contracts. Upon being o¤ered a menu, the worker can either accept one

contract in the menu or reject all contracts and end the relationship.

We show that when the discount factor is not too high the �rm is able to extract the

worker�s private information independently of the value of the prior. In particular, if the

prior p0 is large the �rm o¤ers a �ring menu in every period. A �ring menu contains only

one contract which speci�es the e¢ cient quality when the cost is low and yields a payo¤

equal to zero to the worker. The contract is accepted only by the low-cost worker. Thus,

the �rm learns the worker�s cost in the �rst period by �ring the high-cost worker.

When the prior is not too large, the �rm employs a sequentially screening procedure.
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The �rm starts o¤ering two contracts until it discovers the worker�s cost, which happens

in �nitely many periods. During the screening procedure, the high-cost worker accepts

the �rst contract while the low-cost worker randomizes between the two contracts. Once

the screening is complete and the �rm discovers the cost, the worker delivers the e¢ cient

quality and obtains zero payo¤.

When the parties are su¢ ciently patient, the sequentially screening procedure described

above is not feasible. To see why, consider the last period of the screening procedure in

which the �rm o¤ers a menu that fully separates the two types of worker (in the sense

that they accept two di¤erent contracts with probability one). However, for large discount

factors, this is not possible. Indeed if there were separation, the low-cost worker could

guarantee a large future payo¤ by mimicking the high-cost worker. Because of this it

impossible to design two contracts that simultaneously satisfy the truthtelling constraints

of the two types of worker. The low-cost worker can be prevented from imitating the high-

cost worker only if the contract designed for him is very generous. But in this case the

high-cost worker has an incentive to adopt the �take the money and run� strategy (i.e.,

accept the contract designed for the low-cost worker and then quit the relationship).1

The �rm could, in principle, adopt more complex dynamic screening strategies. For

instance, it could start o¤ering menus in which di¤erent contracts are accepted with positive

but di¤erent probabilities by both types of workers and then use this information in later

periods to induce partial separation or even complete separation (through a �ring menu).

To investigate the feasibility and optimality of such strategies, we analyze the limiting

outcome, as the parties become arbitrarily patient, of all perfect Bayesian equilibria.

We show that the limiting equilibrium outcome is unique and takes a very simple form.

If the prior is below a certain threshold p̂; then, in every period, the �rm o¤ers the most

pro�table contract that the high-cost worker is willing to accept. Both types of worker

accept the contract (i.e., they pool) and there is no learning. In contrast, if the prior is

above p̂; the �rm o¤ers the �ring menu and the high-cost worker quits the relationship

without delay. In both cases, the limiting equilibrium allocation is ine¢ cient.

Our results show that when the parties are su¢ ciently patient, the �rm loses the ability

to screen the worker without �ring him when his cost is high. The driving forces behind

our �ndings are similar to those which prevent full separation. When the discount factor

is large, it is very costly for the �rm to separate the two types of worker and continue the

1This result is reminiscent of La¤ont and Tirole (1988).
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relationship with both of them. A lasting relationship with the high-cost worker provides

strong incentives to the low-cost worker to misrepresent his information. Using this fact,

we show that the �rm would not bene�t from separating without �ring even if this form of

separation were feasible.

Our benchmark model assumes that the relationship ends automatically when the

worker rejects all the contracts in the �rm�s menu. This modeling assumption captures

situations in which upon disagreement the worker �nds another job and becomes unavail-

able for the �rm. Of course, one can also imagine situations in which the unemployed

worker remains available to be rehired in the future. We therefore analyze an extension

of the model that allows for rehiring. We study the in�nitely repeated game in which, in

each period, the �rm proposes a menu of contracts from which the worker has to select

at most one. We �rst show that the complete-information version of this game admits a

folk theorem. Although the �rm has the bargaining power to make o¤ers, the worker can

obtain large payo¤s by credibly committing to reject unfavorable contracts. This is possi-

ble because the acceptance of unfavorable contracts by the worker triggers a continuation

equilibrium in which the �rm implements an e¢ cient allocation that yields a zero payo¤

to the worker. We use these �ndings from the complete-information game to show that

a version of the folk theorem holds for our model with rehiring.2 In particular, when the

parties are su¢ ciently patient, the �rm can obtain a payo¤ arbitrarily close to the payo¤

of the optimal mechanism with commitment. These �ndings suggest that the labor-market

structure may play an important role in the dynamics of incentive contracts.

This paper belongs to the literature on repeated adverse-selection with limited com-

mitment pioneered by Freixas, Guesnerie, and Tirole (1985), Gibbons (1987), and La¤ont

and Tirole (1987, 1988). In these seminal papers, the parties interact for two periods.

One of the main �ndings is that there is partial separation of the agent�s types in the �rst

period (i.e., the equilibrium is semi-pooling) and full separation in the second and �nal

period. Therefore the outcome of two-period environments presents gradual information

revelation. In contrast, our paper shows that when the relationship is in�nitely repeated

and the prior is low, the equilibrium allocation is close to a pooling allocation when the

parties are patient.

Hart and Tirole (1988) analyze a dynamic model in which the seller makes a rental o¤er

2This �nding is reminiscent of earlier contributions to repeated games with incomplete information and
simultaneous moves (see P¾eski (2008) and the references therein).
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to the buyer in every period. The buyer�s valuation for the good is private information

and can take two values, both of which are larger than the seller�s cost of producing the

good. As the parties become su¢ ciently patient, the equilibrium allocation converges to the

e¢ cient allocation in which both types of buyer consume the good in every period. Note

that for large values of the probability of the low valuation, this pooling allocation coincides

with the seller�s optimal mechanism under full commitment (i.e., lack of commitment is

not detrimental to the seller�s payo¤). In a recent paper, Beccuti and Möller (2018) extend

Hart and Tirole�s analysis to the case in which the seller is more patient than the buyer.

Halac (2012) studies a relational contract model in which the principal is privately informed

about his outside option. When the uninformed party has the bargaining power, Coasian

forces lead to a pooling outcome when the parties are su¢ ciently patient. Our work di¤ers

from these papers in two respects. First, in our model, the agent�s private information

is necessary to determine the best course of action and, therefore, pooling allocations are

never optimal for the �rm under full commitment. Second, we analyze environments in

which the ratchet e¤ect leads to ine¢ ciencies.3

Our work is also related to the literature on renegotiation. The seminal paper by La¤ont

and Tirole (1990) analyzes a two-period model. Recently, Strulovici (2017) and Maestri

(2017) study renegotiation in in�nite horizon models. These studies �nd that equilibrium

allocations become e¢ cient as the parties become arbitrarily patient. In contrast, in our

model the limit allocation is ine¢ cient whenever the �ring allocation is not a commitment

solution.

Bhaskar (2014) studies learning in a dynamic model in which the principal and the agent

are ex-ante symmetrically informed about the job�s di¢ culty. When the agent�s e¤ort is

unobservable, it is impossible for the principal to design a contract that induces an interior

e¤ort level in the �rst period. Bhaskar and Mailath (2017) consider a related dynamic

model and show that inducing high e¤ort becomes prohibitively costly for the principal

as the parties become arbitrarily patient. Therefore, the ratchet e¤ect imposes stringent

constraints on the learning process of the relationship. In contrast, our paper assumes

adverse-selection and no exogenous learning and concludes that the ratchet e¤ect imposes

constraints on the amount of private information that is revealed in a dynamic relationship.

3Our work analyzes the relationship between two in�nitely lived players. In the context of political econ-
omy, several papers study the e¤ects of limited commitment in repeated interactions between one principal
and a continuum of privately informed agents (see, among others, Acemoglu, Golosov, and Tsyvinski
(2010), Farhi, Sleet, Werning, and Yeltekin (2012), and Scheuer and Wolitzky (2016)).
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There is also a connection between our paper and the literature on durable goods

monopoly under limited commitment. Ausubel and Deneckere (1989) study a model in

which the seller posts prices and obtain a folk theorem for the �no gap� case. In our

context a folk theorem holds when rehiring is possible. Skreta (2006, 2015) analyzes more

general selling mechanisms and shows that posting a price is the seller�s optimal strategy.

Of course, in these studies the relationship between the buyer and the seller ends as soon

as the durable good is traded, while in our model the parties can make a new transaction

in every period.

Finally, a number of authors have identi�ed situations in which the ratchet e¤ect is

mitigated. Kanemoto and MacLeod (1992) argue that competition for secondhand work-

ers guarantees the existence of e¢ cient piece-rate contracts in long-term relationships.

Carmichael and MacLeod (2000) show that if entry in a market is di¢ cult, then it is pos-

sible to sustain cooperation between an in�nitely lived �rm and a stream of short lived

worker. Our �ndings suggest that rehiring is another possible remedy to the ratchet e¤ect.

The rest of the paper is organized as follows. We present the model in Section 2. In

Section 3, we brie�y discuss the mechanism design problem with commitment. In Section 4

we show existence of equilibria and provide conditions under which all private information

is revealed. Section 5 contains the main result which completely characterizes the unique

equilibrium outcome when the parties are arbitrarily patient. In Section 6, we analyze the

extension of the model in which rehiring is possible. Section 7 concludes. Most proofs are

relegated to a number of appendices.

2 The Model

We study a dynamic principal-agent model with adverse selection and short-term contracts.

We interpret the model as the relationship between a �rm and a worker.

The worker has private information about his (persistent) type, which is equal to L

with prior probability p0 2 (0; 1) ; and equal to H with probability 1�p0: The �rm and the
worker interact for potentially in�nitely many periods. In each period, the worker of type

i = H;L can produce a good of quality q 2 [0; 1] at the cost �iq; where 0 < �L < �H : We
refer to the low type L (high typeH) as the low (high) cost worker. We write�� := �H��L.
The worker bears an additional cost � > 0 in every period in which he interacts with the
�rm. The cost � can be interpreted as the per-period payo¤ of an outside option available
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to the worker if he ends the relationship.

The �rm�s valuation of a good of quality q is v (q) : The function v : [0; 1]! R+ is twice
continuously di¤erentiable, increasing, strictly concave, and satis�es v (0) = 0:4

Both parties�preferences are linear in money. When the worker produces a good of

quality q and the �rm makes a transfer equal to x; the payo¤ of type i = H;L is x��iq��;
while the �rm�s payo¤ is v (q)� x:
We let q�i ; i = H;L; denote the e¢ cient quality produced by type i :

q�i = arg max
q2[0;1]

(v (q)� �iq)

To make the problem interesting, we assume

v (q�H)� �Hq�H � � > 0

This assumption guarantees that the �rm prefers hiring the high-cost worker over col-

lecting its outside option, which yields a payo¤ equal to zero. Moreover, we assume that

q�H 2 (0; 1) and, therefore q�L > q�H :
5 In this case, the e¢ cient allocation varies with the

worker�s type.

The �rm and the worker play the following game. At the beginning of period t =

0; 1; : : : ; the �rm o¤ers a menu mt of contracts to the worker. Each contract is of the form

(xt; qt) and speci�es the transfer xt paid by the �rm and the quality qt 2 [0; 1] that the
worker must produce. We assume that the quality is veri�able and, thus, each contract

is enforceable. After receiving the menu mt; the worker has two options: (i) selecting a

contract from the menu; (ii) rejecting all the contracts and quitting the relationship. In

the �rst case, the game moves to the next period t+ 1. In the second case, the game ends

and both parties obtain a continuation payo¤ equal to zero. The parties discount future

payo¤s at the common discount factor � 2 (0; 1) :
We letM =

[M

j=1
(R� [0; 1])j denote the set of available menus, whereM 2 f2; 3; : : :g

is the exogenous largest number of contracts that a menu can contain. The restriction

4The concavity of v (�) guarantees that the �rm�s screening problem in the proof of Proposition 1 is well
behaved. The concavity also allows us to derive a number of useful bounds in the proof of Proposition 2.
Finally, the assumption v0 (0) <1 implies that for large values of the prior, the solution to the mechanism
design problem with commitment is to �re the high type (see Section 3). This is used in the proof of the
main result.

5In particular, we use this assumption in the proof of Proposition 1 to construct a sequence of separating
contracts.
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M > 2 guarantees that the menus can contain two contracts (so that it is possible for the
�rm to separate the two types of worker). When the �rm o¤ers the menu mt; the set of

actions available to the worker is mt [ f;g ; where ; denotes the choice of rejecting all the
contracts in mt and quitting. We let at denote the agent�s decision in period t:

For every t = 1; 2; : : : ; a period-t (non-�nal) public history ht = (m0; a0; : : : ;mt�1; at�1)

consists of all the menus o¤ered by the �rm in previous periods � = 0; : : : ; t � 1, as well
as all the worker�s decisions, provided that he never chose to quit (i.e., a� 6= ; for every
� = 0; : : : ; t � 1). We let H0 = fh0g denote the set containing the empty history h0: We
write H t for the set of all period-t public histories. Finally, H = [t=0;1;:::H t is set of all

(non-�nal) public histories.

A behavior strategy �F for the �rm is a sequence
�
�Ft
	
, where �Ft is a function from H

t

into �(M), mapping the history ht into a (possibly random) menu. A behavior strategy�
�H ; �L

�
for the worker is a sequence

��
�Ht ; �

L
t

�	
; where �it; i = H;L; associates to every

pair (ht;mt) 2 H t �M a probability distribution over the set mt [ f;g : We write � =�
�F ; �H ; �L

�
for a strategy pro�le. Finally, we let � = f� (ht) ; � (ht;mt)ght2H;mt2M denote

the �rm�s system of beliefs, where � (ht) (� (ht;mt)) represents the probability that the

�rm assigns, at the history ht (ht;mt), to the event that the worker�s type is equal to L:

Our solution concept is perfect Bayesian equilibrium (PBE or equilibrium henceforth),

formally de�ned below.

De�nition 1 A PBE of our game is a strategy pro�le � and a system of beliefs � such

that:

i) � is sequentially rational given �;

ii) for every history (ht;mt) 2 H t �M; � (ht;mt) = � (h
t) ;

iii) for every (ht;mt) 2 H t �M and for every at 2 mt [ f;g ; if�
1� �

�
ht
��
�Ht
�
atjht;mt

�
+ �

�
ht
�
�Lt
�
atjht;mt

�
> 0

then the belief � (ht;mt; at) is derived from � (ht) according to Bayes�rule:

�
�
ht;mt; at

�
=

� (ht)�Lt (atjht;mt)

(1� � (ht))�Ht (atjht;mt) + � (ht)�Lt (atjht;mt)

In addition to sequential rationality and Bayesian updating whenever possible (i.e.,

including o¤-path histories (ht;mt; at) that are reached with positive probability given
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(ht;mt)), the concept of PBE imposes the �no signaling what you don�t know�condition

(Fudenberg and Tirole (1991)) in the sense that the �rm does not revise its belief after

proposing a menu.

Given a strategy pro�le � and a system of beliefs �, for each history ht we let VF (ht; (�; �))

denote the �rm�s continuation payo¤ at ht. We also let T 2 N [ f1g denote the random
period in which the relationship terminates (we set T =1 if the worker remains employed

forever). Then we have:

VF (h
t; (�; �)) := E(�;�)

"
(1� �)

T�1X
�=t

���t (v(q� )� x� ) j ht
#

where E(�;�)[Y jht] represents the conditional expected value (given ht) of the random vari-

able Y given the strategy pro�le � and the system of beliefs �. Analogously, for every

history ht we let Wi(h
t; (�; �)) denote the expected continuation payo¤ at ht of the worker

of type i = H;L: We have:

Wi

�
ht; (�; �)

�
:= E(�;�)

"
(1� �)

T�1X
�=t

���t (x� � �iq� � �) j i; ht
#

Here and in what follows, we useN = f0; 1; : : :g to denote the set of nonnegative integers
and adopt the convention that

Xt�1

�=t
���t = 0:

To simplify the notation, we omit the argument (�; �) and write VF (ht) and Wi(h
t)

when there is no ambiguity. We also use VF (ht;mt) and Wi(h
t;mt); i = H;L; to denote

the �rm and worker�s payo¤ at the history (ht;mt) :

For i = H;L; and q 2 [0; 1] ; we let

�i (q) := v (q)� �iq � �

denote the �rm�s pro�ts when the quality is q; the worker is of type i and the �rm pays

the reservation wage �iq + �. Therefore, �i (q�i ) represents the highest level of pro�ts that

the �rm can achieve from the interaction with type i: Clearly, �L (q�L) > �H (q
�
H) ; and we

let p̂ 2 (0; 1) be de�ned by �H (q�H) = p̂�L (q�L) :
We conclude this section with a simple result that provides a lower bound to the �rm�s

payo¤ under any PBE.

Lemma 1 Fix a PBE (�; �). For every history ht 2 H, we have:

VF (h
t; (�; �)) > max

�
�H (q

�
H) ; �

�
ht
�
�L (q

�
L)
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Proof of Lemma 1.
By contradiction, suppose that there exist a PBE (�; �), a history ht, and " > 0 such

that

VF (h
t; (�; �)) < max

�
�H (q

�
H) ; �

�
ht
�
�L (q

�
L)
	
� "

Suppose that �H (q�H) > � (h
t)�L (q

�
L) : If the �rm o¤ers the menu

��
�Hq

�
H + �+

"
2
; q�H

�	
in every period t; t+ 1; : : : (notice that both types strictly prefer to accept the contract in

the menu rather than quit the relationship), then its continuation payo¤ will be equal to

�H (q
�
H)�

"

2
> VF (h

t; (�; �))

which is a contradiction.

Similarly, if �H (q�H) 6 � (ht)�L (q
�
L) ; the �rm can guarantee a continuation payo¤ at

least equal to

�
�
ht
� �
�L (q

�
L)�

"

2

�
> VF (h

t; (�; �))

by o¤ering the menu
��
�Lq

�
L + �+

"
2
; q�L
�	
in every period t; t+ 1; : : : (in equilibrium, the

low type must accept the contract in the menu). �
Intuitively, the following two options are always available to the �rm. The �rst option

is to stop learning and o¤er (�Hq�H + �; q
�
H) ; the most pro�table contract in the class of

contracts that are accepted by both types of worker. The second option is to �re the high-

cost worker and interact only with the low-cost worker. In this case, the most pro�table

contract is (�Lq�L + �; q
�
L) :

3 The Commitment Allocation

It is useful to start the analysis by quickly reviewing the benchmark model in which the �rm

can fully commit to a sequence of menus (m0;m1; : : :) : This provides an upper bound to

the �rm�s pro�ts in the game with limited commitment. It is well known that the solution

to the �rm�s commitment problem is to replicate the optimal static mechanism (see, for

example, Chapter 1 in La¤ont and Tirole, 1993).

The optimal static mechanism takes two slightly di¤erent forms depending on whether

� = 0 or � > 0. First, assume that � = 0: In this case, there exists a critical value

pC 2 (p̂; 1) such that if the prior p0 is weakly larger than pC ; then the optimal menu (with
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commitment) is unique and equal to f(�Lq�L + �; q�L)g :6 The low-cost worker accepts the
contract in the menu while the high-cost worker rejects it. Thus, the �rm�s pro�ts are equal

to p0�L (q�L) :

On the other hand, if p0 < pC ; then the unique optimal menu is��
xCH ; q

C
H

�
;
�
xCL ; q

C
L

�	
=
��
�Hq

C
H + �; q

C
H

�
;
�
�Lq

�
L +��q

C
H + �; q

�
L

�	
(1)

for some qCH 2 (0; q�H) : The high-cost worker accepts the �rst contract and obtains a payo¤
equal to zero. The low-cost worker is indi¤erent between the two contracts (therefore, he

obtains a payo¤ equal to ��qCH) and accepts the second contract. In this case, the �rm�s

commitment pro�ts are equal to:

p0
�
v (q�L)� �Lq�L ���qCH � �

�
+ (1� p0)

�
v
�
qCH
�
� �HqCH � �

�
:

We now turn to the case � > 0: As in the �rst case, there exists a critical value of the

prior pC 2 (0; 1) : If p0 > pC the optimal mechanism is unique and equal to f(�Lq�L + �; q�L)g :
If p0 < pC ; the unique optimal menu is

��
xCH ; q

C
H

�
;
�
xCL ; q

C
L

�	
as in equation (1). Finally,

if p0 = pC ; then there are two optimal deterministic mechanisms: f(�Lq�L + �; q�L)g and��
xCH ; q

C
H

�
;
�
xCL ; q

C
L

�	
as in equation (1). In addition, if p0 = pC there is a continuum of op-

timal random mechanisms, since any randomization between the two optimal deterministic

mechanism is also an optimal mechanism.

Suppose that p0 < pC or that p0 = pC and � > 0: It is immediate to see that in the

dynamic game with limited commitment it is impossible to implement, in every period, the

optimal mechanism of the form
��
xCH ; q

C
H

�
;
�
xCL ; q

C
L

�	
: This is because, according to Lemma

1, the �rm�s continuation payo¤must be equal to �i (q�i ) as soon as the �rm discovers that

the worker is of type i.7

It is also easy to see that for p0 > pC , the �rm�s payo¤ in any PBE must be equal

to p0�L (q�L) (it cannot be smaller because of Lemma 1, and it cannot be larger because

f(�Lq�L + �; q�L)g is an optimal mechanism with commitment). Therefore, if p0 > pC all

PBE share the following feature. The high type quits the relationship in the �rst period,

while the low type accepts the contract (�Lq�L + �; q
�
L) in every period.

6To see why pC > p̂, let V CF (p) be the commitment payo¤ of the �rm when the prior is p: It is straight-
forward to show that V CF (�) is strictly increasing. If pC 6 p̂; then we obtain the following contradiction:
V CF (p

C) = pC�L (q
�
L) 6 p̂�L (q�L) = �H (q�H) = V CF (0):

7Notice that �H
�
qCH
�
< �H (q

�
H) since q

C
H < q

�
H : Also v (q

�
L)��Lq�L�����qCH < �L (q�L) since qCH > 0:
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4 Existence and Learning

In this section, we show the existence of PBE for generic values of the parameters. We

also identify the conditions under which the �rm is able to learn the worker�s type (with

and without �ring). In particular, if the parties are impatient, then learning is possible for

any prior. In contrast, if the parties are su¢ ciently patient, then learning takes place only

when the �rm is willing to �re the high-cost worker.

We start with a general result that holds in every PBE: the low-cost worker�s relationship

with the �rm lasts forever. Formally, we have the result below. We say that a certain

property holds for almost all the menus o¤ered by the �rm at ht if �Ft (h
t) assigns probability

one to the set of menus satisfying the property.

Lemma 2 Fix a PBE (�; �) and an arbitrary history ht: For almost all the menus mt

o¤ered by the �rm at ht; we haveX
(xt;qt)2mt

�Lt
�
(xt; qt) jht;mt

�
= 1

To see why Lemma 2 is true, suppose that there are a PBE (�; �) and a history ht at

which the low type rejects all the contracts in the �rm�s menu with positive probability.

This implies that the interaction with the high type must yield a strictly positive contin-

uation payo¤ to the �rm, otherwise its continuation payo¤ would be strictly smaller than

� (ht)�L (q
�
L) ; contradicting Lemma 1. Clearly, a strictly positive continuation payo¤ is

possible only if the high type is expected to deliver a strictly positive (discounted) quality

in the future. This and the individual rationality of the high type�s behavior imply that

the low type�s decision to quit is not optimal, as he can guarantee a strictly positive payo¤

by imitating the high-cost worker at ht and in every future period.

Suppose that the �rm is interested in separating the two types and learning the worker�s

cost. This requires the existence of two decisions, one of which is taken only by the high

type while the other is taken only by the low type. After observing the �rst (second)

decision, the �rm becomes convinced that the worker�s cost is high (low).

In the light of Lemma 2, there are two ways in which separation can take place in

equilibrium. One possibility is separation with �ring: the high type quits the relationship

and one of the contracts in the �rm�s menu is accepted only the low type. The other

11



possibility is separation with employment : one contract in the �rm�s menu is accepted only

by the high type, while another contract is accepted only by the low type.

Our next result shows that separation with employment cannot occur for large values

of the discount factor.

Lemma 3 Suppose that � > �̂ := 1
1+q�H

and let (�; �) be an arbitrary PBE of the game. It

is impossible to �nd a history (ht;mt) (on or o¤-path) satisfying the following properties:

i) � (ht) 2 (0; 1) ;
ii) there exists a contract (xH ; qH) in mt for which �Ht ((xH ; qH) jht;mt) > 0 and

�Lt ((xH ; qH) jht;mt) = 0;

iii) there exists a contract (xL; qL) in mt for which �Lt ((xL; qL) jht;mt) > 0 and

�Ht ((xL; qL) jht;mt) = 0:

By contradiction, suppose that at ht the belief is nondegenerate and the �rm�s menu

contains a contract (xi; qi) that is accepted (with positive probability) only by the type

i = H;L: Following the acceptance of this contract, the �rm�s belief will assign probability

one to the type i.8 Furthermore, in equilibrium, the type i will select the e¢ cient contract

(�iq
�
i + �; q

�
i ) in every period after t: It is then easy to see that if the discount factor is su¢ -

ciently large, it is impossible to �nd two contracts, (xH ; qH) and (xL; qL) ; to satisfy the two

incentive compatibility constraints. If � > �̂; for any pair of contracts ((xH ; qH) ; (xL; qL)) ;

either the low type prefers to imitate the high type (at ht and in every future period), or

the high type has an incentive to adopt the �take the money and run�strategy (i.e., the

strategy of accepting the generous contract (xL; qL) and then quitting).

We are now ready to state the main result of this section, which establishes (generic)

existence of PBE.

Proposition 1 For generic values of the parameters, there exists a PBE.

The proof of Proposition 1 (in Appendix B) shows how to construct a PBE for all values

of � outside a set of discount factors which can contain at most two elements (the values

of these two elements depend on the primitives �H ; �L; �; v (�)).9 For the remainder of the
paper, we assume that the discount factor � does not belong to this (possibly empty) set.

8Notice that in a PBE, the beliefs must satisfy this condition at all histories, including those that are
o¤-path.

9Our formal argument does not cover the values of � at which the mapping V 1 : [0; 1] ! R de�ned in
equation (18) (see Appendix B) satis�es simultaneously V 1 (0) = �H (q

�
H) and @+V

1 (0) = 0. We show
that there can be at most two such values of �:
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The equilibrium that we construct satis�es a number of properties. First, the equilib-

rium is �almost Markovian�in the sense that the parties�behavior in period t depends on

the �rm�s belief and their actions in period t� 1 (the history up to period t� 2 a¤ects the
behavior in period t only through the belief). Second, the high type plays a pure strategy

and his equilibrium payo¤ is equal to zero. Third, the menu proposed by the �rm (at any

history) contains at most two contracts. Finally, the �rm adopts a deterministic behavior

at on-path histories.

We now introduce some de�nitions to illustrate our equilibrium. First, we say that

there is a pooling allocation if the �rm o¤ers the menu f(�Hq�H + �; q�H)g in every period
and both types accept the contract (�Hq�H + �; q

�
H) (with probability one). We also say that

there is a �ring allocation if the �rm o¤ers the menu f(�Lq�L + �; q�L)g in every period, the
high type quits in the �rst period, and the low type accepts the contract (�Lq�L + �; q

�
L) in

every period. Finally, we say there is a sequentially screening allocation if the �rm o¤ers a

menu with two contracts in every period in which its belief is nondegenerate. Furthermore,

the high type accepts the �rst contract with probability one, while the low type accepts

the second contract with strictly positive probability (if this probability is less than one,

the low type randomizes between the two contracts). Therefore, in a sequentially screening

allocation either the �rm learns that the worker�s type is low or it becomes more con�dent

that the worker�s type is high.

To illustrate our construction it is convenient to distinguish between the case � 6 �̂ and
the case � > �̂: We start with the �rst case. We assume (without loss) that the �rm o¤ers

the menu f(�Hq�H + �; q�H)g when the belief p is equal to zero. Also, the �rm o¤ers the

menu f(�Lq�L + �; q�L)g when p > pC : For any belief p 2
�
0; pC

�
we �rst give the following

three options to the �rm: i) o¤ering a pooling menu, i.e. a menu with one contract that

is accepted by both types; ii) o¤ering a �ring menu, i.e. a menu with one contract that

induces separation with �ring (i.e., the low type accepts the contract while the high type

quits); iii) o¤ering a menu with two contracts to induce separation with employment (this

means that, with probability one, the two types choose di¤erent contracts).

Clearly, the optimal pooling menu is f(�Hq�H + �; q�H)g ; while the optimal �ring menu
is f(�Lq�L + �; q�L)g : In case iii), we choose the two contracts to maximize the �rm�s payo¤
subject to the incentive compatibility (IC) and the individual rationality (IR) constraints.

Notice that after separation with employment, the �rm�s belief is either zero or one. In

both cases, the �rm�s behavior is known and we can compute the two types�continuation
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payo¤s. As in the standard mechanism design problem with commitment, the optimal

menu in case iii) is such that both the low type�s IC constraint and the high type�s IR

constraint are binding.

We construct the �rm�s value function V (�; 1) and the low type�s payo¤ correspondence
� (�; 1) when the �rm is forced to choose one of the three options above.10 We take V (�; 1)
and � (�; 1) as given and o¤er the �rm the possibility of probabilistic separation with em-

ployment. This means that the �rm o¤ers two contracts. The high type accepts the �rst

contract with probability one, while the low type randomizes between the contracts. After

this round of probabilistic separation, the �rm is again forced to use the three options

above and, therefore, the parties continuation payo¤s are given by V (�; 1) and � (�; 1) : In
the probabilistic separation phase, we select the two contracts and the low type�s behavior

(i.e., the probability of accepting each contract) to maximize the �rm�s payo¤ subject, of

course, to the IC and IR constraints. As usual, the solution to the optimization problem

satis�es the low type�s IC constraint with equality and, therefore, randomizing between the

two contracts is indeed optimal for the low-cost worker.

The possibility of probabilistic separation de�nes a new value function V (�; 2) and a
new payo¤ correspondence � (�; 2) : If V (p; 2) = V (p; 1) for every p 2 [0; 1], then we stop
the process as the �rm does not bene�t from probabilistic separation. On the other hand,

if V (p; 2) > V (p; 1) (it is also easy to construct examples for which this is the case), then

we allow for an additional round of probabilistic separation with employment.

We continue the process (allowing, at each iteration, for a new round of probabilistic

separation) until we �nd a �xed point (V (�) ;� (�)) :We show that for generic values of the
parameters a �xed point exists and is achieved after �nitely many iterations. Moreover,

our proof shows that if we �x the parameters (�H ; �L; �; v (�)) ; then there is T such that for
generic discount factors smaller than 1� q�H=q�L; the number of iterations is smaller than T
(see Corollary 1 below for the implications of this result).

The pair (V (�) ;� (�)) allows us to construct a simple equilibrium. For each belief p; the
parties behave according to the solution of the �rm�s optimization problem (which yields

the payo¤ V (p) to the �rm). The solution consists of the optimal menu and the worker�s

behavior. In particular, if the optimal menu is f(�Hq�H + �; q�H)g ; then both types accept
the contract. If the optimal menu is f(�Lq�L + �; q�L)g ; then only the low type accepts the
10For some values of the beliefs p; the solution to the �rm�s problem is not unique and di¤erent solutions

generally yield di¤erent payo¤s to the low type (hence we use the correspondence � (�; 1)).
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contract. Finally, if the optimal menu contains two contracts, then the high type accepts

the �rst contract (with probability one) while the low type accepts the second contract with

probability in (0; 1] (this probability is part of the solution to the optimization problem).

The proof of Proposition 1 also speci�es the parties�o¤-path behavior and shows that

unilateral deviations are not pro�table.

We conclude the discussion of the case of a low discount factor pointing out a property

of our equilibria. Fix a PBE (�; �) :We say that there is full learning by period t if for any

t0 > t and for any on-path public history ht0 ; the belief �
�
ht

0�
is either zero or one. This

means that all the uncertainty about the worker�s ability is resolved by period t:

Our construction shows that when the parties are not too patient, the �rm never chooses

the pooling allocation. Depending on the value of the prior, the �rm prefers either the

sequentially screening allocation (if the prior is low) or the �ring allocation (if the prior is

high). In both cases, there is full learning. Moreover, our proof shows that the number of

periods until the worker completely reveals his private information is uniformly bounded.11

Formally, we have the following result.

Corollary 1 Fix the parameters (�H ; �L; �; v (�)) : There exists T 2 f1; 2; : : :g such that for
any prior p0 and for generic values of the discount factor smaller than 1 � q�H=q�L; there
exists a PBE with full learning by period T:

Finally, we point out that as � shrinks to zero, the �rm�s equilibrium payo¤ converges

to the payo¤ of the optimal mechanism with commitment. It is easy to check that this is

a general property that holds for all PBE.12

We now turn to the case the case � > �̂: Recall that in this case separation with

employment is not feasible. Therefore, the �rm is unable to implement a sequentially

screening allocation. As a result, it chooses between the pooling and the �ring allocation.

The equilibrium that we construct takes a very simple form. If the prior is weakly larger

than p̂; the �rm o¤ers the optimal �ring menu f(�Lq�L + �; q�L)g in every period and the
high-cost worker quits in the �rst period. Thus, the equilibrium is with full learning by

period one. In contrast, if the prior is smaller than p̂; the �rm o¤ers the optimal pooling

menu f(�Hq�H + �; q�H)g in every period and never updates (along the equilibrium path) its
belief.
11This follows from the argument provided at the end of the proof of Lemma 9.
12For brevity, we omit the proof of this simple �nding.
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The analysis in this section shows that when the parties are su¢ ciently patient the

ratchet e¤ect has a strong impact on equilibrium behavior. In particular, it suggests that

for su¢ ciently large values of �; the �rm can learn the worker�s cost only by �ring the high

type. As we will see in the next section, this is not a special feature of our equilibrium but

a much more general result.

5 Limit Uniqueness

In the last section, we constructed a very simple equilibrium for the case in which the parties

are su¢ ciently patient (� > �̂). This equilibrium implements the pooling allocation when

the prior is smaller than p̂ and the �ring allocation when the prior is larger than p̂: Our

construction relies on the fact that a sequentially screening allocation is not feasible when

the discount factor is above �̂: However, the �rm could, in principle, employ more complex

dynamic screening strategies. For instance, one could imagine an equilibrium in which two

or more contracts in the �rm�s menu are accepted with positive but di¤erent probabilities

by the two types (in this case, the �rm�s belief could increase without jumping to one, as

happens in a sequentially screening allocation). This raises the question of whether there

are other equilibrium outcomes in addition to the one identi�ed in Section 4. Moreover,

can the �rm do better than just o¤ering the optimal pooling menu or the optimal �ring

menu?

We show that in the limit, as the parties become arbitrarily patient, there exists a unique

equilibrium outcome. This outcome coincides with the equilibrium outcome in Section 4

(for the case � > �̂). First, consider the case p0 > p̂: In the limit, as � goes to one, the

equilibrium allocation is �ring and the high type quits the relationship without delay. In

contrast, if p0 < p̂; the limiting equilibrium allocation is pooling and there is no learning.13

Proposition 2 provides a formal characterization of the limiting outcome. Recall that T
denotes the random time at which the worker quits the relationship.

Proposition 2 I) Fix p0 > p̂ and consider a sequence of discount factors f�ng1n=1 con-
verging to one. For every n = 1; 2; : : : ; let (�n; �n) be a PBE of the game with discount

factor �n. Then we have:

13In the case in which the prior p0 is equal to p̂; the limiting equilibrium outcome is not uniquely pinned
down as there are PBE implementing the pooling allocation, the �ring allocation and convex combinations
of such allocations.
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i) limn!1 E(�n;�n)
�
�Tn j H

�
= 1;

ii) limn!1 E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn jqt � q�Lj jL
#
= 0;

iii) limn!1 E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn (xt � �Lq�L � �) jL
#
= 0:

II) Fix p0 < p̂ and consider a sequence of discount factors f�ng1n=1 converging to one.
For every n = 1; 2; : : : ; let (�n; �n) be a PBE of the game with discount factor �n. Then we

have:

i) limn!1 E(�n;�n)
�
�Tn
�
= 0;

ii) limn!1 E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn jqt � q�H j
#
= 0;

iii) For i = H;L; limn!1 E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn (xt � �Hq�H � �) ji
#
= 0:

The rest of the section provides the proof of Proposition 2 which consists of several

steps. We outline in detail each step and relegate some technical arguments to Appendix

C. To simplify the exposition, in this section and in Appendix C we assume that � > 0

(some steps of the proof are more involved when � = 0). In Appendix D, we show how to

modify the proof to deal with the case � = 0:

Any equilibrium (�; �) must satisfy the following two properties (among others). First,

at every history ht the �rm�s continuation payo¤must be at least equal tomax f�H (q�H) ; � (ht)�L (q�L)g :
Second, at any point of the relationship the low type must prefer to follow his strategy

rather than mimicking the high type from that point onwards. We show that when the

prior is above p̂ and the discount factor � is close to one, only the allocations that are close

(according to the metric implicit in the statement of Proposition 2) to the �ring allocation

can simultaneously satisfy the two properties mentioned above. In contrast, if p0 < p̂ and

� is close to one, only the allocations that are close to the pooling allocation can satisfy

the two properties.

We start with the following simple observation. To prove Proposition 2 it is enough to

restrict attention to equilibria in which (i) the �rm�s strategy in the �rst period is pure

(i.e., the �rm does not randomize among di¤erent menus at t = 0); and (ii) the high type�s

equilibrium payo¤ is equal to zero.

To see why restriction (i) is without loss, suppose that
��
�F ; �H ; �L

�
; �
�
is a PBE and

m0 is a menu o¤ered with positive probability by the �rm at t = 0 (�F0 (m0jh0) > 0).
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Let ~�F be the strategy which is identical to �F in every period except the �rst one in

which the �rm o¤ers the menu m0 with certainty (~�F0 (m0jh0) = 1). It is immediate to

see that
��
~�F ; �H ; �L

�
; �
�
is also a PBE. Furthermore, the outcome of the equilibrium��

~�F ; �H ; �L
�
; �
�
coincides with the continuation outcome of

��
�F ; �H ; �L

�
; �
�
after the

�rm proposes the contract m0: Therefore, if there exists a sequence of equilibria which

violate Proposition 2, then there also exists a sequence of equilibria which violate the

proposition and satisfy restriction (i).

We now turn to restriction (ii). Suppose that (�; �) is a PBE in which the �rm o¤ers the

menum0 (with probability one) in the �rst period and which yields a strictly positive payo¤

WH (h
0; (�; �)) to the high type. Then it is possible to construct a new PBE (~�; ~�) which is

outcome equivalent to (�; �) except for the fact that the �rst-period transfers are uniformly

decreased by (1� �)�1WH (h
0; (�; �)) : In other words, in the �rst period the �rm replaces

every contract (x0; q0) in the menum0 with the contract
�
x0 � (1� �)�1WH (h

0; (�; �)) ; q0
�
:14

Finally, notice that the �rst two results in Proposition 2 (Part I and Part II) do not depend

on the the equilibrium transfers while the third result follows from the �rst two (for Part

I, this is veri�ed in the end of Section 5.1, while for Part II this is veri�ed in the end of

Appendix C).

The next result summarizes our initial �ndings.

Claim 1 In the rest of the proof of Proposition 2, it is without loss of generality to restrict
attention to equilibria (�; �) in which the �rm�s strategy in the �rst period is pure and

WH (h
0; (�; �)) = 0:

Consider a PBE which yields a zero payo¤ to the high type. If all the contracts accepted

with positive probability by the high type take the form (�Hq + �; q) ; for some q 2 [0; 1],
then we can express the parties�payo¤ in terms of the qualities delivered by the worker and

the analysis is somewhat simpli�ed. In general, there is no guarantee that in equilibrium

the high type breaks even with every contract when his initial payo¤ is equal to zero.

However, our next result shows that it is still possible to express the parties�payo¤s in

terms of the qualities. In particular, we are interested in the payo¤s of the �rm and the

14In the new equilibrium (~�; ~�) ; each type of the worker accepts the contract�
x0 � (1� �)�1WH

�
h0; (�; �)

�
; q0

�
with the same probability with which he accepts the contract

(x0; q0) in the original equilibrium (�; �) :
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low type, both when he follows his strategy and when he mimics the high type (recall the

two properties above that any equilibrium must satisfy).

Lemma 4 Fix a PBE (�; �) and let ht be a history such that � (ht) < 1 andWH (h
t; (�; �)) =

0: Fix p 2 (� (ht) ; 1) and let ~T 2N [ f1g denote the random time that stops the play at

the �rst history
�
h
~T;m~T

�
at which the menu m~T contains a contract (x~T; q~T) accepted with

positive probability and for which �
�
h
~T;m~T; (x~T; q~T)

�
> p (we set ~T =1 if the event does

not occur in �nite time). Then we have:

VF
�
ht
�
= E(�;�)

24(1� �) ~T�1X
�=t

���t�H (q� ) + If~T<1g�
~T�t
�
VF

�
h
~T;m~T

�
+WH

�
h
~T;m~T

��
jht
35

WL

�
ht
�
= E(�;�)

24(1� �) ~T�1X
�=t

���t��q� + If~T<1g�
~T�t
�
WL

�
h
~T;m~T

�
�WH

�
h
~T;m~T

��
jht; L

35
WLH

�
ht
�
> E(�;�)

24(1� �) ~T�1X
�=t

���t��q� � If~T<1g�
~T�tWH

�
h
~T;m~T

�
jht; H

35
where WLH (h

t) denotes the low type�s continuation payo¤ at ht if he mimics the high type

(at ht and at any history that follows).

The argument behind this result is simple and consists in a change in the timing of

transfers. To see how this works, consider a history ht at which WH (h
t) = 0: Let mt be

a menu o¤ered (with positive probability) by the �rm at ht and let (xt; qt) be a contract

accepted by the high type. Let ht+1 denote the history (ht;mt; (xt; qt)) : If WH (h
t+1) = 0;

then we clearly have xt = �Hqt+�: If insteadWH (h
t;mt; (xt; qt)) > 0, then we increase the

transfer xt by the amount �
(1��)WH (h

t+1) : Clearly, the new transfer is equal to �Hqt + �:

At the same time, for every menu mt+1 o¤ered at ht+1; we decrease all the transfers of the

contracts in mt+1 by the amount 1
(1��)WH (h

t+1;mt+1) : These changes leave the parties�

continuation payo¤s unchanged. We repeat this procedure in period t+ 1; : : : ; ~T� 1:

5.1 High Belief Case: p > p̂

We proceed with the analysis of the game when the prior is above p̂: Recall that that when

the prior belongs to
�
pC ; 1

�
the unique equilibrium outcome is the �ring allocation. Our
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goal is to show that this result extends in the limit, as � goes to one, if p0 > p̂. The

statement of Proposition 2 de�nes the notion of closeness to the �ring allocation. A related

and useful notion of closeness is brought by our next de�nition, where we de�ne �ring

regions. When the �rm�s belief falls in a �ring region, both the expected discounted length

of the �rm�s relationship with the high type as well as the low type�s continuation payo¤

vanish as the parties become arbitrarily patient.

De�nition 2 The interval [p; 1] is a �ring region if there exist �K > 0 and �� < 1 such that

the following holds. Fix � > �� and an arbitrary PBE (�; �) : Consider a history ht at which

� (ht) > p: Then we have:
i) E(�;�)

h
(1� �)

XT�1

�=t
���tjht; H

i
; the expected discounted time until the high type quits

the relationship, is bounded by �K (1� �) ;
ii) VF (ht; (�; �) ; H); the �rm�s continuation payo¤ at the history ht conditional on type

H; is bounded by �K (1� �) ;
iii) WL (h

t; (�; �)) ; the low type�s continuation payo¤ at the history ht; is bounded by
�K (1� �) :

Our next result bounds the expected length of the relationship and the parties�payo¤

when the �rm�s menu contains a contract that leads to a �ring region.

Lemma 5 Suppose that [p; 1] is a �ring region. There exist K > 0 and ~� < 1 such that for

every � > ~� the following holds. Let (�; �) be a PBE and consider an arbitrary history ht

with � (ht) < p: Suppose that at ht the �rm o¤ers a menu mt containing a contract
�
xLt ; q

L
t

�
accepted with positive probability and for which

�
�
ht;mt;

�
xLt ; q

L
t

��
> p

Then we have:

i) E(�;�)
h
(1� �)

XT�1

�=t
���tjht;mt; H

i
; the expected discounted time until the high type

quits the relationship, is bounded by K (1� �) ;
ii) VF (ht;mt; (�; �) ; H); the �rm�s continuation payo¤ at the history (ht;mt) conditional

on type H; is bounded by K (1� �) ;
iii) WL (h

t;mt; (�; �)) ; the low type�s continuation payo¤ at the history (ht;mt) ; is

bounded by K (1� �) :
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This result is closely connected to Lemma 3 which establishes that separation with

employment cannot occur for large values of the discount factor. In fact, following the

acceptance of a contract
�
xLt ; q

L
t

�
that leads to the �ring region, the low type�s continuation

payo¤ is close to zero. Suppose the �rm�s relationship with the high type is long lasting.

In this case, only a large transfer xLt can prevent the low type from mimicking the high

type. But then it becomes pro�table for the high type to accept the contract
�
xLt ; q

L
t

�
and

then quit.

We are now ready to state the key result for the region of high beliefs.

Lemma 6 For every " 2 (0; 1� p̂) the interval [p̂+ "; 1] is a �ring region.

Proof of Lemma 6.
For every p > p̂ let f (p) 2 [0; p� p̂] be de�ned by

f (p)

p
�0H (0) +

�
1� f (p)

p

�
�H (q

�
H) = (p� f (p))�L (q�L) (2)

It is easy to check that the function f : [p̂; 1] ! [0; 1� p̂] is strictly increasing and
satis�es f (p̂) = 0:15

The proof is by induction. We set p (1) = pC and p (n) = p (n� 1)� f(p(n�1))
2

for

n = 2; 3; : : : : Clearly, the interval [p (1) ; 1] is a �ring region. We now prove the inductive

step.

Claim 2 Suppose that the interval [p; 1] ; p 2 (p̂; 1) ; is a �ring region. Then
h
p� f(p)

2
; 1
i

is also a �ring region.

Fix � and a PBE (�; �) and assume, without loss of generality (see Claim 1), that

WH (h
0) = 0. To simplify the exposition, we bound the expected length of the relationship

(when the worker is of typeH) and the parties�continuation payo¤s at the empty history h0:

However, our bounds apply to any history ht with � (ht) 2
h
p� f(p)

2
; p
�
:16 It is convenient

to start with the �rst property of a �ring region and show that the expected discounted

time until the high type quits is bounded by K (1� �) (for � large). We then use this result
to establish the other two properties of a �ring region.

15Recall that the function �H (�) is concave and, therefore, �0H (0) > �0H (0) q�H > �H (q�H) :
16This is because the continuation play starting at some history ht is an equilibrium of the original game

(when the prior is equal to the �rm�s belief at ht).
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We let ~T 2N [ f1g denote the random time that stops the play at the �rst history�
h
~T;m~T

�
at which the menu m~T contains a contract (x~T; q~T) accepted with positive prob-

ability and for which �
�
h
~T;m~T; (x~T; q~T)

�
> p:

Recall that [p; 1] is a �ring region and notice that properties i) and ii) in Lemma 5

immediately imply that the high type�s continuation payo¤ at time ~T is close to zero when
� is large (in fact, WH

�
h
~T;m~T

�
is bounded above by WL

�
h
~T;m~T

�
). Thus, it follows from

Lemma 4 and Lemma 5 that there exist K > 0 and �� < 1 such that for � > �� we can bound

the parties�payo¤s as follows:

VF (h
0) 6 �VF (h

0) := E(�;�)

24(1� �) ~T�1X
t=0

�t�H (qt) + If~T<1g�
~T�
�
h
~T
�
�L (q

�
L)

35+K (1� �)
WL (h

0) 6 �WL (h
0) := E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjL

35+K (1� �)
WLH (h

0) > WLH (h
0) := E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjH

35�K (1� �)
(3)

Furthermore, K and �� are such that for every � > �� the length of the high type�s

relationship is bounded as follows (this also follows from Lemma 5):

E(�;�)

"
(1� �)

T�1X
t=0

�tjh0; H
#
6 E(�;�)

24(1� �) ~T�1X
t=0

�tjh0; H

35+K (1� �) (4)

Recall that for any equilibrium (�; �), VF (h0) is bounded below by p0�L (q�L) and

WL (h
0) must be larger than WLH (h

0) : This and the inequalities in (3) imply �VF (h0) >
p0�L (q

�
L) and �WL (h

0) > WLH (h
0) : We now show that the last two inequalities can be si-

multaneously satis�ed only if the expected discounted length of the high type�s relationship

shrinks to zero as � goes to one. Formally, we will prove the following result.

Fact 1 Fix K > 0 and p > p̂. There exists K 0 > 0 such that, for every p0 2
h
p� f(p)

2
; p
i
;

for every �; and for every PBE (�; �) (with WH (h
0; (�; �)) = 0) the following holds. Given

K and (�; �) compute �VF (h0) ; �WL (h
0) ; and WLH (h

0) as in (3). If �VF (h0) > p0�L (q
�
L)

and �WL (h
0) > WLH (h

0) ; then E(�;�)
h
(1� �)

XT�1

t=0
�tjh0; H

i
6 K 0 (1� �) :
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To prove this fact, we apply mechanism-design and information-design techniques to

our setting. We take a PBE (�; �) and construct a direct mediated mechanism that de-

livers the payo¤ �VF (h0) to the �rm, the payo¤ �WL (h
0) to the low type if he announces

his type truthfully, and the payo¤WLH (h
0) to the low type if he lies about his type. The

direct mechanism is as follows. The worker reveals his private information to a designer

who, in turn, chooses an outcome and reports it to the �rm. The outcome consists of a

history h~T of the game and a message in fm0;mpg : In particular, if the worker announces
the low type, then the designer chooses the outcome

�
h
~T;mp

�
with probability Pr

�
h
~TjL
�
;

the probability of the history h~T when the worker�s type is low and the parties play the

equilibrium (�; �) : On the other hand, if the worker announces the high type, then the

designer chooses the outcome
�
h
~T;mp

�
with probability Pr

�
h
~TjH

�
�(h~T)(1�p)
(1��(h~T))p

and the out-

come
�
h
~T;m0

�
with probability Pr

�
h
~TjH

��
1� �(h~T)(1�p)

(1��(h~T))p

�
: The randomization between

mp and m0 is chosen in such a way that upon observing any outcome
�
h
~T;mp

�
the �rm�s

belief is equal to p. In fact, notice that

Pr(Ljh~T;mp)
Pr(Hjh~T;mp)

=
p0 Pr(h~TjL)

(1�p0) Pr(h~TjH)
�(h~T)(1�p)
(1��(h~T))p

=

=

0@ p0 Pr
�
h
~TjL
�

(1� p0) Pr
�
h~TjH

�
1A

| {z } 
�(h~T)

1��(h~T)

!
�
�
1��(h~T)
�(h~T)

�
�
�

p
1�p

�
= p

1�p

Clearly, upon observing any outcome
�
h
~T;m0

�
the �rm�s belief is equal to zero.

We now turn to the payo¤s of the �rm and the low type. The �rm�s payo¤ depends

only on the outcome and not on the message sent by worker to the designer. Consider an

arbitrary history h~T =
�
m0; (x0; q0) ; : : : ;m~T;

�
x~T�1; q~T�1

��
: If the outcome is

�
h
~T;mp

�
; the

�rm�s payo¤ is equal to:

(1� �)
~T�1X
t=0

�t�H (qt) + If~T<1g�
~Tp�L (q

�
L) +K (1� �)
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If the outcome is
�
h
~T;m0

�
; the �rm�s payo¤ is equal to:

(1� �)
~T�1X
t=0

�t�H (qt) +K (1� �)

It is immediate to check that if every type reveals his type truthfully, then the �rm�s

expected payo¤ is equal to �VF (h0) :

Consider now the low type. His payo¤depends both on the outcome and on the message

that he sends to the designer. First, if the outcome is either
�
h
~T;mp

�
or
�
h
~T;m0

�
; then

the low type obtains a payo¤ equal to

(1� �)
~T�1X
t=0

�t��qt

In addition, the low type obtains an extra payo¤ which is equal to K (1� �) if he is
honest, and equal to �K (1� �) if he lies to the designer. It follows that the low type�s
expected payo¤ is equal to �WL (h

0) if he reveals his type truthfully, and equal to WLH (h
0)

if he lies to the mediator.

Recall that the low type�s incentive compatibility constraint �WL (h
0) > WLH (h

0) is

satis�ed since it is slacker than the equilibrium constraint WL (h
0) > WLH (h

0). There-

fore, we say that the mechanism is incentive compatible (we assume that the high type is

sincere).17

It is natural to ask why we introduced the messages m0 and mp in the mechanism given

that they do not a¤ect the worker�s payo¤s and the �rm is a passive player in this construc-

tion. In particular, there exists a payo¤ equivalent and incentive compatible mechanism

in which the designer chooses only the history h~T (with probabilities that depend on the

worker�s report) and the �rm�s payo¤ is equal to

(1� �)
~T�1X
t=0

�t�H (qt) + If~T<1g�
~T�
�
h
~T
�
�L (q

�
L) +K (1� �)

The reason is that the additional messages allow us to classify all the histories h~T into

two large classes, depending on whether they are associated to the message m0 or to the

17We (weakly) enlarge the set of incentive compatible mechanisms by assuming sincere behavior of the
high type.
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message mp: Recall that when the �rm observes the message mz; z = 0; p; its belief is equal

to z: Thus, by the martingale property of the beliefs (see Aumann and Maschler (1995)

and Kamenica and Gentzkow (2011)), we conclude that the probability of observing the

message m0 is equal to
�
1� p0

p

�
while the probability of observing the message mp is equal

p0
p
:

This allows us to rewrite the �rm�s payo¤ �VF (h0) as follows:

�VF (h
0) =

�
1� p0

p

�
E(�;�)

24(1� �) ~T�1X
t=0

�t�H (qt) jm0

35+
p0
p
E(�;�)

24(1� �) ~T�1X
t=0

�t�H (qt) + If~T<1g�
~Tp�L (q

�
L) jmp

35+K (1� �)
We now consider the low type�s incentive compatibility constraint. Fix an arbitrary out-

come
�
h
~T;mp

�
and let Pr

�
h
~T;mp

�
denote the ex-ante probability of the outcome. Recall

that the �rm�s belief upon observing the outcome
�
h
~T;mp

�
is equal to p: This immediately

implies:

Pr
�
h
~T;mp

�
=
p0
p
Pr
�
h
~T;mpjL

�
=
1� p0
1� p Pr

�
h
~T;mpjH

�
We conclude that the outcome

�
h
~T;mp

�
is reached with probability p

p0
Pr
�
h
~T;mp

�
when

the worker announces that his type is low, and with probability 1�p
1�p0 Pr

�
h
~T;mp

�
when the

worker announces that his type is high.

Similarly, an outcome
�
h
~T;m0

�
is reached with probability 1

1�p0 Pr
�
h
~T;m0

�
if the

worker announces the high type and with probability zero if the worker announces the

low type (Pr
�
h
~T;m0

�
denotes the ex-ante probability of the outcome).

Combining these observations, we can rewrite the low type�s payo¤s as follows:

�WL

�
h0
�
= E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjmp

35+K (1� �)
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WLH (h
0) =

�
1

1�p0

��
1� p0

p

�
E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjm0

35+
�
1�p
1�p0

��
p0
p

�
E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjmp

35�K (1� �)
We now construct an upper bound �VF (h

0) to �VF (h0) and show that the expected

discounted length of the high type�s relationship is bounded by K 0 (1� �) if �VF (h0) >
p0�L (q

�
L) and �WL (h

0) > WLH (h
0) : Clearly, this will imply Fact 1.

For z = 0; p; we let

�z = E(�;�)

24(1� �) ~T�1X
t=0

�tjmz

35
denote the expected discounted length of the relationship conditional on the message mz;

and let ~qz be de�ned by

E(�;�)

24(1� �) ~T�1X
t=0

�tqtjmz

35 = �z~qz
Using this, the concavity of the function �H (�) and Jensen�s inequality we obtain the

desired bound on �VF (h0):

�VF (h
0) 6 �VF (h

0) :=
�
1� p0

p

�
�0�H (~q0) +

p0
p
[�p�H (~qp) + (1��p) p�L (q�L)] +K (1� �)

At the same time, we can express �WL (h
0) and WLH (h

0) as:

�WL (h
0) = �p~qp�� +K (1� �)

WLH (h
0) =

�
1

1�p0

��
1� p0

p

�
�0~q0�� +

�
1�p
1�p0

��
p0
p

�
�p~qp�� �K (1� �)

Finally, using the de�nition of �0 and �p and inequality (4), we obtain the following

bound to the length of the high type�s relationship:

E(�;�)

"
(1� �)

T�1X
t=0

�tjh0; H
#
6
�

1

1� p0

��
1� p0

p

�
�0 +

�
1� p
1� p0

��
p0
p

�
�p +K (1� �)
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The following claim concludes the proof of Fact 1.

Claim 3 Fix K > 0 and p > p̂. There exists K 0 > 0 such that, for every p0 2
h
p� f(p)

2
; p
i
;

for every �; and for all (�z; ~qz) 2 [0; 1]2, z = 0; p; the inequalities�
1� p0

p

�
�0�H (~q0) +

p0
p
[�p�H (~qp) + (1��p) p�L (q�L)] +K (1� �) > p0�L (q�L) (5)

�p~qp��+K (1� �) >
�

1

1� p0

��
1� p0

p

�
�0~q0��+

�
1� p
1� p0

��
p0
p

�
�p~qp���K (1� �)

(6)

are simultaneously satis�ed only if�
1

1� p0

��
1� p0

p

�
�0 +

�
1� p
1� p0

��
p0
p

�
�p +K (1� �) 6 K 0 (1� �) (7)

Notice that inequalities (5) and (6) capture the constraints �VF (h0) > p0�L (q
�
L) and

�WL (h
0) > WLH (h

0) ; while the left hand side of inequality (7) represents the upper bound

to the expected discounted length of the high type�s relationship.

The proof of Claim 3 is tedious and relegated to Appendix C. The logic behind this claim

is better understood when one considers the problem of maximizing �VF (h0) (with respect to

�z and ~qz, z = 0; p) subject to the incentive compatibility constraint �WL (h
0) > WLH (h

0) :

Clearly, �VF (h0) is maximized by setting �0 equal to one, ~q0 equal to q�H ; and �p equal to

zero (recall that p > p̂ and, therefore, p�L (q�L) > �H (q
�
H) > �H (~qp) for any ~qp). However,

this would violate the low type�s incentive compatibility constraint. Hence the following

trade-o¤emerges. To increase the �rm�s payo¤by increasing �0 and satisfying the incentive

compatibility constraint (6) it is necessary to increase �p as well, which decreases the �rm�s

payo¤. Notice that when the prior p0 is close to p,
�
1� p0

p

�
�0 and ~q0 have a small impact

both on the �rm�s payo¤ and the constraint. In contrast, �p has a small impact on the

constraint, and a large (negative) impact on the �rm�s payo¤. We conclude that for �

and p0 su¢ ciently large, the optimal values of
�
1� p0

p

�
�0 and �p must be close to zero.

Therefore, if we could maximize the �rms�s payo¤ subject to �WL (h
0) > WLH (h

0) the

solution would be close to a �ring allocation, yielding a payo¤ close to p0�L (q�L) : For the

same reason, any allocation that satis�es �WL (h
0) > WLH (h

0) and that is not close to a

�ring allocation leads to a payo¤ for the �rm smaller than p0�L (q�L), hence violating (5).
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We have shown that the �rst property of a �ring region holds: there exists �K > 0

such that E(�;�)

"
(1� �)

T�1X
t=0

�tjh0; H
#
� (1� �) �K: We now turn to the remaining two

properties. To verify the second property (the �rm�s payo¤ conditional on type H shrinks

to zero weakly faster than 1� �), notice that

VF (h
0;H) 6 v (1)E(�;�)

"
(1� �)

T�1X
t=0

�tjh0; H
#
6 v (1) �K (1� �)

Finally, we use the result above to bound the low type�s continuation payo¤ WL (h
0)

(third property). We have

p0�L (q
�
L) 6 VF (h0) 6 (1� p0)VF (h0;H) + p0

�
�L (q

�
L)�WL

�
h0
��

which implies

WL

�
h0
�
6 1� p0

p0
VF (h

0;H) <
1� p̂
p̂
VF (h

0;H) 6 1� p̂
p̂
v (1) �K (1� �)

This concludes the proof of Claim 2 and consequently of Lemma 6. �

The argument above implies property i) of Part I of Proposition 2: limn!1E(�n;�n)
�
�Tn j H

�
=

1: Suppose that the rest of Part I of Proposition 2 does not hold. This means that either

lim sup
n!1

E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn jqt � q�Lj jL
#
> 0

or (notice that the �rm�s payo¤ conditional on type L cannot be negative, otherwise the

total payo¤ would be smaller than �H (q�H))

lim sup
n!1

E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn (xt � �Lq�L � �) jL
#
> 0

Then it is possible to �nd a subsequence of equilibria for which the �rm�s payo¤ condi-

tional on type L converges to a value smaller than �L(q�L): In light of property i), this would

imply that the �rm�s limit payo¤ would be strictly smaller than p0�L(q�L); a contradiction.
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5.2 Low Belief Case: p < p̂

We now turn to the case of a belief p smaller than p̂: We start with a simple result which

shows that the equilibrium belief cannot grow too quickly around p̂ when the parties are

su¢ ciently patient.

Lemma 7 For every " > 0 there exists �� < 1 satisfying the following. For every PBE

(�; �) of a game in which � > ��; it is impossible to �nd a history ht with � (ht) < p̂ � "
and at which the �rm o¤ers a menu mt containing a contract (xt; qt) accepted with positive

probability and such that � (ht;mt; (xt; qt)) > p̂+ ":

Recall that for every " > 0; the interval [p̂+ "; 1] is a �ring region. Therefore, it

follows from Lemma 5 that if � is close to one and the belief jumps from � (ht) < p̂� " to
� (ht;mt; (xt; qt)) > p̂+"; the �rm�s continuation payo¤at ht must be close to � (ht)�L (q�L) :

But then the �rm�s payo¤would be smaller than �H (q�H) (since � (h
t) < p̂�" and p̂�L (q�L) =

�H (q
�
H)), contradicting Lemma 1.

We now outline the proof of Part II of Proposition 2 (see Appendix C for the for-

mal proof). Consider the �rst result which asserts that limn!1 E(�n;�n)
�
�Tn
�
= 0. By

contradiction, let us assume that there exists a sequence f�n; (�n; �n)g
1
n=1 such that �n

converges to one, (�n; �n) is a PBE of the game with discount factor equal to �n; and

limn!1 E(�n;�n)
�
�Tn
�
= � > 0: To ease the notation, in what follows we suppress the index

n and write � and (�; �) to denote an arbitrary element of the sequence. Without loss of

generality (see Claim 1), we assume that the equilibrium (�; �) yields to the high type a

payo¤ equal to zero.

Fix a small " and let ~T 2N [ f1g denote the random time that stops the play at the

�rst history
�
h
~T;m~T

�
at which the menu m~T contains a contract (x~T; q~T) accepted with

positive probability and for which �
�
h
~T;m~T; (x~T; q~T)

�
> p̂ + ": It follows from Lemma 4,

Lemma 5, and from the fact that [p̂+ "; 1] is a �ring region that for � close to one we can

bound the �rm�s equilibrium payo¤ as follows:

VF (h
0) 6 E(�;�)

24(1� �) ~T�1X
t=0

�t�H (qt) + If~T<1g�
~T�
�
h
~T
�
�L (q

�
L)

35+ " 6
E(�;�)

24(1� �) ~T�1X
t=0

�t�H (qt) + If~T<1g�
~T (p̂+ ")�L (q

�
L)

35+ "
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where the second inequality holds because the belief at the history h~T is bounded above

(by de�nition) by p̂+ ":

Notice that we can take " to be arbitrarily small. Therefore, since �H (q�H) = p̂�L (q
�
L) ;

and q�H is the unique maximizer of �H (�) ; the inequality above implies that

E(�;�)

24(1� �) ~T�1X
t=0

�t jq�H � qtj

35 � 0 (8)

for � su¢ ciently large. If this were not the case, then the �rm�s payo¤ would be strictly

smaller than �H (q�H) (again, for � su¢ ciently large).

We now examine the relation between E(�;�)
�
�T
�
and E(�;�)

h
�
~T
i
when � is close to one.

First, at the history
�
h
~T;m~T

�
the expected discounted length of the relationship with the

high type is close to zero (see Lemma 5 and recall that the interval [p̂+ "; 1] is a �ring

region). Second, the �rm�s belief at h~T must be close to p̂ (a value of �
�
h
~T
�
far away

from p̂ would contradict Lemma 7). Finally, recall that for � large, E(�;�)
�
�T
�
is close (by

assumption) to �: Putting these observations together and using Bayes rule, we conclude

that E(�;�)
h
�
~T
i
is close to �

1�p̂ for � close to one.

The last part of the proof analyzes the low type�s incentives to follow the equilibrium

strategy and derives a contradiction. Let Pr
�
h
~T
�
denote th (ex-ante) probability of reach-

ing the history h~T and assume that the �rm�s belief �
�
h
~T
�
is close to p̂: Bayes�rule tells us

that h~T is reached with probability close to p̂
p0
Pr
�
h
~T
�
if the low type follows his strategy

�L, and with probability close to 1�p̂
1�p0 Pr

�
h
~T
�
if he mimics the high type and plays the

strategy �H :

Using the de�nition of ~T (and the fact that [p̂+ "; 1] is a �ring region) we can ap-
proximate the low type�s payo¤s as follows. For � close to one, �L yields a payo¤ close

to

E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjL

35 � ��q�HE(�;�)
24(1� �) ~T�1X

t=0

�tjL

35 �
��q�H

�
1� E(�;�)

h
�
~TjL
i�
� ��q�H

�
1� p̂

p0

�
1�p̂

� (9)

where the �rst relation follows from (8), while the third relation is a consequence of Bayes�

rule.
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Similarly, the strategy �H yields a payo¤ close to

E(�;�)

24(1� �) ~T�1X
t=0

�t��qtjH

35 � ��q�HE(�;�)
24(1� �) ~T�1X

t=0

�tjH

35 �
��q�H

�
1� E(�;�)

h
�
~TjH

i�
� ��q�H

�
1� 1�p̂

1�p0
�
1�p̂

� (10)

Hence, since p0 < p̂ and � > 0; (9) is greater than (10), implying the existence of a

pro�table deviation for values of � close to one.

Finally, the last two results in Proposition 2 Part II are direct consequences of the result

above. Intuitively, if the high type never quits the relationship, the best option for the �rm

is to implement the pooling allocation.

6 Rehiring

In the model analyzed so far, the worker�s decision to reject all the contracts in the menu

is an irreversible action that ends the relationship. In other words, the �rm cannot rehire

the worker after a period of unemployment. As we showed above, this impairs the �rm�s

ability to screen the worker. Once the worker reveals his type, his continuation payo¤must

be equal to zero. The �rm can a¤ord to pay the reservation wage because the worker has

no other alternative than ending the relationship.

This logic does not apply when rehiring is possible. In this case, the worker can credibly

threaten the �rm to reject o¤ers that pay slightly above the reservation wage because he

expects to obtain a large payo¤ in the rest of the relationship. As we will see below, with

rehiring it is possible to sustain equilibrium outcomes in which the worker�s payo¤ remains

strictly positive even when his type is known to the other party. This, in turn, make it

easier for the �rm to screen the worker.

There are di¤erent ways to break the automatic link (present in the benchmark model)

between the decision to reject all the contracts and the decision to end the relationship.

One possibility is to assume that the relationship lasts forever and quitting is now allowed.

Another possibility is to add to the benchmark model the option for the worker to reject

all the contracts and remain in the relationship. In the rest of the section, we analyze these

extensions of the model.
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We start with the in�nitely repeated game in which, in each period, the �rm proposes a

menu of contracts. The worker either accepts a contract in the menu or rejects all of them.

Both parties obtain a payo¤ equal to zero in each period in which the worker rejects all the

contracts in menu.

Consider the standard mechanism design problem with commitment. We say that

the payo¤s (VF;H ; VF;L;WH ;WL) are incentive-compatible and ex-post strictly individually

rational if there exists an incentive compatible direct mechanism f(xH ; qH) ; (xL; qL)g ;
(xi; qi) 2 R++ � [0; 1] for i = H;L; satisfying:
i) For i = H;L; the �rm�s payo¤ VF;i when the worker is of type i is strictly positive:

VF;i := v (qi)� xi > 0;
ii) For i = H;L; type i�s payo¤ is strictly positive: Wi := xi � �iqi � � > 0:
The main result of this section is a folk theorem. We show that any pro�le of incentive-

compatible and ex-post strictly individual rational payo¤s can be achieved in the in�nitely

repeated game when the parties are su¢ ciently patient.

Proposition 3 For every tuple (VF;H ; VF;L;WH ;WL) 2 R4++ of incentive-compatible and
ex-post strictly individually rational payo¤s there exists �y 2 (0; 1) such that for every

� > �y there exists a perfect Bayesian equilibrium (of in�nitely repeated game) that leads to
such payo¤s.

The proof of Proposition 3 is in Appendix E. Fix a tuple (VF;H ; VF;L;WH ;WL) of

incentive-compatible and ex-post strictly individually rational payo¤s and let f(xH ; qH) ; (xL; qL)g
denote the corresponding direct mechanism. We construct an equilibrium which consists

of two phases. The screening phase takes place in the �rst period when the �rm o¤ers the

menu f(xH ; qH) ; (xL; qL)g : Each type i = H;L selects the menu (xi; qi) and the �rm learns
the worker�s type. The post-screening phase with type i = H;L starts in the second period

and implements the contract (xi; qi) in every period.

In equilibrium, the �rm never updates its belief in the post-screening phase. It is there-

fore necessary to show that in the game with complete information with type i; there exists

an equilibrium that implements (xi; qi) in every period (when the parties are su¢ ciently

patient). The following lemma establishes this important result.

Lemma 8 Consider the in�nitely repeated game with complete information in which the
�rm interacts with type i = H;L: Let (xi; qi) be a contract yielding the payo¤ VF;i =
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v (qi)�xi > 0 to the �rm and the payo¤ Wi = xi� �iqi�� > 0 to the worker. There exists
�y 2 (0; 1) such that for every � > �y there exists a subgame perfect equilibrium that leads

to the payo¤s (VF;i;Wi) :

Proof of Lemma 8.
Fix " 2 (0;min fVF;i;Wig). Let (xi; q�i ) ; xi = �+ �iq�i + "

2
; denote the e¢ cient contract

that yields the payo¤ "
2
to the worker. Also, let (�xi; q�i ) ; �xi = v(q

�
i )� "

2
; denote the e¢ cient

contract that yields the payo¤ "
2
to the �rm.

Consider the following strategy pro�le, generated by a simple three states automaton.

State (i; 0): This is the initial state. The automaton prescribes that the �rm o¤ers the
menu f(xi; qi)g and the worker accepts the contract (xi; qi). The state remains (i; 0) unless
there is a deviation by the �rm, in which case the state changes to (i; 1) irrespective of

the worker�s decision. When the �rm deviates and o¤ers a menu di¤erent from f(xi; qi)g ;
the worker accepts the contract which maximizes his current payo¤, provided that this is

positive (here and in what follows, we require the worker to select the contract with the

smallest index if there are multiple contracts yielding the highest current payo¤). Finally,

the worker rejects all the contracts if they all yield a negative payo¤.

State (i; 1): The automaton prescribes that the �rm o¤ers the menu f(�xi; q�i )g and the
worker accepts (�xi; q�i ). If the �rm o¤ers f(�xi; q�i )g ; the state remains (i; 1) irrespective
of the worker�s decision. Suppose instead that the �rm deviates and o¤ers the menu

m 6= f(�xi; q�i )g : The worker rejects every contract (x; q) with x < v (1) + � and selects,

among the remaining ones, the contract that yields the highest current payo¤, provided

that this is positive. If the worker accepts a contract (x; q) with x < v (1) + �; the state

changes to (i; 2) : In all other cases, the state remains (i; 1) :

State (i; 2): The automaton prescribes that the �rm o¤ers the menu f(xi; q�i )g and the
worker accepts (xi; q

�
i ). The state remains (i; 2) unless there is a deviation by the �rm. In

this case, the state changes to (i; 1) irrespective of the worker�s decision. When the �rm

deviates and o¤ers a menu di¤erent from f(xi; q�i )g ; the worker accepts the contract which
maximizes his current payo¤, provided that this is positive.

This concludes the description of the automaton. We now verify that this strategy pro�le

is a subgame perfect equilibrium for values of � su¢ ciently large. The �rm�s equilibrium

payo¤s are VF;i in state (i; 0) ; "2 in state (i; 1), and v (q
�
i )� xi in state (i; 2) : The worker�s

equilibrium payo¤s are Wi in state (i; 0) ; �xi� �iq�i �� in state (i; 1) ; and "
2
in state (i; 2) :
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Thus, the �rm obtains the largest payo¤ in state (i; 2) and the lowest payo¤ in state (i; 1) ;

while the worker obtains the largest payo¤ in state (i; 1) and the lowest payo¤ in state

(i; 2) : In fact, notice that VF;i+Wi = �i (qi) and �i (q�i ) > �i (qi) for every qi: This and the
fact that " 2 (0;min fVF;i;Wig) imply:

v (q�i )� xi > VF;i > v (q�i )� �xi = "
2

�xi � �iq�i � � > Wi > xi � �iq�i � � = "
2

It is then straightforward to check that for � su¢ ciently large one-shot deviations from

the automaton described above are not pro�table. �
Recall that the mechanism f(xH ; qH) ; (xL; qL)g is incentive compatible. Thus, if the

post-screening phase with type i = H;L implements the contract (xi; qi) in every period,

then in the screening phase both types of the worker have an incentive to reveal their types.

The rest of the proof of Proposition 3 provides a complete description of the equilibrium

strategies and beliefs and veri�es that sequential rationality is satis�ed at all histories.

Consider now a di¤erent extension of the benchmark model in which the worker has the

option to reject all the contracts and remain in the relationship. It is easy to extend the

result of Proposition 3 to this setup. To see this, notice that the strategy of rejecting all the

contracts and quitting is weakly dominated by the strategy of rejecting all the contracts

and remaining in the relationship. Once we remove the strategy of quitting, we are back

to the in�nitely repeated game analyzed above.

To sum up, our analysis shows that when the relationship can continue after the worker

rejects all the contracts (either because the game is in�nitely repeated or because the worker

has the option to reject all the contracts and stay in the relationship), many screening

opportunities are available to the �rm, including separation with employment. This is in

contrast with the benchmark model in which the relationship ends automatically after the

worker rejects all the contracts. In this case, only the pooling and the �ring allocations can

be implemented when the parties are su¢ ciently patient.

7 Concluding Remarks

We studied a dynamic-contracting model with adverse selection and limited commitment.

In our benchmark model, the relationship ends when the worker rejects all contracts from

the �rm�s menu. We characterized the limit equilibrium outcome as the parties become
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arbitrarily patient. If the prior probability that the worker has a low cost is low, the �rm

o¤ers a pooling contract in every period. In contrast, if this prior probability that the

worker has a low cost is high, the �rm �res the worker with a high cost at the beginning of

the relationship.

In this paper, the worker�s action is veri�able. In some situations the agent�s e¤ort

leads to stochastic outcomes and monitoring is thus imperfect. This would add a moral

hazard component to the screening problem. We leave this interesting extension for future

research.

Appendix A

Proof of Lemma 2.
First, assume that � (ht) > pC (recall that pC 2 (0; 1) denotes the critical value of

the prior above which the menu f(�Lq�L + �; q�L)g is optimal when there is commitment).
As explained in Section 3, in any PBE (�; �) ; after a history ht with � (ht) > pC ; the

�rm�s menu in period t; t+ 1; : : : ; contains the contract (�Lq�L + �; q
�
L) and this contract is

accepted by the low type (the high type quits the relationship in period t).

Next, assume that � (ht) = 0: Again, the �rm�s continuation payo¤ is bounded above

by �H (q�H) ; and the �rm can guarantee this payo¤ by o¤ering the menu f(�Hq�H + �; q�H)g
in every period. Therefore, in equilibrium, the �rm�s menu in period t; t + 1; : : : ; must

contain the contract (�Hq�H + �; q
�
H). Clearly, the low type strictly prefers to accept this

contract rather than quit the relationship.

Finally, consider the case � (ht) 2
�
0; pC

�
and let mt denote a menu o¤ered by the

�rm at ht. By contradiction, assume that the low type quits the relationship with positive

probability. This immediately implies that the high type must accept one of the contracts

in mt with positive probability. In fact, if the high type quits with probability one, then

the �rm�s payo¤ is strictly smaller than � (ht)�L (q�L), contradicting Lemma 1.

Let mH
t � mt denotes the set of contracts in mt accepted by the high type with positive

probability. We claim that there is a contract
�
xHt ; q

H
t

�
2 mH

t such that

E(�;�)

"
(1� �)

T�1X
�=t

���tq� jht;
�
xHt ; q

H
t

�
; H

#
> 0; (11)

where the left hand side of the inequality denotes the expected discounted total quality

delivered by the high type after he accepts the contract
�
xHt ; q

H
t

�
(T 61 denotes the
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random time at which the worker quits). In fact, if inequality (11) is violated for all the

contracts in mH
t , then we have

VF (h
t; (�; �)) < � (ht)�L (q

�
L)+

(1� � (ht))
X

(xt;qt)2mH
t

�Ht ((xt; qt) jht;mt)E(�;�)

"
(1� �)

T�1X
�=t

���t (v (0)� �) jht; (xt; qt) ; H
#
6

� (ht)�L (q
�
L) ;

where the �rst inequality follows from the fact that the low type quits with positive prob-

ability and from the fact that the high type�s strategy must be individually rational (see

inequality (12) below). The second inequality uses v (0)� � 6 0:
Finally, notice that if

�
xHt ; q

H
t

�
2 mH

t ; then

E(�;�)

"
(1� �)

T�1X
�=t

���t (x� � �Hq� � �) jht;
�
xHt ; q

H
t

�
; H

#
> 0; (12)

where the left hand side denotes the high type�s continuation payo¤ after he accepts the

contract
�
xHt ; q

H
t

�
: Inequalities (11) and (12) imply that at the history (ht;mt) the low type

can guarantee a strictly positive payo¤ by accepting the contract
�
xHt ; q

H
t

�
and mimicking

the high type�s behavior in every period t + 1; t + 2; : : : : This shows that the low type�s

decision to rejects all the contracts in mt is not optimal. �

Proof of Lemma 3.
By contradiction, suppose there exist a PBE (�; �) and a history (ht;mt) satisfying

the three properties in Lemma 3. First, consider the history (ht;mt; (xH ; qH)) : The �rm�s

belief will be equal to zero and, in equilibrium, the menu o¤ered by the �rm in period

t+ 1; t+ 2; : : : ; will contain the contract (�Hq�H + �; q
�
H) : Furthermore, the high type will

select this contract in every period. We conclude that following (ht;mt; (xH ; qH)) ; the high

type�s continuation payo¤ (evaluated at the beginning of period t + 1) will be equal to

zero. Furthermore, if the low type deviates and accepts the contract (xH ; qH) ; then his

continuation payo¤ will be at least ��q�H (in fact, the low type can mimic the high type

and accept the contract (�Hq�H + �; q
�
H) in period t+ 1; t+ 2; : : :):

Consider now the history (ht;mt; (xL; qL)) : The �rm�s belief will be equal to one and, in

equilibrium, the low type will accept the contract (�Lq�L + �; q
�
L) in period t+ 1; t+ 2; : : : :
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We conclude that after the history (ht;mt; (xL; qL)) the equilibrium continuation payo¤ of

both types (again, evaluated at the beginning of period t+ 1) is equal to zero.

Clearly, in equilibrium, the worker�s decision must be sequentially rational. Therefore,

the contracts (xH ; qH) and (xL; qL) must satisfy the following IC constraints:

xH � �HqH � � > xL � �HqL � � (13)

and

(1� �) (xL � �LqL � �) > (1� �) (xH � �LqH � �) + ���q�H : (14)

Combining the two constraints we obtain

�H (qL � qH) > xL � xH > �L (qL � qH) +
�

1� ���q
�
H ;

which implies

�� > �� (qL � qH) >
�

1� ���q
�
H :

Clearly, the second inequality cannot be satis�ed if � > �̂: �

Appendix B: Proof of Proposition 1

In this appendix we prove the existence of PBE for generic values of the parameters. In

particular, we construct an equilibrium in which the high type�s payo¤ is equal to zero.

Although not Markovian, in our PBE the �rm and the low type�s equilibrium continuation

payo¤s depend on the �rm�s belief. We use the function V : [0; 1] ! R+ to denote the
�rm�s payo¤ (as function of its belief) and the correspondence � : [0; 1]� R+ to denote the
set of payo¤s of the low type. To simplify the notation, we write � (p) = z for � (p) = fzg :
We also write min� (p) (max� (p)) to denote the smallest (largest) element of � (p) :

For � > �̂ we de�ne V and � as follows:

V (p) = max f�H (q�H) ; p�L (q�L)g ; (15)

� (p) =

8>><>>:
��q�H for p < p̂

[0;��q�H ] for p = p̂

0 for p > p̂

(16)

where p̂ satis�es �H (q�H) = p̂�L (q
�
L) :
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Finally, recall that if � > �̂; then it is impossible to �nd two contracts (xH ; qH) and

(xL; qL) that satisfy the constraints (13) and (14).

Next, we show that for generic values of � smaller than �̂ there exists a pair (V;�)

satisfying a number of properties.

Lemma 9 Fix the parameters (�H ; �L; �; v (�)) : For all but at most two values of � in�
0; �̂
i
; there exists a pair (V;�) satisfying the following conditions:

i) V is continuous and � is upper hemicontinuous;

ii) there exists �p 2 (0; 1) such that V (p) = p��L and � (p) = 0 for p > �p;
iii) there exists p 2 [0; �p] such that V (p) = ��H for p 6 p; � (p) = ��q�H for p < p; and

��q�H 2 �
�
p
�
;

iv) V (p) = ~V (p) for p 2
�
p; �p
�
; and V (p) > ~V (p) for p 2

�
0; p
�
[ (�p; 1) ; where ~V (p)

is de�ned by

~V (p) = max
(qH ;qL)2[0;1]2;x2R;~p6p

1�p
1�~p [(1� �)�H (qH) + �V (~p)] +

p�~p
1�~p [(1� �) (v (qL)� x) + ��L (q

�
L)]

s.t. x� �HqL � � 6 0
(1� �) (x� �LqL � �) = (1� �)��qH + �min� (~p)

(17)

v) If min� (p) < ��q�H and v 2 [min� (p) ;��q�H ] ; there exists p0 2 [0; p] such that
v 2 � (p0) :

Proof of Lemma 9.
We develop an iterative procedure which will deliver the pair (V;�) with the desired

properties.

Step 1
First, we allow the �rm to propose a menu which separates the two types (with em-

ployment). Speci�cally, for every belief p we consider the following optimization problem:

V 1 (p) := max
(qH ;qL)2[0;1]2;x2R

(1� p) [(1� �)�H (qH) + ��H (q�H)] +

p [(1� �) (v (qL)� x) + ��L (q�L)]

s.t. x� �HqL � � 6 0
(1� �) (x� �LqL � �) > (1� �)��qH + ���q�H
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The �rm o¤ers the contracts (�HqH + �; qH) to the high type and the contract (x; qL)

to the low type. Clearly, at the optimum the low type�s IC constraint is binding. Thus, we

can rewrite the problem as

V 1 (p) = max
(qH ;qL)2[0;1]2;x2R

(1� p) [(1� �)�H (qH) + ��H (q�H)] +

p [(1� �)�L (qL) + ��L (q�L)� (1� �)��qH � ���q�H ]
(18)

s.t. qH � qL + �
1��q

�
H 6 0 (19)

We let (q1H (p) ; q
1
L (p)) denote the solution to the above problem. It follows from the

concavity of the functions �H and �L that q1H (p) is uniquely de�ned for p 2 [0; 1) ; and q1L (p)
is uniquely de�ned for p 2 (0; 1] : Furthermore q1H (�) and q1L (�) are upper hemicontinuous
(theorem of the maximum), and V 1 (�) is continuous (again, theorem of the maximum)

and convex (notice that the pairs (qH ; qL) satisfying constraint (19) do not vary with p).

Finally, it immediate to check that for any p; q1H (p) 6 q�H , and q1L (p) > q�L, and that q1H (�)
is decreasing in p:

We now distinguish among di¤erent cases.

Case 1.1. For every p 2 [0; 1] ;

V 1 (p) 6 max f�H (q�H) ; p�L (q�L)g :

In this case, we let V and � be de�ned as in equations (15) and (16), respectively.

Case 1.2. There exists p 2 (0; 1) such that

V 1 (p) > max f�H (q�H) ; p�L (q�L)g : (20)

Notice that

@V 1 (p)

@p
= (1� �)�L

�
q1L (p)

�
+��L (q

�
L)�(1� �)��q1H (p)����q�H�(1� �)�H

�
q1H (p)

�
���H (q�H)

If V 1 (p) > �H (q�H) it must be that

(1� �)�L
�
q1L (p)

�
+ ��L (q

�
L)� (1� �)��qH � ���q�H > �H (q�H)

and, therefore, @V 1 (p) =@pmust be strictly positive at any point p which satis�es inequality

(20).
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Also, recall that V 1 is convex and V 1 (p) 6 p�L (q�L) for every p > pC :We conclude that
the set of beliefs for which inequality (20) holds is an interval

�
p
1
; �p1

�
; with p

1
2 [0; p̂) and

�p1 2
�
p̂; pC

�
:

Case 1.2.1. p
1
= 0:

In this case, q1H (0) = q
�
H :We point out that the case p1 = 0 can arise only if � 6 1� q

�
H

(if � > 1�q�H it is impossible to �nd qL such that the pair (q�H ; qL) satis�es constraint (19)).
We claim that for generic values of �; if p

1
= 0; then

@+V
1 (0) = lim

p#0
(1� �)�L

�
q1L (p)

�
+ ��L (q

�
L)���q�H � �H (q�H)

is strictly positive.

First, for � 6 1� q�H=q�L; q1L (p) = q�L for every p > 0; and thus

@+V
1 (0) = �L (q

�
L)���q�H � �H (q�H) = �L (q�L)� �L (q�H) > 0:

Suppose now that � 2 (1� q�H=q�L; 1� q�H ] and q1H (0) = q�H : Then for each �; there exists
" such that

q1L (p) = q
1
H (p) +

�

1� � q
�
H

for every p 2 [0; "] : Therefore, we have

@+V
1 (0) = (1� �)�L

�
q�H
1� �

�
+ ��L (q

�
L)���q�H � �H (q�H) :

Notice that the function g (�) de�ned by

g (�) = (1� �)�L
�
q�H
1� �

�
+ ��L (q

�
L)���q�H � �H (q�H)

is strictly concave and, therefore, there can be at most two distinct values of � for which

g (�) is equal to zero. This shows that generically, if p
1
= 0; then @+V 1 (p) > 0: In what

follows, we say that the value of � is generic if g (�) 6= 0:
When p

1
= 0 we de�ne V (�; 1) and � (�; 1) as follows:

V (p; 1) =

8<: V 1 (p) for p 6 �p1

p�L (q
�
L) for p > �p1

� (p; 1) =

8>><>>:
(1� �)��q1H (p) + ���q�H for p < �p1

[0; (1� �)��q1H (�p1) + ���q�H ] for p = �p1
0 for p > �p1
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Case 1.2.2. p
1
> 0:

We claim that for every � we have @+V 1
�
p
1

�
> 0: Notice that V 1 (�) cannot be constant

and equal to �H (q�H) in the interval
h
0; p

1

�
: In fact, if V 1 (0) = �H (q

�
H) ; then we have

q1H (0) = q
�
H : This and the �rm�s optimality condition imply that q

1
H (p) is strictly decreasing

in p in a neighborhood of zero, which, in turn, implies the strict convexity of V 1 (�) near
zero. Therefore, we conclude that either V 1 (0) < �H (q�H) or V

1 (0) = �H (q
�
H) and V

1 (�)
is strictly convex in a neighborhood of zero. In either case, V 1 (�) achieves a minimum at

py 2
h
0; p

1

�
and V 1 (py) < �H (q

�
H) = V 1

�
p
1

�
: This and the convexity of V 1 (�) imply

@+V
1
�
p
1

�
> 0:

In this case (p
1
> 0), we de�ne V (�; 1) and � (�; 1) as follows:

V (p; 1) =

8>>><>>>:
�H (q

�
H) for p 6 p

1

V 1 (p) for p 2
�
p
1
; �p1

�
p�L (q

�
L) for p > �p1

� (p; 1) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

��q�H p < p
1h

(1� �)��q1H
�
p
1

�
+ ���q�H ;��q

�
H

i
p = p

1

(1� �)��q1H (p) + ���q�H p 2
�
p
1
; �p1

�
[0; (1� �)��q1H (�p1) + ���q�H ] p = �p1

0 p > �p1

Step 2
We now consider the case of probabilistic separation. That is, the �rm o¤ers two

contracts. The high type chooses the �rst contract, while the low type randomizes between

the two contracts.

For every p > p
1
; we consider the following optimization problem

V 2 (p) := max
(qH ;qL)2[0;1]2;x2R;~p2[p1;minfp;�p1g]

1�p
1�~p [(1� �)�H (qH) + �V (~p; 1)] +

p�~p
1�~p [(1� �) (v (qL)� x) + ��L (q

�
L)]

s.t. x� �HqL � � 6 0
(1� �) (x� �LqL � �) > (1� �)��qH + �min� (~p; 1)
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The second constraint must bind and we can rewrite the problems as

V 2 (p) = max
(qH ;qL)2[0;1]2;~p2[p1;minfp;�p1g]

1�p
1�~p [(1� �)�H (qH) + �V (~p; 1)] +

p�~p
1�~p [(1� �)�L (qL) + ��L (q

�
L)� (1� �)��qH � �min� (~p; 1)]

(21)

s.t. (qH � qL)�� + �
1�� min� (~p; 1) 6 0:

If V 2 (p) 6 V (p; 1) for every p 2 [0; 1] ; then we set V (�) equal to V (�; 1) ; and � (�)
equal to � (�; 1) : On the other hand, if V 2 (p) > V (p; 1) for some p; we distinguish among
di¤erent cases.

Case 2.1. p
1
= 0

First, we assume that p
1
= 0 and consider the generic values of � for which @+V (0; 1) >

0: We show that when the belief is su¢ ciently small the �rm does not bene�t from an

additional possibility of screening the worker.

Claim 4 Assume that p
1
= 0: There exists " > 0 such that V 2 (p) = V (p; 1) for every

p 2 [0; "] :

Proof of Claim 4.
For every p and ~p 6 p de�ne V 2 (p; ~p) as follows:

V 2 (p; ~p) = max
(qH ;qL)2[0;1]2

1�p
1�~p [(1� �)�H (qH) + �V (~p; 1)] +

p�~p
1�~p [(1� �)�L (qL) + ��L (q

�
L)� (1� �)��qH � �min� (~p; 1)]

(22)

s.t. (qH � qL)�� + �
1�� min� (~p; 1) 6 0:

and notice that V 2 (p; 0) = V (p; 1) (recall that � (p; 1) = ��q�H).

We show that for p close to zero, the function V 2 (p; �) is decreasing in ~p: This will prove
our claim.

We let qH (p; ~p) and qL (p; ~p) denote the solution to the above problem and let  (p; ~p)

denote the Lagrangian multiplier. From the �rst order conditions with respect to qL we

have
p� ~p
1� ~p (1� �)

@�L (qL (p; ~p))

qL
=  (p; ~p) :
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We apply the envelope theorem and obtain18

@V 2(p;~p)
@~p

= 1�p
(1�~p)2 [(1� �)�H(qH (p; ~p)) + �V (~p; 1)]�

1�p
(1�~p)2 [(1� �)�L(qL (p; ~p)) + ��L(q

�
L)� (1� �)��qH (~p)� �min�(~p; 1)] +�

1�p
1�~p

�
� @V (~p;1)

@~p
�
�
p�~p
1�~p

�
� @min�(~p;1)

@~p
+  (p; ~p) �

1��
@min�(~p;1)

@~p
=

1�p
(1�~p)2 [(1� �)�H(qH (p; ~p)) + �V (~p; 1)]�

1�p
(1�~p)2 [(1� �)�L(qL (p; ~p)) + ��L(q

�
L)� (1� �)��qH (p; ~p)� �min�(~p; 1)] +�

1�p
1�~p

�
� @V (~p;1)

@~p
�
�
p�~p
1�~p

�
� @min�(~p;1)

@~p
+ � p�~p

1�~p
@�L(qL(p;~p))

qL

@min�(~p;1)
@~p

Recall that we are considering the case in which p
1
= 0: Therefore, as p converges to zero

min~p6p qH (p; ~p) must converge to q�H . Also, as ~p shrinks to zero, V (~p; 1) and min�(~p; 1)

converge to �H(q�H) and ��q
�
H ; respectively, and the derivative of min�(~p; 1) (with respect

to ~p) is bounded. Therefore, we have

lim
p#0
max
~p6p

@V 2(p;~p)
@~p

= �H(q
�
H)�

h
(1� �)�L(max

n
q�L;

q�H
1��

o
) + ��L(q

�
L)���q�H

i
+

�@+V (0; 1) = � (1� �) @+V (0; 1) < 0

where the inequality follows from our genericity assumption.

We conclude that when p
1
= 0 (and � is generic), there exists " > 0 such that for p 6 "

the function V 2(p; �) is decreasing in the interval [0; p] : Thus, for p 6 "; V 2 (p) = V 2(p; 0) =
V (p; 1) :

In general, the value of " above depends on �: However, is easy to see that there exists "

such that for any (generic) � 6 1�q�H=q�L and for any p 6 "; V 2 (p) = V 2(p; 0) = V (p; 1) : �

We de�ne p
2
> 0 as

p
2
= inf

�
p : V 2 (p) > V (p; 1)

	
We now show that the function V 2 (�) is convex. Clearly, the restriction of V 2 (�) to the

interval
h
0; p

2

i
is convex since, in this interval, V 2 (�) is equal to V (�; 1) :

We now consider the interval
h
p
2
; 1
i
and observe that there exists � > 0 such that

V 2 (p) > V (p; 1) > �H (q�H) + �
18It is easy to see that the function min�(�; 1) is di¤erentiable in a neighborhood of zero.
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for every p 2
h
p
2
; 1
i
: Thus, for p > p

2
we have

V 2 (p; p) 6 (1� �)�H (q�H) + �V (p; 1) < V (p; 1)� (1� �) �:

This, together with the continuity of V 2 (p; ~p) with respect to ~p; imply that for every

p0 > p
2
; there exists " > 0 such that for any p 2 (p0 � "; p0 + ") the optimal value of ~p (in

the optimization problem (21)) is below p0 � ": This means that the restriction V 2 (�) to
the interval (p0 � "; p0 + ") is the upper envelope of a �xed family of a¢ ne functions. Thus,
the function V 2 (�) is locally convex in [0; 1] ; and, therefore, convex.
It follows from the convexity of V 2 (�) that there exists a point �p2 2

�
�p1; p

C
�
such that

V 2 (�) < p�L (q�L) if p < �p2; and V 2 (�) > p�L (q�L) if p > �p2:
We conclude Step 2.1 by de�ning V (�; 2) and � (�; 2) as follows:

V (p; 2) =

8>>><>>>:
V (p; 1) for p 6 p

2

V 2 (p) for p 2
�
p
2
; �p2

�
p�L (q

�
L) for p > �p2

(23)

� (p; 2) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

� (p; 1) p < p
2

Conv
�n
(1� �)��q2H

�
p
2

�
+ �min�

�
~p2
�
p
2

�
; 1
�o
[ �

�
p
2
; 1
��

p = p
2

(1� �)��q2H (p) + �min� (~p2 (p) ; 1) p 2
�
p
2
; �p2

�
[0; (1� �)��q2H (�p2) + �min� (~p2 (p) ; 1)] p = �p2

0 p > �p2

(24)

where q2H (p) and ~p
2 (p) denote the optimal values of qH and ~p; respectively, in the opti-

mization problem (21), and Conv (�) denotes the convex hull of a given set.
Case 2.2. p

1
> 0:

We distinguish between two cases.

Case 2.2.1. There exists " > 0 such that V 2 (p) = V (p; 1) for every p 2
h
p
1
; p

1
+ "
i
:

We let p
2
denote

inf
�
p : V 2 (p) > V (p; 1)

	
Similarly to the previous case, the function V 2 (�) is convex and we let �p2 2

�
�p1; p

C
�

44



denote the point at which V 2 (�) intersects the function p�L (q�L) :
We de�ne V (�; 2) and � (�; 2) as in (23) and (24), respectively.
Case 2.2.2. For every " > 0; there exists p 2

�
p
1
; p

1
+ "
�
such that V 2 (p) > V (p; 1).

In this case we have V 2
�
p
1

�
= V

�
p
1
; 1
�
= �H (q

�
H) ; q

2
H

�
p
1

�
= q�H and

0 < @+V
1
�
p
1

�
< @+V

2
�
p
1

�
= lim

p#p
1

@V 2(p)
@p

=

1
1�p

1

h
(1� �)�L

�
q2L

�
p
1

��
+ ��L (q

�
L)� (1� �)��q�H � �min�

�
p
1
; 1
�
� �H (q�H)

i
(25)

where q2L (p) denotes the optimal value of qL (given the belief p) in the optimization problem

(21).

Recall the de�nition of V 2 (p; ~p) in the optimization problem (21). It follows from

inequality (25) that there exists " > 0 such that V 2
�
p; p

1

�
> V (p; 1) for every p 2�

p
1
; p
1
+ "
�
:

The function V 2
�
p; p

1

�
is convex is p: Thus, there exists �p2 2

�
�p1; p

C
�
at which the

function V 2
�
p; p

1

�
and the function p�L (q�L) intersect. We de�ne V (�; 2) and � (�; 2) as

follows:

V (p; 2) =

8>>><>>>:
V (p; 1) for p 6 p

1

V 2
�
p; p

1

�
for p 2

�
p
1
; �p2

�
p�L (q

�
L) for p > �p2

� (p; 2) =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

� (p; 1) p < p
1

Conv
�n
(1� �)��qH

�
p
1
; p
1

�
+ �min�

�
p
1
; 1
�o
[ �

�
p
1
; 1
��

p = p
1

(1� �)��qH
�
p; p

1

�
+ �min�

�
p
1
; 1
�

p 2
�
p
1
; �p2

�
h
0; (1� �)��qH

�
�p2; p1

�
+ �min� (�p1; 1)

i
p = �p2

0 p > �p2
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Then for every p > p
1
; we consider the following optimization problem

V 3 (p) = max
(qH ;qL)2[0;1]2;~p2[p1;minfp;�p2g]

1�p
1�~p [(1� �)�H (qH) + �V (~p; 1)] +

p�~p
1�~p [(1� �)�L (qL) + ��L (q

�
L)� (1� �)��qH � �min� (~p; 1)]

s.t. (qH � qL)�� + �
1�� min� (~p; 1) 6 0:

It is easy to show that there exists " > 0 such that V 3 (p) = V (p; 2) for every p 2h
p
1
; p
1
+ "
i
(the proof of this fact is similar to the proof of Claim 4 and we omit it).

If V 3 (p) 6 V (p; 2) for every p; then we set V (�) equal to V (�; 2) ; and � (�) equal to
� (�; 2) : Otherwise we de�ne p

3
> p

1
as

p
3
= inf

�
p : V 3 (p) > V (p; 2)

	
;

and let �p3 > p3 denote the point at which the function V
2
�
p; p

1

�
and the function p�L (q�L)

intersect (it is easy to show that the function V 3 (�) is convex).
Finally, we de�ne the function V (�; 3) ; and � (�; 3) as follows:

V (p; 3) =

8>>><>>>:
V (p; 2) for p 6 p

3

V 3 (p) for p 2
�
p
3
; �p3

�
p�L (q

�
L) for p > �p2

� (p; 3) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

� (p; 2) p < p
3

Conv
�n
(1� �)��q3H

�
p
3

�
+ �min�

�
~p
�
p
3

�
; 2
�o
[ �

�
p
3
; 2
��

p = p
3

(1� �)��q3H (p) + �min� (~p3 (p) ; 2) p 2
�
p
3
; �p3

�
[0; (1� �)��q3H (�p3) + �min� (~p3 (�p3) ; 2)] p = �p3

0 p > �p3

This concludes Step 2.

Step 3.
The analysis in Step 2 shows that there exists k̂ = 2; 3 such that V

�
�; k̂
�
and V

�
�; k̂ � 1

�
coincides in the interval

h
0; p

k̂

i
; p

k̂
> 0; and V

�
p
k̂
; k̂
�
is strictly larger than �H (q�H) :
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We now proceed by induction. For any k = k̂; k̂ + 1; : : : ; we take as given the pair

(V (�; k) ;� (�; k)) and construct the pair (V (�; k + 1) ;� (�; k + 1)) using the same procedure
described in Step 2 (see the optimization problem (21)).

It is easy to show that for any k; the function V (�; k) is increasing and convex. Also, by
construction, there exists �̂ > 0 such that for any k; and any p > p

k
the following inequality

holds:

V (p; k) > �H (q
�
H) + �̂:

We use this fact to show that the iterative procedure ends after �nitely many rounds.

Recall that pC is the belief above which the unique optimal mechanism with commitment

is to o¤er the menu f(�Lq�L + �; q�L)g. Therefore, pk 6 p
C for any k:

Claim 5 For any k = k̂; k̂ + 1; : : : ;

p
k+1

� p
k
>
(1� �) �̂

�
1� pC

�
2�L (q�L)

: (26)

Proof of Claim 5.
Fix k and consider the optimization problemwhich de�nes the pair (V (�; k + 1) ;� (�; k + 1)) :

Consider p > p
k
and let ~pk+1 (p) denote the optimal value of ~p.

Suppose that inequality (26) does not hold. Thus, there exists p 2
�
p
k
; p
k
+

(1��)�̂(1�pC)
�L(q�L)

�
such that V k+1 (p) > V (p; k) : Clearly, the last inequality holds only if ~pk+1 (p) > p

k
: How-

ever, this implies the following contradiction:

V k+1 (p) 6 1�p
1�~pk+1(p)

�
(1� �)�H (q�H) + �V

�
~pk+1 (p) ; k

��
+ p�~pk+1(p)

1�~pk+1(p)�L (q
�
L) 6

1�p
1�~pk+1(p) [(1� �)�H (q

�
H) + �V (p; k)] +

p�~pk+1(p)
1�~pk+1(p)�L (q

�
L) 6

1�p
1�p

k

[(1� �)�H (q�H) + �V (p; k)] +
p�p

k

1�p
k

�L (q
�
L) 6

[(1� �)�H (q�H) + �V (p; k)] +
p�p

k

1�pC �L (q
�
L) <

V (p; k)� (1� �) �̂ + p�p
k

1�pC �L (q
�
L) 6 V (p; k)

where the second inequality follows from the monotonicity of V (�; k). This concludes the
proof of Claim 5. �

This shows that there exists an integer k� for which the pairs (V (�; k�) ;� (�; k�)) and
(V (�; k� + 1) ;� (�; k� + 1)) coincide on the entire unit interval. We set (V (�) ;� (�)) equal
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to (V (�; k�) ;� (�; k�)) : By construction, (V (�) ;� (�)) satis�es all the properties in Lemma
9

The number of iterations k� necessary to get the �xed point (V (�) ;� (�)) generally
depends on the value of the discount factor. However, it is immediate to verify that

there exists �k such that for generic values of � in (0; 1� q�H=q�L] ; the number of iterations
necessary to get the �xed point (V (�) ;� (�)) is bounded by �k: This is because there exists
�� > 0 such that for any generic value of � 6 1� q�H=q�L; for any k; and any p > pk, we have
V (p; k) > �H (q

�
H)+ �� (this, in turn, follows from the convexity of the function V (�; k) and

our discussion at the end of the proof of Claim 4. �

We are now ready to conclude the proof of Proposition 1. First, we consider generic

values of � 6 �̂ and use the pair (V (�) ;� (�)) de�ned in Lemma 9 to construct the equilib-
rium strategies. We assume that p < �p (the case p = �p = p̂ will be discussed below together

with the case � > �̂).

For every p 2 [0; 1] ; we construct a set of menus m (p) :
If p < p; the set m (p) contains only the menu m (p) = f(�Hq�H + �; q�H)g : If p > �p;

m (p) contains only the menu m (p) = f(�Lq�L + �; q�L)g :
Consider now p 2

�
p; �p
�
; and let (qH (p) ; qL (p) ; ~p (p)) denote the solution to the opti-

mization problem (17) such that

(1� �)��qH (p) + �min� (~p (p)) = min� (p)

We letm (p) denote the menus containing the contracts (xH (p) ; qH (p)) and (xL (p) ; qL (p)) ;

where the payments xH (p) and xL (p) are given by:

xH (p) = �HqH (p) + �

xL (p) = �LqL (p) + �+��qH (p) +
�
1�� min� (~p (p))

If max� (p) = min� (p) ; then m (p) = fm (p)g : If max� (p) > min� (p) and p 2�
p; �p
�
; then we let (q0H (p) ; q

0
L (p) ; ~p

0 (p)) denote the solution to the optimization problem

(17) such that

(1� �)��q0H (p) + �min� (~p0 (p)) = max� (p) (27)

We also let m0 (p) denote the menus containing the contracts (x0H (p) ; q
0
H (p)) and

48



(x0L (p) ; q
0
L (p)) ; where the payments x

0
H (p) and x

0
L (p) are given by:

x0H (p) = �Hq
0
H (p) + �

x0L (p) = �Lq
0
L (p) + �+��q

0
H (p) +

�
1�� min� (~p

0 (p))
(28)

In this case, we set m (p) = fm (p) ;m0 (p)g :
Ifmax�

�
p
�
> min�

�
p
�
; then we setm0 (p) = f(�Hq�H + �; q�H)g andm (p) = fm (p) ;m0 (p)g :

Finally, we consider �p and set m (�p) = f(�Lq�L + �; q�L)g : If max� (�p) = min� (�p) ;

then m (�p) = fm (�p)g : Otherwise, we set m0 (�p) = f(x0H (�p) ; q0H (�p)) ; (x0L (�p) ; q0L (�p))g (see
equations (27) and (28)) and m (�p) = fm (�p) ;m0 (�p)g :
The equilibrium strategies are described in terms of the state which consists of a belief

p 2 [0; 1] and a continuation payo¤ v 2 � (p) : The initial state is (p0;min� (p0)) ; where
p0 is the prior.

Consider an arbitrary public history ht and suppose the state is (p; v) : In equilibrium,

if v = min� (p) ; then the �rm o¤ers the menu m (p) : On the other hand, if v > min� (p) ;

then the �rm randomizes between the two menus in m (p) and proposes m (p) with proba-

bility � de�ned by

�min� (p) + (1� �)max� (p) = v:

We now turn to the worker�s strategy. Consider a public history ht in which the �rm�s

belief � (ht) is equal to p: Let m = ((x1; q1) ; : : : ; (xk; qk)) denote the menu o¤ered by the

�rm, and for i = H;L de�ne

(�xi; �qi) := arg max
i=1;:::;k

xi � �iqi � �

If �xL � �L�qL � � < 0; then both types reject all the contracts in the menu and quit the
relationship. Furthermore, if the worker accepts a contract, then the �rm�s belief will be

equal to one (in other words, the new state will be (1; 0)).

Suppose that �xL � �L�qL � � > 0 and �xH � �H �qH � � < 0: In this case, the low type

picks the contract (�xL; �qL) ; while the high type quits the relationship. Again, if the worker

accepts a contract, the �rm�s belief will be equal to one.

We now turn to the case �xH � �H �qH � � > 0; and distinguish among three di¤erent

possibilities. First, assume that the contracts (�xL; �qL) and (�xH ; �qH) are such that

(1� �) (�xL � �L�qL � �) 6 (1� �) (�xH � �L�qH � �) + �min� (p)
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In this case, both types accept the contract (�xH ; �qH) ; and the �rm�s belief remains

unchanged. If the worker accepts any other contract, the �rm�s belief will jump to one.

Second, if

(1� �) (�xL � �L�qL � �) > (1� �) (�xH � �L�qH � �) + ���q�H ;

then type i = H;L accepts the contract (�xi; �qi) : The �rm�s belief will become zero if the

worker accepts the contract (�xH ; �qH) ; and one if the worker accepts any other contract.

Finally, assume that

(1� �) [(�xL � �L�qL)� (�xH � �L�qH)]
�

2 (min� (p) ;��q�H) ;

and thus

(1� �) (�xL � �L�qL � �) = (1� �) (�xH � �L�qH � �) + �
h
~�min� (p0) +

�
1� ~�

�
max� (p0)

i
for some p0 6 p and some ~� 2 [0; 1] : In this case, the high type accepts the contract

(�xH ; �qH) ; while the low type chooses the contract (�xH ; �qH) with probability
p0

1�p0
1�p
p
; and

the contract (�xL; �qL) with probability 1� p0

1�p0
1�p
p
: Following the acceptance of the contract

(�xH ; �qH) the new state will be
�
p0; ~�min� (p0) +

�
1� ~�

�
max� (p0)

�
: If the worker accepts

the contract (�xL; �qL) or any other contract, the �rm�s belief will be equal to one.

It is easy to check that the above strategy pro�le, together with the �rm�s belief, consti-

tute a PBE. The sequential rationality of the �rm�s strategy follows from the construction

of the pair (V;�) : In equilibrium, the high type behaves myopically and maximizes his

period-t payo¤ at any history ht. This behavior is indeed optimal since the high type�s

continuation payo¤ (computed at the beginning of period t + 1) is equal to zero after any

public history. Finally, notice that when the low type randomizes, all the contracts in the

strategy�s support yield the same expected payo¤ (and this is greater than the payo¤ of

any other contract).

We now brie�y turn to the case � > �̂ and the case p = �p = p̂ (when � 6 �̂). Re-

call the de�nitions of V and � in equations (15) and (16), respectively. For every belief

p; we de�ne the set of menus m (p) as follows. If p < p̂; the set m (p) contains only

the menu m (p) = f(�Hq�H + �; q�H)g : If p > p̂; m (p) contains only the menu m (p) =

f(�Lq�L + �; q�L)g : Finally, the set m (p̂) contains both the menu m (p̂) = f(�Lq�L + �; q�L)g
and the menum0 (p̂) = f(�Hq�H + �; q�H)g : The equilibrium strategies and beliefs are de�ned
similarly to the case p < �p above and we omit the details. �
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Appendix C

Proof of Lemma 4.
First, notice that WH (h

t) = 0 implies that almost all menus o¤ered at ht yield a

continuation payo¤ of zero to the high type. Let mt =
�
(x1t ; q

1
t ) ; : : : ;

�
xkt ; q

k
t

��
be a menu

o¤ered at ht: For i = H;L; let mi
t denote the set of contracts in mt accepted with positive

probability by the type i: If there exists a contract
�
xjt ; q

j
t

�
in mL

t nmH
t ; then ~T coincides

with t (in fact, the �rm�s belief jumps to one if the worker accepts the contract
�
xjt ; q

j
t

�
)

and there is nothing to prove. Therefore, assume that mL
t � mH

t and recall that mL
t is

non-empty.

For every contract
�
xjt ; q

j
t

�
in mH

t , we let h
t+1
j =

�
ht;mt;

�
xjt ; q

j
t

��
denote the history in

which the worker accepts the contract
�
xjt ; q

j
t

�
in period t; and recall that WH

�
ht+1j

�
> 0

represents the high-worker�s payo¤ at ht+1j . For every contract
�
xjt ; q

j
t

�
2 mH

t we replace

the payment xjt with the payment

~xjt = x
j
t +

�

1� �WH

�
ht+1j

�
which, clearly, implies ~xjt = �Hq

j
t + �:

To keep the parties�payo¤s unchanged, we also modify the payments in period t + 1:

In particular, for every
�
xjt ; q

j
t

�
2 mH

t consider the history h
t+1
j : Let mt+1 denote a menu

o¤ered at ht+1j with positive probability. We subtract 1
1��WH

�
ht+1j ;mt+1

�
; the high type�s

continuation payo¤at the moment that the menumt+1 is o¤ered, from the payment of every

contract in mt+1: Notice that this yields to the high type a continuation payo¤ (evaluated

at the beginning of period t+ 1) equal to zero.

We recursively apply the procedure outlined above to periods � = t+ 1; : : : ; ~T (i.e., we
increase the payments in period � and, at the same time, decrease the payments in period

� + 1). By construction, every contract (x� ; q� ) accepted with positive probability by the

high type in period � = t; : : : ; ~T� 1 is replaced with the contract (�Hq� + �; q� ), while the
payments in every menu o¤ered in period ~T are uniformly decreased by the high type�s
continuation payo¤. Finally, in every period � = t; : : : ; ~T� 1, the set of contracts accepted
by the low type is contained in the set of contracts accepted by the high type (this follows

from the de�nition of ~T). It is therefore immediate to check that all the results stated in
the lemma hold. �
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Proof of Lemma 5.
Fix a PBE (�; �) and a history ht (� (ht) < p) at which the �rm o¤ers a menu mt with

the properties described in the statement of the lemma. First, notice that if the high type

rejects all the contracts in mt with probability one (i.e., the high type quits), then the high

type�s length of the relationship, the �rm�s payo¤ (conditional on the high type), and the

low type�s payo¤ are all equal to zero (if the low type�s payo¤ is strictly positive, the �rm�s

payo¤ would fall below � (ht)�L (q�L)).

Consider now the case in which the high type accepts a contract in mt, say
�
xHt ; q

H
t

�
,

with positive probability. We let ht+1H denote the history
�
ht;mt;

�
xHt ; q

H
t

��
: We also let

ht+1L denote the history
�
ht;mt;

�
xLt ; q

L
t

��
:

The fact that type i = H;L accepts with positive probability the contract (xit; q
i
t) implies

(1� �)
�
xHt � �HqHt � �

�
+ �WH

�
ht+1H

�
> (1� �)

�
xLt � �HqLt � �

�
+ �WH

�
ht+1L

�
(1� �)

�
xLt � �LqLt � �

�
+ �WL

�
ht+1L

�
> (1� �)

�
xHt � �LqHt � �

�
+ �WL

�
ht+1H

�
We add the two incentive compatibility constraints and obtain

(1� �)��
�
qLt � qHt

�
+ �

�
WL

�
ht+1L

�
�WH

�
ht+1L

��
> �

�
WL

�
ht+1H

�
�WH

�
ht+1H

��
Recall that �

�
ht+1L

�
> p and that [p; 1] is a �ring region. Therefore, there exist �K and

�� < 1 such thatWL

�
ht+1L

�
6 �K (1� �) for � > ��. Of course, WH

�
ht+1L

�
> 0: This, together

with the above inequality, implies:

(1� �)��
�
qLt � qHt

�
+ �K (1� �) > �

�
WL

�
ht+1H

�
�WH

�
ht+1H

��
(29)

We now let DH
�
ht+1H

�
:= E(�;�)

h
(1� �)

XT�1

�=t+1
���t�1jht+1H ; H

i
denote the expected

discounted time, computed at ht+1H ; until the high type quits. Our next goal is to provide an

upper bound to DH
�
ht+1H

�
: Thus, without loss, assume that DH

�
ht+1H

�
is strictly positive.

We let

Qt+1 =
E(�;�)

h
(1� �)

XT�1

�=t+1
���t�1q� jht+1H ; H

i
DH

�
ht+1H

�
the expected discounted total quality provided by the high type at the history ht+1H :

Using Jensen�s inequality (recall that the function � (�) is concave), we can bound the
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�rm�s continuation payo¤ (conditional on type H) as follows:

VF (h
t+1
H ;H) 6 E(�;�)

h
(1� �)

XT�1

�=t+1
���t�1� (q� ) jht+1H ; H

i
6

E(�;�)
h
(1� �)

XT�1

�=t+1
���t�1� (Qt+1) jht+1H ; H

i
= DH

�
ht+1H

�
� (Qt+1)

Let �qH 2 (0; q�H) be such that �H (�qH) = 0 and notice that �H (q) < 0 for every q < �qH :19

This implies that Qt+1 > �qH : In fact, if the last inequality is violated, then VF (ht+1H ;H) is

strictly negative, and VF (ht+1H ) is strictly less than �
�
ht+1H

�
�L (q

�
L) ; contradicting Lemma

1. Notice that one strategy available to the low type is to imitate the high type�s behavior

(in every period). Therefore, we conclude that

WL

�
ht+1H

�
�WH

�
ht+1H

�
> ��DH

�
ht+1H

�
Qt+1 > ��DH

�
ht+1H

�
�qH

Combining the inequality above with inequality (29) we obtain

DH
�
ht+1H

�
6
(1� �)

�
qLt � qHt

�
��qH

+
�K (1� �)
����qH

6 (1� �)
��qH

�
1 +

�K

��

�
:

Hence, for � > 1
2
we have

DH
�
ht+1H

�
6 2 (1� �)

�qH

�
1 +

�K

��

�
This, in turn, implies that (for � > 1

2
)

E(�;�)
h
(1� �)

XT�1

�=t
���tjht;mt; H

i
6 (1� �) +DH

�
ht+1H

�
6�

1 + 2
�qH
+ 2 �K

���qH

�
(1� �) := ~K (1� �)

and establishes part i).

To verify property ii), notice that the inequality above implies that the �rm�s continu-

ation payo¤ VF (ht;mt; (�; �) ; H) is bounded above by v (1) ~K (1� �) :
Finally, we turn to property iii). The analysis above implies that

VF (h
t;mt) 6 �

�
ht
� �
�L (q

�
L)�WL

�
ht;mt

��
+ v (1) ~K (1� �) (30)

19This part of the proof uses the assumption � > 0 to bound �qH away from zero. In Appendix D, we
provide a di¤erent argument which does not require �qH > 0:
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Let �0 be such that

v (1) ~K (1� �0) = �H (q
�
H)

4

and notice that for � > ~� = max
�
�0; ��; 1

2

	
and � (ht) 6 �H(q�H)

2�L(q�L)

�
�
ht
�
�L (q

�
L) + v (1)

~K (1� �) 6 3

4
�H (q

�
H)

It follows that if the �rm o¤ers the menu mt at the history ht and � > ~�; then

� (ht) >
�H(q�H)
2�L(q�L)

: Finally, recall that VF (ht;mt) is bounded below by � (ht)�L (q�L) : This

and inequality (30) imply

WL

�
ht;mt

�
6 v (1)

� (ht)
~K (1� �) 6 2�L (q

�
L) v (1)

~K

�H (q�H)
(1� �)

This shows that there exists K > 0 satisfying the three properties in Lemma 5. �

Proof of Claim 3.
First, assume that ~q0 6 �qH

2
and notice that �H (~q0) < �H

�
�qH
2

�
< 0 (recall that �qH 2

(0; q�H) satis�es �H (�qH) = 0). Also, notice that p̂ < p0 < p: If inequality (5) is satis�ed,

then we have

0 6
�
1� p0

p

�
�0�H (~q0) +

p0
p
[�p�H (~qp) + (1��p) p�L (q�L)] +K (1� �)� p0�L (q�L) 6�

1� p0
p

�
�0�H

�
�qH
2

�
+ p0

p
�p [�H (q

�
H)� p�L (q�L)] +K (1� �) 6�

1� p0
p

�
�0�H

�
�qH
2

�
+K (1� �)

Putting together this and p0 < pC we obtain�
1

1� p0

��
1� p0

p

�
�0 6 �

K (1� �)
(1� pC)�H

�
�qH
2

� (31)

Similarly, we obtain

0 6
�
1� p0

p

�
�0�H (~q0) +

p0
p
[�p�H (~qp) + (1��p) p�L (q�L)] +K (1� �)� p0�L (q�L) 6�

1� p0
p

�
�0�H (~q0) +

p0
p
�p [�H (q

�
H)� p�L (q�L)] +K (1� �) 6

p0
p
�p [�H (q

�
H)� p�L (q�L)] +K (1� �) 6�

1� f(p)
2p

�
�p [�H (q

�
H)� p�L (q�L)] +K (1� �)

54



where the last inequality follows from p0 2
h
p� f(p)

2
; p
i
and �H (q�H)� p�L (q�L) < 0:

Hence, we have:�
1� p
1� p0

��
p0
p

�
�p 6 �p 6

K (1� �)�
1� f(p)

2p

�
[p�L (q�L)� �H (q�H)]

(32)

For the case ~q0 6 �qH
2
, inequalities (31) and (32) imply the result.

We now move to the case ~q0 >
�qH
2
: It follows from the concavity of �H (�) that �H (~q0) 6

�H (0) + �
0
H (0) ~q0 6 �0H (0) ~q0: Also, �H (~qp) < �H (q�H) for any ~qp 6= q�H : Thus, we have�
1� p0

p

�
�0�H (~q0) +

p0
p
[�p�H (~qp) + (1��p) p�L (q�L)] +K (1� �) 6�

1� p0
p

�
�0�

0
H (0) ~q0 +

p0
p
[�p�H (q

�
H) + (1��p) p�L (q�L)] +K (1� �)

(33)

Suppose that inequality (6) holds. Clearly, the inequality continues to hold if we replace

~qp with one. This allows us to conclude that ~q0; �0; and �p must satisfy

�0~q0 6 �p +
2K (1� �)

��
�

1
1�p0

��
1� p0

p

� (34)

Combining inequalities (33) and (34) we obtain (recall that p0 > p̂):�
1� p0

p

�
�0�H (~q0) +

p0
p
[�p�H (~qp) + (1��p) p�L (q�L)] +K (1� �) 6�

1� p0
p

�
�0H (0)�p +

p0
p
[�p�H (q

�
H) + (1��p) p�L (q�L)] +K

�
1 +

2�0H(0)(1�p̂)
��

�
(1� �)

We de�ne K1 :=
�
1 +

2�0H(0)(1�p̂)
��

�
: It follows from inequality (5) and the inequality

above that

p0�L(q
�
L) 6

�
1� p0

p

�
�0H (0)�p +

p0
p
[�p�H (q

�
H) + (1��p) p�L (q�L)] +K1 (1� �)

which leads to:

0 6 �p
h�
1� p0

p

�
�0H (0) +

p0
p
[�H (q

�
H)� p�L (q�L)]

i
+K1(1� �) 6

�p

��
1� p� f(p)

2

p

�
�0H (0) +

p� f(p)
2

p
[�H (q

�
H)� p�L (q�L)]

�
+K1(1� �)

(35)
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The second inequality holds because the expression
�
1� p0

p

�
�0H (0)+

p0
p
[�H (q

�
H)� p�L (q�L)]

is a¢ ne in p0 and is negative for p0 = p and equal to zero for p0 = p�f (p) (see the de�nition
of the function f (�) in equation (2)). Also, recall that p0 2

h
p� f(p)

2
; p
i
:

From inequality (35) we obtain:

�p 6
K1�

p� f(p)
2

�
�L (q�L)�

�
f(p)
2p

�
�0H (0)�

�
1� f(p)

2p

�
�H (q�H)

(1� �) := K2(1� �)

and, thus, �
1� p
1� p0

��
p0
p

�
�p 6 �p 6 K2(1� �) (36)

Finally, using (34) and (36) and p0 < pC we have:�
1

1�p0

��
1� p0

p

�
�0~q0 6

�
1

1�pC

��
1� p0

p

�
�p +

2K(1��)
��

6�
1

1�pC

�
�p +

2K(1��)
��

6
�

1
1�pC

�
K2(1� �) + 2K(1��)

��

Recall that ~q0 >
�qH
2
: It follows from the last inequality that�

1

1� p0

��
1� p0

p

�
�0 6

�
2

�qH

��
K2

1� pC +
2K

��

�
(1� �)

which coupled with (36) implies the result. �

Proof of Lemma 7.
Fix a PBE (�; �) and a history ht as described in the statement of the lemma. The

�rm�s continuation payo¤ after o¤ering the menu mt is equal to

VF (h
t;mt) =

�
1� �

�
ht
��
VF (h

t;mt;H) + �
�
ht
�
VF (h

t;mt;L)

Recall from Lemma 6 that [p̂+ "; 1] is a �ring region. Therefore, it follows from Lemma

5 that there exist �K and �� > 1� "�L(q�L)
2 �K

such that � > �� implies

VF (h
t;mt;H) 6 �K (1� �)

Then it follows from the last inequality that

VF (h
t;mt) 6 (p̂� ")�L (q�L) + �K (1� �) <

�
p̂� "

2

�
�L (q

�
L) < �H (q

�
H)
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contradicting Lemma 1. �

Proof of Part II of Proposition 2.
We start with the proof of the �rst property. By contradiction, suppose that there exists

a sequence f�n; (�n; �n)g
1
n=1 such that �n converges to one, (�n; �n) is a PBE of the game

with discount factor equal to �n; and

lim
n!1

E(�n;�n)
�
�Tn
�
= � > 0 (37)

Without loss of generality, we assume that WH (h
0; (�n; �n)) = 0 for every n:

Let k :=
j

2
1�p̂

k
; and for k = k; k + 1; : : : ; let ~Tk 6 1 be the random time that stops

the play at the �rst history
�
h
~T;m~T

�
at which the menu m~T contains a contract (x~T; q~T)

accepted with positive probability and for which �
�
h
~T;m~T; (x~T; q~T)

�
> p̂+ 1

k
: As usual, we

set ~Tk=1 if the event does not occur in �nite time.

It follows from Lemma 5 that for every k > k there exist n1k 2 N and K1
k such that for

every n > n1k the PBE (�n; �n) satis�es the following property. If the �rm o¤ers a menu

with a contract that is accepted with positive probability and leads to a belief weakly larger

than p̂+ 1
k
; then the expected discounted time until the high type quits the relationship is

bounded above by K1
k (1� �n) : Thus, for n > n1k we have:���E(�n;�n) ��Tn�� E(�n;�n) hIf~Tk<1g �1� �n �h~Tk�� �~Tkn i��� 6 K1

k (1� �n) (38)

Next recall that
�
p̂+ 1

k

�
is a �ring region and Lemma 5 (property ii) provides an upper

bound to the �rm�s continuation payo¤ when it o¤ers a menu with a contract the leads to

a �ring region. Therefore, for every k > k there exist n2k 2 N and K2
k such that for every

n > n2k the �rm�s equilibrium payo¤ is bounded as follows:

VF (h
0; (�n; �n)) 6 E(�n;�n)

24If~Tk<1g
24(1� �n) ~Tk�1X

t=0

�tn�H (qt) + �
~Tk
n �n

�
h
~Tk
�
�L (q

�
L)

35+
If~Tk=1g (1� �n)

~Tk�1X
t=0

�tn�H (qt)

35+K2
k (1� �n)
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Notice that when ~Tk<1; the belief �n
�
h
~Tk
�
is, by de�nition, smaller than p̂+ 1

k
; and,

therefore, we have:

�n

�
h
~Tk
�
�L (q

�
L) <

�
p̂+

1

k

�
�L (q

�
L) = �H (q

�
H) +

1

k
�L (q

�
L)

Combining the last two inequalities, for every n > n2k we obtain:

VF (h
0; (�n; �n)) 6 E(�n;�n)

24If~Tk<1g
24(1� �n) ~Tk�1X

t=0

�tn�H (qt) + �
~Tk
n �H (q

�
H)

35+
If~Tk=1g (1� �n)

~Tk�1X
t=0

�tn�H (qt)

35+K2
k (1� �n) + 1

k
�L (q

�
L) =

�H (q
�
H)� E(�n;�n)

24(1� �n) ~Tk�1X
t=0

�tn [�H (q
�
H)� �H (qt)]

35+K2
k (1� �n) + 1

k
�L (q

�
L)

This and the fact that the �rm�s payo¤is bounded below by �H (q�H) lead to the following

result. For every k > k;

lim sup
n!1

E(�n;�n)

24(1� �n) ~Tk�1X
t=0

�tn [�H (q
�
H)� �H (qt)]

35 6 1

k
�L (q

�
L) (39)

Inequality (39) implies that for every � > 0 there exists k� 2 N such that for every

k > k� there exists n̂k 2 N such that for n > n̂k we have

E(�n;�n)

24(1� �n) ~Tk�1X
t=0

�tn jq�H � qtj

35 6 � (40)

Furthermore, k� and n̂k are such that for every k > k� and every n > n̂k
�

1� p̂ � � 6 E(�n;�n)
h
If~Tk<1g�

~Tk
n

i
6 �

1� p̂ + �

The above result is a consequence of equality (37), inequality (38), and Lemma 7.

Fix " 2
�
0;

��q�H�

4(1�p̂)(1+��q�H)

�
p̂
p0
� 1�p̂

1�p0

��
: Recall that for every k; the interval

�
p̂+ 1

k
; 1
�

is a �ring region and Lemma 5 (property iii) provides an upper bound to the low type�s
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continuation payo¤ when the �rm�s menu contains a contract that leads to a �ring region.

Finally, recall that if a history ht is reached with probability Pr (ht) under (�n; �n) ; then

that history is reached with probability
�n(ht)
p0

Pr (ht) if the worker behaves according to

�Ln ; and with probability
(1��n(ht))
(1�p0) Pr (ht) if the worker behaves according to �Hn :

Putting together these observations and the last three inequalities we conclude that

there exist ~k and ~n such that for every n > ~n the low type obtains a payo¤ of at most

��q�H

�
1� E(�n;�n)

h
�
~T~k
n j�Ln

i�
+ " 6 ��q�H

�
1� p̂

p0

�

1� p̂ + "
�
+ "

when he behaves according to �Ln ; and a payo¤ of at least

��q�H

�
1� E(�n;�n)

h
�
~T~k
n j�Hn

i�
� " > ��q�H

�
1� 1� p̂

1� p0
�

1� p̂ � "
�
� "

when he behaves according to �Hn :

Notice that

��q�H

�
1� 1�p̂

1�p0
�
1�p̂ � "

�
� "���q�H

�
1� p̂

p0

�
1�p̂ + "

�
� " =

��q�H
�
1�p̂

�
p̂
p0
� 1�p̂

1�p0

�
� 2" (1 + ��q�H) > 0

which implies that for n su¢ ciently large the low type has an incentive to deviate and

follow �Hn instead of the equilibrium strategy �Ln :

Notice that property ii) in Part II of Proposition 2 follows directly from part i) and

inequality (40).

Finally, we turn to part iii). Assume, towards a contradiction, that there exists a

sequence f�n; (�n; �n)g such that �n converges to one and

lim
n!1

E(�n;�n)

"
(1� �n)

T�1X
t=0

�tn (xt � �Hq�H � �) ji
#
= ~� > 0

for some i 2 fH;Lg : Using part i) and part ii) it is immediate to conclude that

lim sup
n!1

VF (h
0; (�n; �n)) 6 �H (q�H)�min fp0; 1� p0g ~� < �H (q�H)

which leads to a contradiction and concludes the proof. �
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Appendix D: The case � = 0

In this appendix, we illustrate the changes needed in the proofs above to accommodate the

case that � = 0: First, we slightly modify the notion of �ring region and replace De�nition

2 with the following de�nition.

De�nition 3 The interval [p; 1] is a �ring region if there exists a function % : (0; 1]! R++
with lim�!1 % (�) = 0 satisfying the following property. Let (�; �) be an arbitrary PBE of

the game with discount factor � and consider a history ht at which � (ht) > p: Then we

have:

i) E(�;�)
h
(1� �)

XT�1

�=t
���tjht; H

i
; the expected discounted time until the high type quits

the relationship, is bounded by % (�) :

ii) VF (ht; (�; �) ; H); the �rm�s continuation payo¤ at the history ht conditional on type

H; is bounded by % (�) ;

iii) WL (h
t; (�; �)) ; the low type�s continuation payo¤ at the history ht; is bounded by

% (�) :

Notice that the interval
�
pC ; 1

�
is a �ring region. Lemma 5 should be replaced with

Lemma 10.

Lemma 10 Suppose that [p; 1] is a �ring region. There exists a function � : (0; 1]! R++
with lim�!1 � (�) = 0 satisfying the following property. Let (�; �) be an arbitrary PBE of the

game with discount factor �; and consider a history ht with � (ht) < p: Suppose that at ht

the �rm o¤ers a menu mt containing a contract
�
xLt ; q

L
t

�
accepted with positive probability

and for which

�
�
ht;mt;

�
xLt ; q

L
t

��
> p

Then we have:

i) E(�;�)
h
(1� �)

XT�1

�=t
���tjht;mt; H

i
; the expected discounted time until the high type

quits the relationship, is bounded by � (�) ;

ii) VF (ht;mt; (�; �) ; H); the �rm�s continuation payo¤ at the history (ht;mt) conditional

on type H; is bounded by � (�) ;

iii) WL (h
t;mt; (�; �)) ; the low type�s continuation payo¤ at the history (ht;mt) ; is

bounded by � (�) :
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Proof of Lemma 10.
Fix a PBE (�; �) and a history ht (� (ht) < p) at which the �rm o¤ers a menu mt

with the properties described in the statement of the lemma. First, notice that if the

high type rejects all the contracts in mt with probability one (i.e., the high type quits),

then the expected length of the relationship and the �rm�s payo¤ (conditional on the high

type) are both equal to zero, while the low type�s continuation payo¤ is bounded above by

�� (1� �) :
Consider now the case in which the high type accepts a contract in mt, say

�
xHt ; q

H
t

�
,

with positive probability. We let ht+1H denote the history
�
ht;mt;

�
xHt ; q

H
t

��
: We also let

ht+1L denote the history
�
ht;mt;

�
xLt ; q

L
t

��
:

The fact that type i = H;L accepts with positive probability the contract (xit; q
i
t) implies

(1� �)
�
xHt � �HqHt � �

�
+ �WH

�
ht+1H

�
> (1� �)

�
xLt � �HqLt � �

�
+ �WH

�
ht+1L

�
(1� �)

�
xLt � �LqLt � �

�
+ �WL

�
ht+1L

�
> (1� �)

�
xHt � �LqHt � �

�
+ �WL

�
ht+1H

�
We add the two incentive compatibility constraints and obtain

(1� �)��
�
qLt � qHt

�
+ �

�
WL

�
ht+1L

�
�WH

�
ht+1L

��
> �

�
WL

�
ht+1H

�
�WH

�
ht+1H

��
Recall that �

�
ht+1L

�
> p and that [p; 1] is a �ring region. Therefore, there exists a

function % (�) such that WL

�
ht+1L

�
6 % (�). Of course, WH

�
ht+1L

�
> 0: This, together with

the above inequality, implies:

(1� �)�� + % (�)
�

>
(1� �)��

�
qLt � qHt

�
+ % (�)

�
>
�
WL

�
ht+1H

�
�WH

�
ht+1H

��
Recall that a strategy available to the low type is to imitate, in every period, the high

type. Therefore, we have

WL

�
ht+1H

�
> WH

�
ht+1H

�
+��E(�;�)

"
(1� �)

T�1X
�=t+1

���t�1q� jht+1H ; H

#

where T denotes the random time in which the worker quits the relationship.

Combining the last two inequalities, we obtain

E(�;�)

"
(1� �)

T�1X
�=t+1

���t�1q� jht+1H ; H

#
6 (1� �)�� + % (�)

���
(41)
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We can now prove part i) of Lemma 10. Inequality (41) together with Claim 6 below

show the existence of a function � : (0; 1] ! R++; with lim�!1 � (�) = 0; satisfying the

condition in part i).

Claim 6 Consider a sequence of discount factors f�ng1n=1 converging to one. For each
n = 1; 2; : : : ; let (�n; �n) be a PBE of the game with discount factor �n; and let h

t
n be a

history of the game.20 If

lim
n!1

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn q� jhtn; H
#
= 0 (42)

then

lim
n!1

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn jhtn; H
#
= 0 (43)

Proof of Claim 6.
Assume, towards a contradiction, that there exist " > 0 and a sequence f�n; (�n; �n) ; htng

1
n=1

with f�ng converging to one, and for which equality (42) holds and

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn jhtn; H
#
> " (44)

for every n:

Fact 2 We assume, without loss of generality, that �n (htn) < p
C for any n:

Recall that under any PBE (�n; �n) ; if �n (h
t
n) > pC ; then the high type rejects all the

contracts in the �rm�s menu with probability one.

Fact 3 If �n (htn) 6
�H(q�H)
2�L(q�L)

; then

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn q� jhtn; H
#
> �H (q

�
H)

2�0H (0)

20Notice that the length of the history htn may vary with n: However, to ease the notation, we do not
index the length t by n: This does not cause any confusion.
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By contradiction, suppose that the inequality above is violated. It follows from the

concavity of �H (�) that

VF (h
t
n; (�n; �n)) 6 �n (htn)�L (q�L) + (1� �n (htn))E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn q� jhtn; H
#
�0H (0) <

�n (h
t
n)�L (q

�
L) + (1� �n (htn))

�H(q�H)
2

6 �H (q�H)

which contradicts Lemma 1.

Fact 4 There exists �n such that for n > �n; �n (htn) 2
�
�H(q�H)
2�L(q�L)

; pC
�
:

It follows immediately from the �rst two facts and equality (42).

Fact 5 We have

lim
n!1

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn jq� � q�Lj jhtn; L
#
= 0

Taking a subsequence if necessary, assume, towards a contradiction, that the limit above

exists and is di¤erent from zero. Then it follows that

lim sup
n!1

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn (v (q� )� x� ) jhtn; L
#
< �L (q

�
L)

Notice that equality (42) implies

lim sup
n!1

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn (v (q� )� x� ) jhtn; H
#
6 0

Putting together the last two inequalities, we obtain that for n su¢ ciently large

VF (h
t
n; (�n; �n)) < �n

�
htn
�
�L (q

�
L)

which contradicts Lemma 1.

We can now conclude the proof of the claim. Let Tn
�
"
2

�
be the smallest positive integer

such that �
Tn( "2)
n 6 1 � "

4
and take n� 2 N such that n > n� implies �

Tn( "2)
n > 1 � "

2
:

Inequality (44) implies that for every n > n�

P(�n;�n)
h
T >t+ Tn

�"
2

�
jhtn; H

i
> "

4

63



Also, given equality (42), we can take n�� > n� such that n > n�� implies

P(�n;�n)

264T >t+ Tn �"
2

�
and (1� �n)

t+Tn( "2)X
�=t

���tn q� <
"

8
q�L jhtn; H

375 > "

8

Finally, if follows from equality (42) and from Facts 3 and 4 that there exists n��� > n��

such that for n > n��� we have

P(�n;�n)

264T >t+ Tn � "2� and (1� �n) t+Tn(
"
2)X

�=t

���tn q� <
"
8
q�L and �n

�
h
t+Tn( "2)
n

�
6 �H(q�H)

2�L(q�L)
jhtn; H

375 > "
16

This means that for every n > n��� there exists a subset of histories h
t+Tn( "2)
n which,

conditional on type H; are reached with probability of at least "
16
and at which the �rm�s

belief is at most
�H(q�H)
2�L(q�L)

: It follows from Fact 3 that for every history h
t+Tn( "2)
n with

�n

�
h
t+Tn( "2)
n

�
6 �H(q�H)

2�L(q�L)
, we have

E(�n;�n)

264(1� �n) T�1X
�=t+Tn( "2)

���tn q� jh
t+Tn( "2)
n ; H

375 > �H (q
�
H)

2�0H (0)

which, in turn, implies

E(�n;�n)

"
(1� �n)

T�1X
�=t

���tn q� jhtn; H
#
> "

32

�H (q
�
H)

�0H (0)

for every n > n���; contradicting equality (42). �

To verify part ii) of Lemma 10 notice that

VF (h
t;mt; (�; �) ; H) 6 v (1)E(�;�)

"
(1� �)

T�1X
�=t

���tjht;mt; H

#

Therefore, it follows from part i) that there exists a function ~� : (0; 1] ! R++; with
lim�!1 ~� (�) = 0 such that

VF
�
ht;mt; (�; �) ; H

�
6 ~� (�)
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To establish part iii), notice that it follows from the above inequality that

�H (q
�
H) 6 VF

�
ht;mt; (�; �) ; H

�
6
�
1� �

�
ht
��
~� (�) + �

�
ht
�
�L (q

�
L)

We take �1 < 1 such that � > �1 implies ~� (�) <
�H(q�H)�L(q�L)
2�L(q�L)��H(q�H)

: Therefore, for � > �1

the last inequality implies � (ht) > �H(q�H)
2�L(q�L)

:

Recall that the �rm�s payo¤ at ht is bounded below by � (ht)�L (q�L) : Thus, we have

� (ht)�L (q
�
L) 6 VF (ht;mt; (�; �) ; H) 6 (1� � (ht)) ~� (�) + � (ht) [�L (q�L)�WL (h

t;mt; (�; �) ; H)] 6�
1� �H(q�H)

2�L(q�L)

�
~� (�) + � (ht) [�L (q

�
L)�WL (h

t;mt; (�; �) ; H)]

We conclude that for � > �1

WL

�
ht;mt; (�; �) ; H

�
6 1

� (ht)

�
1� �H (q

�
H)

2�L (q�L)

�
~� (�) 6

�
2�L (q

�
L)

�H (q�H)

��
1� �H (q

�
H)

2�L (q�L)

�
~� (�)

establishing part iii). �

Next, we explain how to modify the proof of Claim 2. First, we replace the linear bound
�K1 (1� �) used in Claim 2 (see inequality (3)) with a bound � (�) (satisfying lim�!1 � (�) =

0). Proceeding exactly as in the proof of Claim 2, we conclude that the �rm�s payo¤VF (h0)

is bounded above by�
1� p0

p

�
�(0)�H (~q0) +

p0
p
[� (p)�H (~qp) + (1��(p)) p�L (q�L)] + � (�) ; (45)

and the following incentive compatibility constraint must be satis�ed.

�(p) ~qp�� + � (�) >
�
1� p
1� p0

��
p0
p

�
�(p) ~qp�� +

�
1

1� p0

��
1� p0

p

�
�(0) ~q0��: (46)

It follows from the concavity of �H (�) that �H (~q0) 6 �0H (0) ~q0: Also, by replacing

�H (~qp) with �H (q�H) in (45), and ~qp with one in (46) we conclude that

VF
�
h0
�
6
�
1� p0

p

�
�0H (0)� (0) ~q0+

p0
p
[� (p)�H (q

�
H) + (1��(p)) p�L (q�L)]+� (�) (47)
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and ~q0; �(0) ; and �(p) must satisfy

�(p) > �(0) ~q0 �
� (�)

��
h
1�

�
1�p
1�p0

��
p0
p

�i
Recall that lim�!1 � (�) = 0 and that p0 > p � f(p)

2
> p̂: This implies that as � goes

to one, both �(0) ~q0 and must �(p) shrink to zero. In fact, if �(0) ~q0 remains bounded

away from zero (as � goes to one), then it follows from the last two inequalities that

for � su¢ ciently large VF (h0) is strictly smaller than p0�L (q�L) ; contradicting Lemma 1.

Similarly, if �(0) ~q0 goes to zero and �(p) remains bounded away from zero, then it follows

from inequality (47) that for � su¢ ciently large VF (h0) is strictly smaller than p0�L (q�L) :

Clearly, if both �(0) ~q0 and �(p) converge to zero as � goes to one, then we have:

lim
�!1

E(�;�)

"
(1� �)

T�1X
t=0

�tqt j h0; H
#
= 0

We then apply Claim 6 to conclude that

lim
�!1

E(�;�)

"
(1� �)

T�1X
t=0

�t j h0; H
#
= 0

This shows that there exists a function � (�) with lim�!1 � (�) = 0 such that

E(�;�)

"
(1� �)

T�1X
t=0

�t j h0; H
#
6 � (�)

Next, notice that

VF (h
0;H) 6 v (1)E(�;�)

"
(1� �)

T�1X
t=0

�tjh0; H
#
6 v (1) � (�)

Also, the argument in the proof of Claim 2 shows that

WL

�
h0
�
6 1� p0

p0
VF (h

0;H) <
1� p̂
p̂
VF (h

0;H) �
�
1� p̂
p̂

�
v (1) � (�) ;

delivering the desired result.

Finally, we remark that the proof of part II) of Theorem 2 works in the same way if one

replaces the respective linear bounds K (1� �) with functions � (�) satisfying lim�!1 � (�) =

0:
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Appendix E: Proof of Proposition 3

We now describe a strategy pro�le and a system of beliefs which yield the payo¤s (VF;H ; VF;L;WH ;WL)

(we divide the description into di¤erent phases). Then we show that unilateral deviations

are not pro�table when the discount factor � is su¢ ciently large.

Screening Phase: In the �rst period, the �rm o¤ers the menu f(xH ; qH) ; (xL; qL)g
(recall that (xi; qi) ; i = H;L; is a contract yielding the payo¤VF;i to the �rm and the payo¤

Wi to type i). If both contracts are rejected, the �rm does not update its belief and insists

on the same menu until a contract (xi; qi) ; i = H;L; is accepted. In this case, the �rm�s

belief assigns probability one to type i. Furthermore, the �rm does not revise its belief in

future periods and the continuation equilibrium consistent with the automaton described

below starting at the state (i; 0) follows.

Suppose that during the screening phase the �rm deviates and o¤ers a menum di¤erent

from f(xH ; qH) ; (xL; qL)g : Let (x� (m) ; q� (m)) 2 m denote the optimal contract for the

high type in m: Formally:

x� (m)� �Hq� (m)� � > xj � �Hqj � �

for all (xj; qj) 2 m:21

If x� (m) < � + �H + v (1) ; every type of the worker rejects all the contracts and

the screening phase continues in the next period with the �rm insisting on the menu

f(xL; qL) ; (xH ; qH)g : If any contract (xk; qk) 2 m is selected, the �rm�s belief assigns prob-

ability one to the low type and the continuation equilibrium consistent with the automaton

described below starting at the state (L; 2) follows.

If x� (m) > �+�H+v (1) ; every type of the worker accepts the contract (x� (m) ; q� (m))
and the screening phase continues in the next period. If any other contract (xk; qk) 2 m is

accepted or if all the contracts are rejected, the �rm�s belief assigns probability one to the

low type and the continuation equilibrium consistent with the automaton described below

starting at the state (L; 2) follows.

Post-Screening Phase: According to the description above, a post-screening phase
can be reached in a state (i; r) 2 fH;Lg �f0; 1; 2g : The transition function among the
states and the action prescription for the �rm and for type i = H;L in state (i; r) are the

21If there are several optimal contracts for type H; we select the contract with the smallest index.
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same as the ones in the automaton for type i presented in Section 2. The action prescription

for type j 6= i in a state (i; r) are de�ned below.
Actions of type L in the state (H; 0): If the �rm o¤ers the menu f(xH ; qH)g ; the

low type accepts (xH ; qH) : If the �rm deviates and o¤ers a di¤erent menu, then type L

accepts the contract that yields the largest current payo¤, provided that this is positive (if

it is negative, the worker rejects all the contracts).22

Actions of type L in the state (H; 1): If the �rm o¤ers the menu f(�xH ; q�H)g ; the
low type accepts (�xH ; q�H) : Consider a deviation by the �rm. The low type rejects all the

contracts (x; q) with x < v (1) + �: Among the remaining contracts, the low type selects

the contract which yields the largest current payo¤, provided that this is positive (if it is

negative, the worker rejects all the contracts).

Actions of type L in the state (H; 2): If the �rm o¤ers the menu f(xH ; q�H)g ; the
low type accepts (xH ; q

�
H). If the �rm deviates and o¤ers a di¤erent menu, then type L

accepts the contract that yields the largest current payo¤, provided that this is positive

Actions of type H in the state (L; 0): If the �rm o¤ers the menu f(xL; qL)g ; the
high type accepts (xL; qL) if and only if xL � �HqL � � > 0. If the �rm deviates and o¤ers

a di¤erent menu, then type H accepts the contract that yields the largest current payo¤,

provided that this is positive (if it is negative, the worker rejects all the contracts).

Actions of type H in the state (L; 1): We distinguish between two cases. First,
assume that �xL � �Hq�L � � > 0: In this case, if the �rm o¤ers the menu f(�xL; q�L)g ; the
high type accepts (�xL; q�L) : Consider a deviation by the �rm. The high type rejects all the

contracts (x; q) with x < v (1) + �: Among the remaining contracts, the high type selects

the contract which yields the largest current payo¤, provided that this is positive.

Suppose now that �xL � �Hq�L � � 6 0: In this case, the high type selects the contract
which yields the largest current payo¤, provided that this is positive.

Actions of type H in the state (L; 2): If the �rm o¤ers the menu f(xL; q�L)g ; the high
type accepts (xL; q

�
L) provided that it yields a positive current payo¤. If the �rm deviates

and o¤ers a di¤erent menu, then type H accepts the contract that yields the largest current

payo¤, provided that this is positive.

Optimality of the Proposed Strategies. We now analyze the parties� incentives
and show deviations are not pro�table for � su¢ ciently large. Let ht be an arbitrary history

22As usual, the worker selects the contract with the smallest index among those who yield the largest
current payo¤.
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in the screening phase. We let VF (S) denote the �rm�s continuation payo¤at ht (the payo¤

is computed before the �rm o¤ers the menu). Recall that the �rm�s belief at ht is equal to

the prior p0: We also let Wi (S) ; i = H;L; denote the continuation payo¤ of type i at ht:

We have:

VF (S) = (1� p0)VF;H + p0VF;L WL (S) =WL WH (S) =WH

We now turn to the post-screening phase. For i 2 fH;Lg and r 2 f0; 1; 2g ; let VF (i; r)
and Wi (i; r) denote the �rm and type i�s continuation payo¤, respectively, in the state

(i; r).23 These payo¤s are equal to:

VF (0; H) = VF;H VF (0; L) = VF;L WH (0; H) =WH WL (0; L) =WL

VF (1; H) =
"
2

VF (1; L) =
"
2

WH (1; H) = �H (q
�
H)� "

2
WL (1; L) = �L (q

�
L)� "

2

VF (2; H) = �H (q
�
H)� "

2
VF (2; L) = �L (q

�
L)� "

2
WH (2; H) =

"
2

WL (2; L) =
"
2

Next, we specify the continuation payo¤ of type i = H;L in the state (j; r) ; j 6= i and
r 2 f0; 1; 2g : We have:

WL (0; H) =WH +��qH WH (0; L) = max fWL ���qL; 0g
WL (1; H) = �H (q

�
H) + ��q

�
H � "

2
WH (1; L) = max

�
�L (q

�
L)���q�L � "

2
; 0
	

WL (2; H) = ��q
�
H +

"
2

WH (2; L) = max
�
���q�L + "

2
; 0
	

To show that unilateral deviations from the proposed strategy pro�le are not pro�table,

it is enough to verify that �nitely many inequalities are satis�ed. Given the payo¤s above,

it is immediate to check that for every inequality, there is a critical value of � above which

the inequality is satis�ed. Since the number of inequalities is �nite, we conclude that there

exists �y 2 (0; 1) such that for � > �y no unilateral deviation is pro�table.
Belief Update. It is straightforward to check that, after each menu posted by the

�rm, the proposed system of beliefs satis�es Bayes�s rule after each choice that is taken by

the worker with positive probability.

We conclude that the strategy pro�le and the system of beliefs presented above consti-

tute a PBE when � > �y. �
23The action prescription for type i in the state (i; r) is speci�ed in Section 2.
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