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ABSTRACT
We report the identification of a positive cross-correlation signal between the unresolved
gamma-ray emission, measured by the Fermi Large Area Telescope, and four different galaxy
cluster catalogues. The selected catalogues peak at low-redshift and span different frequency
bands, including infrared, optical, and X-rays. The signal-to-noise ratio of the detected cross-
correlation amounts to 3.5 in the most significant case. We investigate and comment about its
possible origin, in terms of compact gamma-ray emission from AGNs inside clusters or diffuse
emission from the intracluster medium. The analysis has been performed by introducing an
accurate estimation of the cross-correlation power-spectrum covariance matrix, built with
mock realizations of the gamma and galaxy cluster maps. Different methods to produce the
mock realizations starting from the data maps have been investigated and compared, identifying
suitable techniques which can be generalized to other cross-correlation studies.

Key words: cosmology: observations – cosmology: theory – large-scale structure of Uni-
verse – gamma-rays: diffuse background.

1 IN T RO D U C T I O N

Galaxy clusters are one of the most important tracers of the large-
scale structure (LSS) of the Universe, being the largest virialized
objects formed by the gravitational instability. Because of their
large dimension, mass, and formation history, they represent a
unique cosmological probe. They are also fundamental from an
astrophysical point of view: they host galaxies, but also ionized
hot gas thermalized via collisionless virial shocks, dark matter
(DM), and relativistic cosmic rays (CRs) accelerated by the shocks
present at the edge of the clusters. If we focus on gamma-ray
emission, the CRs can produce photons via inverse Compton, non-
thermal bremsstrahlung, and decay of π0. DM particles can also
induce gamma-rays through the same mechanisms arising from the
products of DM annihilation or decay.

Within the hierarchical structure formation process, clusters form
in the node of the cosmic web, where also different populations
of astrophysical objects, as the active galactic nuclei (AGNs), are
present. These astrophysical sources, which can be found within the
clusters themselves, contribute to the total gamma-ray flux that we
observe. On top of this emission, clusters could host a spatially
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extended gamma-ray contribution. The detection of a signal of
gamma-rays from CRs in clusters could help in understanding the
origin of the radio haloes (e.g. van Weeren et al. 2019 for a review).
The observation of gamma-rays originated from annihilation or
decay of DM particles would confirm their existence, whilst a non-
detection can help to reduce the size of the bucket of DM particle
models.

The study of the gamma-rays from galaxy clusters requires
a double effort from an observational point of view: we need
accurate galaxy cluster catalogues (in terms of mass, dimension,
and position), in order to be able to distinguish between the DM
halo, the Intra-Cluster Medium (ICM), and the sources (such as
AGN) inside the cluster, and precise measurements of the gamma-
ray photon flux. From the cluster catalogues side there are several
surveys in the literature, obtained with different telescopes and at
different wavelengths, that can be used for this purpose, while from
the gamma-ray side the most detailed sky recognition comes from
the Fermi Large Area Telescope (LAT) Ackermann et al. (2010).
Most recent analyses of the Fermi-LAT data looking for a gamma-
ray signal from galaxy clusters using different techniques include
(Branchini et al. 2017; Brunetti, Zimmer & Zandanel 2017; Lisanti
et al. 2018; Reiss, Mushkin & Keshet 2018; Hashimoto et al. 2019)

In this work we focus on the information we can derive from the
joint analysis of the two observables, the gamma-ray photon flux

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/3/3225/5637904 by guest on 18 February 2020

http://orcid.org/0000-0003-1487-4254
http://orcid.org/0000-0003-2940-6664
http://orcid.org/0000-0003-3399-3574
http://orcid.org/0000-0002-3074-3118
mailto:colavincenzo.manuel@gmail.com


3226 M. Colavincenzo et al.

Table 1. Energy bins in GeV used in our analysis. Emin and Emax denote the lower and upper bound of the bins, while
�min and �max show the interval in multipole � over which the fit of the angular power spectrum is performed: the lower
bound is chosen in order to exclude possible galactic-foreground residual contamination, the upper limit is driven by
the Fermi-LAT PSF, whose 68 percent containment angle θ cont is reported.

Bin Emin (GeV) Emax (GeV) �min �max θ cont(deg)

1 0.631 1.202 40 251 0.50
2 1.202 2.290 40 316 0.58
3 2.290 4.786 40 501 0.36
4 4.786 9.120 40 794 0.22
5 9.120 17.38 40 1000 0.15
6 17.38 36.31 40 1000 0.12
7 36.31 69.18 40 1000 0.11
8 69.18 131.8 40 1000 0.10
9 131.8 1000 40 1000 0.10

and the galaxy clusters distribution; in other words we proceed with
a cross-correlation analysis. A similar approach was undertaken
by Branchini et al. (2017) and Hashimoto et al. (2019), but using
different cluster samples. Several analyses in the literature have
been studying the cross-correlation of gamma-ray with other LSS
tracers (Ando, Benoit-Lévy & Komatsu 2014; Shirasaki, Horiuchi &
Yoshida 2014; Cuoco et al. 2015; Fornengo et al. 2015; Regis et al.
2015; Shirasaki, Horiuchi & Yoshida 2015; Ando & Ishiwata 2016;
Shirasaki et al. 2016; Feng, Cooray & Keating 2017).

Here we study the cross-correlation angular power spectrum
(APS) between four selected galaxy cluster catalogues obtained
in different bands (optical, infrared, and X-ray) and gamma-rays
from the Fermi-LAT in different energy bins. We focus on low
redshift catalogues and high-mass clusters, since our main goal is
to disentangle a possible (and long-sought after) extended gamma-
ray emission from clusters. Such a signal would be originated from
ICM or DM, since AGNs and galaxies have much more compact
emissions. Improving from the previous works listed above, we
introduce an accurate estimation of the power spectrum covariance
matrix. This is built with mock realizations of the gamma and
galaxy cluster maps and allows a precise statistical evaluation of
the significance of the measured APS.

2 DATA

The cross-correlation analyses we have carried out in this paper are
based on: (i) The full-sky gamma-ray intensity emission measured
by the Fermi-LAT, for which we consider 9 yr of data in the energy
range between 630 MeV and 1 TeV; (ii) A series of low-redshift
galaxy cluster catalogues built in different electromagnetic bands.

2.1 Fermi-LAT gamma-rays maps

The Fermi-LAT pair-conversion telescope achieved remarkable
results for gamma-ray astronomy during its 10 yr of operations.
Its large energy coverage (20 MeV–1 TeV) and the capability of
rejecting the contamination from charged cosmic rays make the
instrument particularly suitable to investigate the nature of the
unresolved extragalactic gamma-ray background (UGRB). The
angular resolution of the instrument is energy dependent and reaches
∼ 0.1◦ above 10 GeV. The photon and exposure maps adopted
in the present analysis are produced with the Fermi Tools.1 The

1We used the LAT Science Tools version https://fermi.gsfc.nasa.gov/ssc/da
ta/analysis/software/

current version of the Fermi Tools subdivide the photon events into
quartiles of angular resolution, from PSF0 to PSF3, corresponding
to a progress from the worst to the best point spread function (PSF).
We find a trade-off between photon statistics and angular resolution,
by selecting the best quartile PSF3 for energies below 1.2 GeV
(where we have the highest photon counts, but worst PSF) and
PSF1+2 + 3 for higher energies. In order to have the lowest contam-
ination from cosmic rays, we selected the Pass8 ULTRACLEAN-
VETO event class,2 which is recommended for diffuse emission
analysis.

In this work we used 108 months of data (from mission week 9 to
week 476). The analyses are performed on photon intensity maps,
obtained by dividing the count maps by the exposure maps and the
pixel area �pix = 4π/ Npix. We adopt a HEALPix (Gorski et al.
2005) pixellation format with resolution parameter Nside = 1024,
which corresponds to a total number of pixel Npix = 12582 912 and
a mean spacing of ∼0.06◦, similar to the best angular resolution
of the gamma-ray data. We derived the intensity maps in 100
energy bins, evenly spaced in logarithmic scale between 100 MeV
and 1 TeV. These microbins were subsequently re-binned into nine
larger energy bins, from 631 MeV to 1 TeV, which are listed in
Table 1. The data selection and the pre-processing steps follow the
same procedure described in Ammazzalorso et al. (2018).

Since there is no clear sign of resolved extended emission from
clusters, we adopt a cross-correlation technique which focuses on
the UGRB component. To this aim, we need to mask resolved point
sources. Moreover, we mask the Galactic emission, which acts as a
foreground and, while not correlating with the extragalactic cluster
distribution, nevertheless contributes a sizeable source of noise to
the error budget. We therefore build a set of masks for the gamma-
ray maps by adopting the following criteria:

(i) We mask resolved sources by adopting to the 4FGL catalogue
(The Fermi-LAT collaboration 2019a) that contains 5523 sources.
Above 10 GeV, we include also additional sources present in
the 3FHL catalogue (Ajello et al. 2017), that is specific to high
energies. Each source is masked taking into account both the source
brightness and the PSF resolution in the specific bin, as done in
Ammazzalorso et al. (2018).

(ii) The galactic disc emission is masked by means of a latitude
cut that excludes the portion of the sky with |b| < 30◦.

2See http://www.slac.stanford.edu/exp/glast/groups/canda/lat
Performance.htm for further details on photon event classes.
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Searching for gamma-ray emission 3227

Figure 1. Gamma-ray maps in the (2.3−4.8) GeV energy bin, masked with the procedure described in the text. The panels show the flux map before (left-hand
panel) and after (right-hand panel) galactic-foreground subtraction. For illustration purposes, the maps have been rescaled to Nside = 128 and smoothed with a
Gaussian beam of size σ = 0.4◦.

For point sources, the masking radius around each catalogues
sources is defined as:

F
γ

	E exp

(
− R2

2θ2
	E

)
>

F
γ

	E,faintest

5
, (1)

where F
γ

	E is integral flux of the source in the specific energy bin
	E under consideration, F

γ

	E,faintest is the flux of the faintest source
in the same energy bin, and θ	E is the 68 per cent containment angle
in that energy bin, as provided by the Fermi-LAT PSF. The resulting
energy-dependent masks aim at properly covering resolved sources
and avoiding artefacts due to source flux leakage outside the mask,
but at the same time maintaining a good sky coverage. For further
details and impact of the mask, see also Ackermann et al. (2018).

Even though we adopt a mask to cover the brightest part of
the galactic plane emission, we nevertheless additionally adopt
a procedure of foreground removal at higher latitudes, in order
to reduce the contribution of this component to the error budget.
This foreground removal is obtained by subtracting a model of the
galactic foreground contribution, for which we use the template
maps provided by the Fermi-LAT Collaboration with the Galactic
emission model gll iem v06.fits.3 The foreground template
is projected in HEALPix maps keeping the same Nside of the
intensity maps and the same microbinning. A free normalization is
assigned to the template map and a free constant is added, the latter
representing the average UGRB emission and a possible cosmic ray
contamination of the gamma-ray maps. The resulting foreground
model is fitted with a Poissonian likelihood to the masked intensity
maps. The best-fitting normalizations obtained with this procedure
are all well compatible with unity, showing a successful description
of the foreground emission. We normalize the foreground templates
with the obtained parameters and then subtract the foreground
maps from the corresponding intensity maps: this procedure is
performed after having rebinned them in the macroenergy bins then
used in the cross-correlation analysis. For additional information
about the foreground removal, see Ackermann et al. (2018) and
Ammazzalorso et al. (2018), where the same procedure is adopted.
In Fig. 1, we show as an example the gamma-ray masked map in
the (2.3−4.8) GeV energy bin before (left-hand panel) and after
(right-hand panel) the galactic foreground removal.

3https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

2.2 Galaxy cluster catalogues

We base our analysis on four galaxy cluster catalogues obtained
from observations in different frequency bands: one in the infrared
(WHY18), one in the optical (SDSSDR9) and two in the X-ray band
(MCXCsub and HIFLUGCS). We use these catalogues because
they contain clusters which are massive and located at relatively
low-redshift, thus offering an expected enhanced cross-correlation
signal. Being massive and relatively close, some of them might also
extend beyond the angular resolution of the Fermi-LAT detector,
allowing us to investigate if a cross-correlation signal due to diffuse
emission in clusters is present on large scales.

WHY18 is obtained by combining photometric galaxies from
2MASS, the Wide-field Infrared Survey Explorer (WISE; Wright
et al. 2010) and the SuperCOSMOS Sky Survey (Hambly, Irwin &
MacGillivray 2001). The main selection applied to the sources is
such as to include clusters with M500 > 3 × 1014M� 4 and redshift
between 0.025 and 0.3. The final number of clusters in this catalogue
is 47 500 (Wen et al. 2018).

SDSSDR9 is part of the full Sloan Digital Sky Survey (SDSS;
York et al. 2000) catalogue, obtained using an Adaptive Matched
Filter (AMF; Kepner et al. 1999) technique, based on a model
of galaxy distribution. This filter is built using the cluster density
radial profile, the galaxy luminosity function, and the redshift. After
applying the filter, the catalogues contains 49 479 clusters with
redshift between 0.045 and 0.691 (Banerjee et al. 2018).

MCXC is an X-ray catalogue (Piffaretti et al. 2011) obtained
by collecting 1743 clusters from two main types of X-ray obser-
vations: (i) contiguous area survey ROSAT (Voges et al. 1999);
(ii) deeper pointer X-ray observations. MCXCsub is built from the
full MCXC catalogue by selecting a sub-set of 112 clusters with
M500 > 1013M�, angular diameter larger than 0.2◦, latitude larger
than 20◦ and in positions of the sky to avoid contamination from
bright gamma-ray point sources (Reiss et al. 2018).

HIFLUGCS contains 63 clusters selected from ROSAT with
latitude larger than 20◦ and flux between 0.1 and 2.4 keV larger
than 2 × 10−11ergs s−1 cm−2 (Reiprich & Böhringer 2002b).

4In our analysis we consider M500 corresponding to an overdensity 	c =
500. The mass in this case is defined as M500 = 4π r3

500 500 ρc/3 =
250 r3

500 H (z)2/G, where ρc is the critical density, r500 is the virial radius,
H(z) the Hubble parameter, and G the gravitational constant.
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Table 2. Cluster catalogues used in our analysis. For each catalogue, we show the total number of clusters after the
selection discussed in the text, the signal-to-noise ratio for cross-correlation with the Fermi-LAT maps and the difference
in the best-fitting χ2’s of a flat angular power spectrum in multipole and the physical AGN model.

Catalogue Type Reference Total SNR 	χ2
FLAT−AGN

WHY18 Infrared Wen, Han & Yang (2018) 8999 2.1 0.6
SDSSDR9 Optical Banerjee et al. (2018) 2582 2.3 0.2
MCXCsub X-ray Reiss & Keshet (2018) 109 3.5 4.5
HIFLUGCS X-ray Reiprich & Böhringer (2002a) 105 3.2 0.6

Figure 2. Redshift distribution of the galaxy cluster catalogues used in our
analysis: WHY18 (limited to richness larger than 9), SDSSDR9, MCXCsub,
and HIFLUGCS.

Starting from the catalogues described above, we perform a
selection by considering only clusters at redshift smaller than
0.2 and with mass M500 > 1013M�, since we aim at investigating
clusters having an angular size in the sky at least comparable with
the Fermi-LAT PSF. Moreover, in order to consider only clusters
with robust identification, we applied a further cut on WHY18 by
retaining only clusters with richness larger than 5. Table 2 reports
the number of clusters selected for our analysis in each catalogue.
It is worth to mention that not all the original cluster catalogues
report the cluster mass in terms of M500. When a different mass is
provided, we have converted it into M500, following the formalism
described in the Appendix of Hu & Kravtsov (2003). The final
redshift distribution of the cluster catalogues adopted in our analysis
is shown in Fig. 2.

For each of the cluster catalogue, the cross-correlation analysis
requires a proper mask that takes into account the portion of sky
covered by the catalogue and possible systematic effects due to
Galactic contamination or misidentification that derives from high
stellar number densities. For the infrared catalogues WHY18 we
adopt a mask derived from Alonso et al. (2015); for the optical
catalogues SDSSDR9 the mask just refers to removing the portions
of sky not covered by the SDSS survey; for the X-ray catalogues
MCXCSub and HIFLUGCS the mask is a sharp cut for |b| > 20◦

with the additional removal of the Virgo region (Schellenberger &
Reiprich 2017). For all the catalogues, we assume uniform coverage,
at least on the angular scales probed in our correlation analysis (i.e.
below a few degrees).

3 MO D E L S

In this section we describe how we model the expected cross-
correlation APS between the gamma-ray sky and galaxy clusters
at low redshift.

The first expected contribution for the cross APS is provided by
gamma-ray emissions from the centre of clusters. This emission can
arise from compact sources located inside the cluster like AGNs
or from the innermost concentration of the ICM. Given the size
of the Fermi-LAT PSF, such correlation between the gamma-ray
emission and clusters is well represented by correlation at zero
angular separation (i.e. the emission comes from a region much
smaller than the Fermi-LAT PSF around the cluster centre): this
implies that the APS has a flat behaviour in multipole (also called
shot-noise term), except for the correction due to the Fermi-LAT
beam window function:

C
cj γi

�,FLAT =
⎛⎝ 1

Ncj

Ncj∑
k=0

F
γ

	Ei ,k

⎞⎠W
	Ei

� , (2)

with Ncj
being the number of objects in the cluster catalogue j

and F
γ

	Ei ,k
the gamma-ray flux coming from the centre of the

cluster k in the energy bin 	Ei. The beam window function
W	E

� accounts for the finite angular resolution of the Fermi-LAT
instrument that suppresses high multipoles. It is computed from
W�(E) = 2π

∫ 1
−1 d cos θ P�(cos θ ) PSF(θ, E) and then averaging

over the energy bin by using an energy spectrum of index −2.3,
which represents the mean spectral index of the UGRB (Ackermann
et al. 2015).

Since gamma-ray sources typically have energy spectra that can
be well approximated by a power law, the energy dependence of the
cross APS is modelled as a power law as well, and equation (2) can
be approximated as:

C
cj γi

�,FLAT = C
j

P Ē
−α1,j

i 	Ei W
	Ei

� , (3)

where Ēi = √
Ei Ei+1 is the geometric mean of the lower (Ei) and

upper (Ei + 1) bounds of the energy bin, 	Ei = Ei + 1 − Ei is the size
of the bin, C

j

P is the normalization of the power-law relation, and
α1, j is the spectral index. The index j on the parameters refers to the
fact that we fit the cross APS separately for each cluster catalogue.

In addition to the shot-noise term a correlation at larger angular
separation angles might also be expected. We model this APS
following the halo-model approach, where the correlation can be
decomposed into the so-called 1-halo and a 2-halo terms (‘1h’ and
‘2h’, in the notation below). The former refers to the correlation
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between two points residing in the same physical halo, the latter to
the case of two points belonging to two different haloes. Correlations
on angular scales larger than the Fermi-LAT PSF can be due either
to a 1-halo term associated to an extended ICM (or DM halo)
or to a 2-halo contribution, involving e.g. two AGNs residing in
different structures. For definiteness, since the modelling of gamma-
ray emission from ICM suffers of large uncertainties (Zandanel &
Ando 2014), we limit our modelling of the 2-halo term to the case
of the more robust AGN emission.

The general expression defining the theoretical cross APS is:

C
cj γi

� =
∫

dχ

χ2
Wcj

(χ )Wγi
(χ ) Pcj γi

(k = �/χ, χ ) , (4)

where Wcj
and Wγi

are the window functions of the cluster catalogue
j and gamma-ray source population i, Pcj γi

is the cross-correlation
3D power spectrum, and χ is the comoving radial distance. To
model these quantities we follow Branchini et al. (2017).

The window function of cluster catalogues can be written as:

Wcj
(z) = 4πχ (z)2

Ncj

∫
dM

d2ncj

dM dV
, (5)

with the number of objects in the cluster catalogue given by

Ncj
=

∫
dM dV

d2ncj

dM dV
. (6)

We empirically derive the cluster mass function from the catalogues
themselves, considering the estimated redshift and M500 masses
provided by the cluster catalogues.

The window function of the gamma-ray emission from a given
source population is

Wγi
(E, z) = χ (z)2

∫ Lmax(Fsens,z)

Lmin

dL
S(L, z, E)
dNS

dE
(L, z)

× e−τ [E(1+z),z] , (7)

where L is the gamma-ray rest-frame luminosity in the energy
interval 0.1 to 100 GeV, 
S is the gamma-ray luminosity function
of the source class i of astrophysical emitters included in our
analysis, and dNS/dE is its observed (unabsorbed) energy spectrum.
The upper bound Lmax(Fsens, z) = min[L(Fsens, z), L̂max] with Fsens

being the flux above which an object is resolved in the FL8Y and
3FHL catalogues and consequently masked in our analysis. The
minimum (maximum) intrinsic luminosity Lmin (L̂max) depends
on the properties of the source class under consideration. For
definiteness, we focus our analysis on misaligned AGNs, which
are modelled as in Branchini et al. (2017).

Finally, the last ingredient we need is the 3D power spectrum,
here decomposed in its 1-halo and 2-halo terms:

P 1h
cj ,γj

(k, z) =
∫ Lmax,i (z)

Lmin,i (z)
dL φi(L, z) × L

〈fγi
〉
〈Ncj

(M(L))〉
n̄cj

(8)

P 2h
cj ,γi

(k, z) =
[∫ Lmax,i (z)

Lmin,i (z)
dL 
i(L, z)bh(M(L))

L
〈fγi

〉
]

×
[∫ Mmax

Mmin

dM
dn

dM
bh(M)

〈Ncj
〉

n̄cj

]
P lin(k) , (9)

where 〈fγi
〉 is the mean luminosity density defined as 〈fγi

〉 =∫
dL L
i(L, z) and n̄cj

the mean cluster number density defined
as n̄cj

= ∫
dM 〈Ncj

dn/dM〉. The halo mass function dn/dM and
bias bh are derived from Sheth & Tormen (1999), while the halo
mass–luminosity relation is taken from Camera et al. (2015).

All these ingredients allow us to model a possible large-scale
correlation, resulting in a non-flat dependence on the multipole

angular scale. Although we use a model tuned on AGNs, we allow
a certain level of flexibility in order to intercept possible large-scale
deviations from the specific AGN emission. This is obtained by
allowing a free power-law index for the energy dependence and a
free overall normalization parameter. This second model is therefore
defined as:

C
cj γi

�,AGN = C
cj γi

�,FLAT(Cj
p, α1,j )

+ Aj

( Ēi

Ē0

)−α2,j

	Ei C
	E0
� W

	Ei

� ; (10)

it contains the expected small-scale shot-noise term already in-
troduced in equation (3) to which we add the AGN-like model
discussed above, with the fudging free parameters α2 and A. C

	E0
�

is the theoretical APS of equation (4) calculated in a specific energy
bin 	E0, that we choose to be the (1,2) GeV energy interval, with
the spectral behaviour of the signal then carried by the free spectral
index α2 and the size by the free normalization parameter A. Ēi is
the geometric mean of the boundaries of the i energy bin (reported
in Table 1). Ē0 is the same mean energy for the reference (1,2) GeV
energy interval. While here we explicitly indicate the index j (which
labels the galaxy catalogue), for the sake of brevity in the rest of the
paper we will omit the index j.

In conclusion, the FLAT model has two free parameters, the
spectral index α1 and the normalization factor CP. It is embedded
in the more complete physical AGN-like model, which is endowed
with two additional free parameters, the spectral index α2 and the
normalization factor A of the non-flat large-scale behaviour.

4 C RO SS-CORRELATI ON SI GNA L

The goal of the analysis is to investigate the presence of a cross-
correlation signal between gamma-rays and low-redshift clusters,
and then to study on which scales this signal originates, especially
if a large-scale effect can be identified that could be related to the
presence of a diffuse emission from the intracluster medium. The
quantity we measure is the APS C� of the cross-correlation between
the Fermi-LAT maps and the galaxy cluster catalogues described
in Section 2. The APS is estimated by using Polspice (Chon et al.
2004), a tool to statistically analyse data pixelled on the sphere: it
measures the two point auto- or cross-correlation APS, it is based
on the fast spherical harmonic transforms allowed by iso-latitude
pixellation such as HEALPix and corrects for the effects of the
masks. The statistical method then adopted to quantify the presence
of a signal against a null hypothesis is the signal to noise ratio (SNR)
defined as (see e.g. Becker et al. 2016):

SNR = C�,DATA �−1
��′ C�,MODEL√

C�,MODEL �−1
��′ C�,MODEL

, (11)

where C�, DATA is the measured cross APS, C�, MODEL is a model
that grabs the physical features expected for the cross-correlation
signal and �−1

�,�′ is the inverse of the cross APS covariance matrix.
Theoretical models are described in the previous section, and the
estimation of the covariance matrix is described below in a dedicated
section. The model employed to assess the significance of the
presence of a signal is C�, MODEL = C�, FLAT, where C�, FLAT is
defined in equation (3), i.e. a model independent of the multipole
� (as expected from the shot-noise of a population of gamma-ray
sources) with an energy dependence similar to the one measured
for the UGRB spectrum. The model parameters entering the com-
putation of the SNR are determined as the best-fitting parameters
obtained as discussed below. The covariance matrix is carefully
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Figure 3. Comparison of the binned cross-APS variance estimated from mocks (blue) with the variance computed with Polspice (magenta) or estimated
through the Gaussian prediction (black), in the third energy bin of Table 1. The upper panel shows the results for the WHY18 and SDSSDR9 catalogues while
the lower panel stands for the MCXCsub and HIGLUCS catalogues. For each panel, the ratio between the result obtained with the mock catalogues and the
Gaussian prediction is shown. The shaded areas highlight the levels of 5 per cent (dark grey) and 10 per cent (light grey) deviations.

estimated using mocks, as described in detail in Section 5 and
Appendix A.

As a second analysis we investigate whether a more refined and
complete model for the cross APS is preferred over the simpler
FLAT case. The model we use refers to the case where the gamma-
ray emission originates dominantly from AGNs. The model is
outlined in Section 3 and its statistical preference over the FLAT
case is determined by means of a χ2 analysis, where the χ2 function
is defined as:

χ2 =
Nbin∑
i=1

�max∑
�=�min

�max∑
�′=�min

[
(C�,DATA)i − (C�,MODEL)i

]
(�−1

��′ )i

×
[
(C�′,DATA)i − (C�′,MODEL)i

]
, (12)

where index i denotes the energy bins and the sum over the
multipole � is limited to a range (�min, �max) whose lower bound
is chosen in order to exclude possible galactic-foreground residual
contamination, while the upper bound is driven by the energy-
dependent Fermi-LAT PSF, as discussed in Ackermann et al. (2018).
The values for �min and �max for the different energy bins are reported

in Table 1. The best-fitting FLAT and AGN models are determined
by maximixing the Gaussian likelihood L defined as:

− 2 lnL = χ2. (13)

The preference for the AGN model over the FLAT case is then
determined by means of the 	χ2 = χ2

FLAT − χ2
AGN. This new

quantity behaves approximately like a χ2 distribution with a number
of degree of freedom (DOF) defined by the difference of the DOF
between the two models that enter in the comparison. For the models
used in our analysis and described in Section 3, we have DOF = 2.

We will also look at the Akaike information criterion (AIC),
Akaike (1974), defined by the following expression:

AIC = 2k − 2 ln L , (14)

where k is the number of parameters of the model and L is the
likelihood. With this criterion one can estimate the relative quality
of models in terms of information lost by the given model: the
smaller is the loss of information, the better the model performs in
reproducing the data.
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Figure 4. Cross-correlation coefficient r, as defined in equation (19), that shows the size of the off-diagonal terms of the covariance matrix for the multipole
dimension. Top left (right) panels show the WHY18 (SDSSDR9) case, bottom left (right) the MCXCsub (HIFLUGCS) case. Each panel refers to a specific
multipole value �2 and shows the coefficient r as a function of a different multipole �j, reported on the horizontal axis. The blue lines stand for the analysis done
with the mock catalogues, while the magenta lines refer to the covariance obtained with Polspice. The relative size of the off-diagonal terms of the covariance
matrix as compared to the diagonal ones is therefore always below the few per cent level. The peaks occur when the coefficient r sits on the diagonal (�j = �2),
where r = 1, by definition. The various panels show results for some representative multipoles �2 = 56, 89, 141, 224, 447, 981, for each of the four cluster
catalogues.

5 SI G NA L C OVA R I A N C E T H RO U G H MO C K S

In order to determine the presence of a signal and its significance,
we need a faithful determination of the covariance matrix, which
is then used also to build a robust likelihood function adopted to
constrain the models. To this aim, we investigated and compared
different options and determined the optimal choice for our analysis.
We performed an extensive and detailed investigation of the sources
of covariance in the measurement of the cross APS between galaxy
cluster catalogues and unresolved gamma-ray emission. The main
result we found is that the full covariance, along the two directions
of multipole � and energy, can be well approximated by a Gaussian
estimate, diagonal in both dimensions, especially when the study
is performed on binned (in � and energy) data. While we retain
in our analysis the full covariance for �, we can conclude that a
Gaussian estimate of the error budget for this type of cross APS is
a good approximation. We will substantiate these findings below.
At the same time, we derived a general method under the approx-
imation, valid in this case, that the cross-correlation contribution
is smaller than the product of the autocorrelations of galaxies and
gamma-rays, to provide and compare different estimates of the
cross APS covariances, that can be implemented and adopted in

any analysis of this kind. Details are provided in Appendices A
and B.

The method adopted in this paper to build a reliable covariance
matrix makes use of mock maps, obtained by randomizing the true
cluster and gamma-ray data. The idea is to generate a large number
of independent mock maps endowed with the same statistical
properties of the original true maps. From these originated maps we
then derive the covariance matrix in a direct way. The complete set
of techniques investigated to produce mock maps, for both clusters
and gamma rays, is described in Appendix A. For the final analysis,
we decided to use the phase randomization method to produce the
mock gamma ray maps and the FLASK lognormal simulation for
producing synthetic galaxy cluster catalogues. Even though the full
description of these two methods is given in the Appendix, it is
worth to provide some details here.

The concept behind the phase randomization method is that
every field defined on a sphere (like the gamma-ray intensity maps
measured by the Fermi-LAT) can be linearly decomposed in terms
of spherical harmonics. The spherical harmonics are weighted by a
set of coefficients from which the APS is defined. The APS of the
map is invariant under rotations (i.e. under the phase shift on the
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3232 M. Colavincenzo et al.

Figure 5. Cross-correlation coefficient rE, as defined in equation (21), that shows the size of the off-diagonal terms of the covariance matrix for the energy
dimension. The four panels refer to four arbitrary energy slices of the covariance matrix, representative of the general behaviour. Each line, identified by a
different colour, stands for a different multipole l, while the horizontal scale refers to the integer index labelling the energy bins. The labels Ei = 1, 3, 5, 7 on
top of each panel refer again to the energy bin. The relative size of the off-diagonal terms of the covariance matrix as compared to the diagonal ones is therefore
almost always below the 10 per cent level. The peaks occur when the coefficient rE sits on the diagonal (i = 1 in the first panel, and so on), where rE = 1, by
definition.

coefficients described in equation A6). This means that starting from
the measured power spectrum of the true map, we can build mock
maps by arbitrarily changing the phases of the spherical harmonic
coefficients. All these synthetic maps conserve the APS, but they
will give a non-zero covariance.

For what concerns FLASK, all the information regarding the code
and its implementation can be found in Xavier, Abdalla & Joachimi
(2016). FLASK produces lognormal realizations of maps, starting
from an input power spectrum. We feed FLASK with the measured
APS of the cluster catalogues. All the synthetic maps generated
by FLASK possess the same power spectrum, but are otherwise
randomized with respect to the original map that provides the input
power spectrum. We stress that the code allows the user to adopt
either a Gaussian or a lognormal probability distribution function:
in our case we adopted a lognormal distribution, in order to include
effects due to non-Gaussianity in the covariance matrix.

To estimate the cross-correlation covariance matrix, we produce
2000 realizations of the gamma maps in each of the nine energy
bin listed in Table 1 and 2000 mocks maps for each of the cluster
catalogues. The large number of realizations is required to have
numerical control on the off-diagonal terms of the covariance
matrix: from our tests, we found that 2000 is a good compromise

between statistics and computing time. We performed a large
number of tests, which are summarized here in their main features,
and discussed in the Appendix.

From these mock realizations, we can then construct the full
covariance between different multipoles (for each energy bin,
labelled by index i), obtained as:

�
cγi

��′ ≡ cov[Ccγi

� , C
cγi

�′ ] =
Nγ∑
k=1

Nc∑
j=1

(Ck,cγi

� − C̄�
cγi )

× (Cj,cγi

�′ − C̄�′
cγi ) , (15)

where Nγ (Nc) is the total number of gamma-ray (cluster) mocks,
C

a,cγi

� is the APS measurement performed on the a-th mock
realizations and:

C̄�
cγi = 1

N

N∑
a=1

C
a,cγi

� (16)

is the mean of the cross APS over all the realizations. In Appendix B
we demonstrate that the covariance matrix can be obtained by
averaging two estimates: �

ĉγi

��′ obtained by correlating the Nγ

realizations of the gamma-ray mocks with the true cluster map, and
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Figure 6. Binned angular power spectrum of the gamma-ray–cluster cross-correlation for the four cluster catalogues adopted in our analysis and in the third
gamma-ray energy bin (chosen as a representative example). The error bars are obtained from the binned angular-power-spectrum covariance matrix estimated
from 2000 mocks.

�
cγ̂i

��′ obtained by correlating the Nc realizations of cluster mocks
with the true gamma-ray map:

�
cγi

��′ = 1

2

(
�

ĉγi

��′ + �
cγ̂i

��′
)

. (17)

Each of the ‘half’ covariance is obtained by using equation (15).
This technique allows us to reduce significantly the computing time,
since we need 2N combinations instead of N2.

A selection of the performed tests is shown in Figs 3 and 4, where
results are reported in terms of the binned covariance (the variance
and covariance are binned over intervals of size 	l = 60 with �min =
40 and �max = 1000 5). Fig. 3 compares the results obtained through

5It is worth to mention the fact that binning the covariance matrix means
to take a block sub-matrix in which the value in each block is given by the
average over the covariance values in that block: this means that the diagonal

the mocks with the covariance estimate provided by Polspice
and with the theoretical Gaussian prediction for a given energy
bin i:

�
cγi

��′ = Ccc
� C

γiγi

� + (Ccγi

� )2

(2� + 1) 	� fsky,i
δK
ll′ , (18)

where Ccc
� and C

γiγi

� denote the cluster and gamma-ray autocor-
relations, fsky, i is the fraction of the sky probed by the survey in
the energy bin i, 	� is the multipole bin width, and δK

ll′ is the
Kronecker symbol (the Gaussian covariance is in fact diagonal, for
which reason Fig. 3 shows the comparison for the variance at each
multipole �). Polspice is a non-minimum variance estimator, while

of the binned covariance matrix includes some effect from the off-diagonal
contribution of the full covariance matrix.
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3234 M. Colavincenzo et al.

Figure 7. Energy spectrum PE of the cross-correlation angular power spectrum, for each of the four cluster catalogues. The plot shows PE rescaled by E2.2/	E,
where 	E is the width of the corresponding energy bin. The error bars are obtained from the angular-power-spectrum covariance matrix estimated from 2000
mocks.

instead the theoretical estimate is not valid in presence of non-
Gaussianities, in which case it represents an underestimate of the
true variance. For the estimation of the Polspice covariance matrix
we refer to Efstathiou (2004) where the procedure to compute the
so-called pseudo-Cl covariance matrix is described in detail. Here
we just list the main steps. The code: (i) computes the Cl from the
autocorrelation function; (ii) corrects the autocorrelation function
for the effect of the mask; (iii) computes the Cl back; (iv) computes
the V-matrix (see equation 15a of Efstathiou (2004)); (v) estimates
the final covariance matrix, corrected for the mask, beam and pixel
effects, as in equation (17) of Efstathiou (2004). From Fig. 3 we
notice, as expected, that the Polspice variance overestimates the
Gaussian prediction, as well as the variance from mocks. At the
same time, we find that the variance obtained using the mocks is
quite close to the Gaussian prediction. The differences between the
two are of the order of ∼ 10 per cent at very large scales (� < 100)
for WHY18 and SDSSDR9, and always smaller than 10 per cent
for MCXCsub and HIFLUGCS; at smaller scales (� > 400) they
are slightly larger than 10 per cent for SDSSDR9, while smaller for
all the other cluster catalogues; on intermediate scales (100 < � <

300) we observe differences between 5 per cent and 10 per cent for
all the catalogues.

The ‘Gaussianity’ of the covariance matrix was not an expected
result as it was not expected a large overestimation of the variance
from Polspice. We can confirm that the estimated covariance matrix
is nearly (although not exactly) Gaussian by looking at the off-
diagonal terms of the covariance matrix, that are small compared
with the diagonal ones. In Fig. 4 we show the cross-correlation
coefficient defined as:

r = �
cγi

��′√
�

cγi

�� �
cγi

�′�′

. (19)

One can note that the off-diagonal terms of the mocks covariance
matrix are always smaller than 5 per cent with respect to the diagonal
terms. The Polspice correlation coefficient, shown for comparison,
is even more diagonal, as expected. Even though we obtain that

the covariance matrix is significantly diagonal, nevertheless in our
analyses we adopt the full (binned) covariance matrix.

Concerning the covariance between different energy bins, we
again find that the cross APS between galaxy catalogues and
gamma-rays is quite diagonal, especially for energy bins of the
size of those adopted in our analysis (reported in Table 1). This can
be seen by evaluating the Gaussian estimator for the covariance in
energy (at fixed multipole, for convenience):

�
cγiγj

�� ≡ cov[Ccγi

� , C
cγj

� ] = Ccc
� C

γj γi

� + C
cγi

� C
cγj

�

(2� + 1)fsky
, (20)

where i and j identify the different energy bins and by determining
the corresponding correlation coefficient:

rE = �
cγiγj

��√
�

cγiγi

�� �
cγj γj

��

, (21)

which is analogous to the coefficient defined in equation (19) to
investigate the off-diagonal terms of the covariance matrix for
what concerns the multipole. Fig. 5 shows rE for some selected
angular scales and for MCXCsub. For most of the angular scales,
the off-diagonal elements of the covariance matrix are well be-
low a 5 per cent deviation from the diagonal elements. Only for
smaller angular scales the effect reaches deviations of the order of
10 per cent. Results are similar at different angular scales and for
the other cluster catalogues.

6 R ESULTS

The measured cross-correlation APS between the galaxy clusters
and the unresolved gamma-ray intensity are shown in Figs 6 and
7. The cross APS have been obtained by means of the Polspice
estimator and the (co)variances have been derived as discussed in
Section 5. Fig. 6 shows a representative case of the binned angular
power spectrum C

cγi

� as a function of the multipole � (third energy
bin of Table 1), for each of the four cluster catalogues. The error
bars are the diagonal entries of the covariance matrix obtained from
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Searching for gamma-ray emission 3235

Figure 8. Triangular plot for the bounds on the AGN model parameters obtained from the fit to the cross-correlation with the MCXCsub catalogue. The
contours refer to the 68 per cent (dark blue) and 95 per cent (light blue) confidence levels.

the mock analysis. Fig. 7 instead shows the energy dependence of
the mean cross APS, defined as the average with respect to � of the
C

cγi

� in each energy bin:

PEi
= 1

	�

�max∑
�min

C
cγi

� , (22)

where �min and �max are shown in Table 1 and 	� = �max − �min.
The errors on PE are defined as:

σ 2
PEi

= 1

	�

( 1

	�

�max∑
�min

σ 2
C

cγi
�

)
, (23)

where σ 2
C

cγi
�

= �
cγi

�� . To easy the visualization in the plot, the data

of equation (22) are multiplied by E2.2 (expected behaviour of the
UGRB; Ackermann et al. 2015) and divided by 	E (the width of
the energy bin).

In order to determine the presence of a positive cross-correlation
signal, we adopt the SNR defined in equation (11). C�, MODEL

is set at the best fit obtained with the featureless FLAT model
defined in Section 3. We perform all our fits by employing an
MCMC technique to determine the likelihood of equation (13).
We specifically adopt a pure-PYTHON implementation of Goodman
and Weareas Affine Invariant Markov chain Monte Carlo Ensemble
sampler (EMCEE) Foreman-Mackey et al. (2013). Once the best fit
C�, MODEL model is obtained, we determine the SNR, whose results
are reported in Table 2. The SNR analysis shows that the clusters
in the WHY18 and SDSSDR9 catalogues exhibit a mild preference
for a positive cross-correlation signal, while those in MCXCSub
and HIFLUGCS provide a larger SNR, in excess of 3. Therefore,
although not large, an evidence of gamma-ray emission from those
clusters appears to be present.

In order to look for a possible large-scale contribution, we then
fit the measured cross APS by adopting this time a physical model
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Figure 9. Distribution of θ500 for MCXCsub. The vertical solid line is set
at θ500 = 0.2◦, as an indication of the average size of the Fermi-LAT PSF
(the values of the 68 per cent containment angles in the different energy bins
are reported in Table 1), while the dashed vertical line shows the average
angular size θ̄ = 0.267 of the clusters in the MCXCsub catalogue.

which follows the features of an AGN-like gamma-ray emission, as
described in Section 3. This model, in fact, possesses a large-scale
2-halo term. We test whether the AGN-like model is preferred over
the FLAT model by means of a 	χ2 = χ2

FLAT − χ2
AGN test. Table 2

shows that for MCXCsub a large-scale contribution is preferred at
the 2.1σ level, whilst the other catalogues do not show a preference
for the AGN model over the FLAT one.

Thus MCXCsub, with an SNR of 3.5 and a 	χ2 = 4.5 pointing
to a large-scale contribution, turns out to be the most interesting
catalogue. We would expect HIFLUGCS and MCXCsub samples
to provide similar results, since the clusters in the two catalogues
share similar mass function and flux distributions. On the other
hand, a statistical difference of less than 2σ between two dif-
ferent samples of (possibly) the same population is nevertheless
plausible. The AIC test confirms the preference for a large-scale
contribution in MCXCsub: in particular AICFLAT = 152.05 against
AICAGN = 151.35 is the indication that the AGN model allows
for a smaller loss of information, even though with a somewhat
smaller evidence than in the 	χ2 analysis. All the other three
catalogues show instead a preference for the FLAT model, namely
AICFLAT < AICAGN .

In Fig. 8, we show the allowed regions obtained for the model
parameters in the MCXCsub case. The contours and shaded areas
refer to the 2D allowed regions at 68 per cent (dark blue) and
95 per cent (light blue) confidence levels. From Fig. 8 we see that the
constraints are somewhat loose, but consistent with an AGN-like
model, with the spectral indices close the mean blazar gamma-
ray emission (The Fermi-LAT collaboration 2019b), but notably
somewhat smaller. A spectral index lower than ∼2 is indicative
of a hardening of the spectrum for the unresolved population of
blazars, a result compatible with the findings of Ref. (Ackermann
et al. 2018). The AGN normalization, instead, turns out to be much

larger than expected, even though with a sizeable uncertainty. The
model adopted in our analysis is normalized such that the integral
of the window function over the redshift provides approximately
the measured UGRB intensity (see (Ammazzalorso et al. 2018)
for details). The value of the normalization we obtain here from
the MCMC is A = 71.5+19.9

−29.9. We verified that such conclusion is
independent on the specific model of AGN or blazars adopted in
equation (10).

A value this large could therefore exceed significantly the UGRB
intensity, if due to a 2-halo emission: in the halo model, it is the 2-
halo term which is directly related to the total gamma-ray emission,
while instead the 1-halo term can be large without necessarily
inducing an exceedingly large total emission. Indeed, both the
gamma-ray intensity and the two halo term are set by the window
function. This can be seen from their definitions: Iγ = ∫

dχ Wγ (χ ),
and C

cγ,2h

� = ∫
dχ/χ2 Wc(χ ) Wγ (χ )〈bc(χ )〉 〈bγ (χ )〉P lin(k =

�/χ, χ ), where 〈bi〉 is the bias of source i with respect to matter.
For a generic population emitting gamma-rays, 〈bγ 〉 ∼ 1 at low-z
(i.e. in the range we are considering). Therefore a normalization
different from one for the cross-correlation APS could only be
re-absorbed in the window function, thus affecting the intensity
in the same way. For what concerns the one-halo term, there is
instead an additional ingredient, that is poorly constrained, and can
significantly change the strength of the correlation without affecting
Wγ and in turn Iγ , which is the average gamma-ray luminosity
from a cluster of a given mass and redshift. Making this function
steeply increasing with the cluster mass can boost the one-halo
term.

The result we found might thus indicate that the model we
implemented is able to effectively capture a large-scale contribution,
but such correlation is not due to a 2-halo term involving gamma-
rays from AGNs (or other galactic sources) in two different haloes
at large physical distances. On the contrary it might be seen as
a potential indication in favour of a diffuse emission from the
ICM (which would instead be a 1-halo term). Indeed, a relevant 1-
halo term providing correlation on scales around 0.5−1 degree and
provided by gamma-rays from the ICM can be obtained (Branchini
et al. 2017; Reiss et al. 2018), with no obvious violation of other
existing bounds.

Clearly, if such a signal is present, it must be provided by the
clusters with a size of their diffuse emission significantly larger
than the Fermi-LAT PSF. The 1-halo signal from the clusters with an
angular dimension below/around the Fermi-LAT PSF would instead
be described by a featureless APS, like in the FLAT case. In order
to investigate more deeply this issue, we subdivided the MCXCsub
cluster catalogues in two sub-catalogues by looking at the angular
size of the clusters. The selection is done according to the angular
dimension of the clusters θ500 = r500/dA(z), where r500 is the virial
radius relative to an overdensity of 500 (as defined in footnote
4) and dA(z) is the angular diameter distance, which depends on
redshift z. We compute the average θ̄500 over all the MCXCsub
clusters and we focus this new analysis on all those clusters with
θ500 > θ̄500. They are expected to be the main contributors to the
extended 1-halo correlation if the hypothesis of ICM emission
is correct. We have that θ̄500 = 0.267 and the total number of
clusters with angular size smaller or larger than θ̄500 are 72 and
37, respectively. The angular size distribution of the MCXCsub is
shown in Fig. 9. We can see that most of the MCXCsub clusters
have a size larger than the Fermi-LAT PSF in most energy bins. The
latter is reported in Table 1. The vertical solid line in the figure refers
to an angle of 0.2 deg, which is an approximate illustration of the
Fermi-LAT beam.
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Figure 10. The same as in Fig. 8 but for the MCXCsub clusters selected according the criterion θ500 > θ̄500.

We then perform the fit of only the MCXCsub which are larger
than the average θ̄500. This analysis requires to build a new set of
cluster mocks (2000) produced in the same way as discussed above,
from which we determine the APS covariance matrix. The best-
fitting results are shown in 10 and the results for the 	χ2

AGN−FLAT
turns out to be only 2.1, which corresponds to 0.96σ . Contrary
to the expectations for an ICM signal, the statistical significance
does not increase when only the largest clusters are considered:
instead, it rather decreases as compared to the full MCXCsub
sample. This significantly weakens a possible ICM interpretation,
and leaves open the alternative between an unresolved blazar
population (with a slightly harder energy spectrum as compared
to the resolved ones) and a diffuse emission from the cluster
itself, like in the case of the intracluster medium emission. The
value of the best-fitting parameters are similar to what is found
for the full MCXCSub case, with a rather large normalization
parameter: A = 65.0+24.8

−35.7. This time, the parameter is consistent

at 1.8σ with an interpretation in terms of LSS from AGN emis-
sion, although the large uncertainty does not allow to make firm
conclusions.

For illustrative purposes, in order to visualize the angular scales
at which this excess occurs, we show the cross-correlation function
(CCF) also in configuration space. The CCF for the subset of
MCXCsub including most extended clusters (those with θ500 >

θ̄500) is reported in Fig. 11. The plot refers to the energy range
1–10 GeV, where the photon count statistics is large and the angular
resolution not too poor. The grey area indicates the size of Fermi-
LAT PSF.

The CCF exhibits a significant ‘noise’ term at small angular
scales, compatible with unresolved AGN point-like emission. A
peak is present on angular scales of the order of 0.7◦, although
not so statistically significant to determine a preference for a large-
scale term. This excess occurs at similar scales as those obtained in
Ref. Reiss & Keshet (2018) by means of a stacking analysis of the
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Figure 11. Angular two-point cross-correlation function for the most
extended MCXCsub clusters (those with θ500 > θ̄500) and gamma-ray
energies in the range (1,10) GeV. The shaded blue area is an estimate of the
error obtained from the diagonal of the Polspice covariance matrix; the grey
vertical indicates the region where the Fermi PSF effects are not negligible.

gamma-ray emission around galaxy clusters and is there interpreted
as due to the presence of virial shocks in the clusters.

7 C O N C L U S I O N S

We analysed the cross-correlation angular power spectrum between
the unresolved extragalactic gamma-ray background measured by
the Fermi-LAT and the large-scale structure of the Universe at
low redshift traced by four galaxy clusters identified in three
different bands: WHY18 (infrared band), SDSSDR9 (optical band),
MCXCsub, and HIFLUGCS (X-ray band). The main motivation
was to investigate whether the cross-correlation technique could
identify the presence of an extended gamma-ray emission possibly
compatible with an intracluster medium emission.

For all the four catalogues, the analysis confirmed that the
unresolved gamma-ray emission observed by Fermi-LAT correlates
with the large-scale clustering in the Universe as observed by
Fornengo et al. (2015) with the LSS tracer given by the CMB
lensing, by Xia et al. (2015) with galaxies and by Branchini
et al. (2017) specifically with clusters. We found that the largest
significance occurs for the galaxy clusters identified in the X-
ray band, i.e. MCXCsub and HIFLUGCS, for which the SNR
is 3.5 and 3.2, respectively. When compared with a theoretical
model which contains an explicit term referring to a large-scale
gamma-ray emission, MCXCsub exhibits a clear preference for this
type of emission as compared to a model containing only ‘shot-
noise’ emission from unresolved point sources, like sub-threshold
AGNs. The energy spectrum of this latter component is found to
be slightly harder than the mean spectral behaviour of resolved
blazars, possibly indicating differences between the resolved and
unresolved components of the AGN population, as observed also
in Ackermann et al. (2018). Further investigation of the extended
emission could not disentangle between the two options offered by
a large-scale 1-halo term, possibly linked to an intracluster medium

emission, and a large-scale 2-halo contribution, like it would occur
if the correlation is due to the large-scale distribution of point-like
AGNs.

However, the analysis in angular space shows a peak in the
correlation function on angular scales of the order of 0.7◦, which
appears compatible with the results of Reiss & Keshet (2018)
obtained by means of a stacking analysis and where the peak
is associated to the gamma-ray emission in virial shocks. In our
analysis, we confirm the presence of a fluctuation on similar angular
scales, although we do not have the sensitivity to determine whether
the peak in the correlation function has a physical origin or instead
just reflects a statistical fluctuation.

In developing the analysis, we also derived and tested technical
tools specifically designed to determine reliable multidimensional
covariance matrices, which are a key ingredient for the study
of cross-correlation signals. These methods are summarized in
the Appendices and refer to development, test, and comparison
of general numerical techniques for the massive and efficient
production of mock realizations of the sky for cross-correlation
studies, like the correlation of catalogues of galaxies or clusters with
gamma-ray maps. We then developed a semi-analytic framework
that allowed us to properly join the information coming from the
two pieces of the covariance matrix (galaxies/clusters catalogues
from one side, and gamma-rays from the other side) without
overestimating the error matrix: this is clearly important for the
estimation of the significance of the presence of a signal and for
the inference of model parameters. These techniques are general
enough such that they can be used for any distribution of objects
and can be adapted easily to different statistical and astrophysical
analyses.
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APPEN D IX

As pointed out in the main section of the paper, an accurate estimate
of the covariance matrix of the cross-correlation angular power
spectrum along its different dimensions (multipole, energy, redshift)
is necessary to infer the statistical significance of our results. The

method we are using to derive the cross-correlation APS is based on
Polspice, which is a non-minimum variance algorithm. We therefore
investigated methods based on the production of mock realizations
of the two maps which enter the cross-correlation analyses, from
which we derive estimates of the covariances of the cross-APS, in
order to determine which combination for the generation of the two
maps is more suitable for cross-correlation analyses, and to verify if
the results are stable across different techniques for the generation
of mocks. The method we devise starts from the true maps under
investigation, from which the mocks are produced, and is quite
general: this makes it directly adaptable to derive the covariance
also along those directions (like energy and redshift) for which
Polspice cannot be used. Since cross-correlations deal with two
observables, the generation of a suitably large number N of maps
for each set of observables implies the crossing of N × N maps: this
can make the computation of the covariance quite demanding from
the computational point of view, since N needs to be large enough
to make all the procedure reliable. We therefore devised, tested, and
validated a method which allows the computing resources to grow
linearly with N rather than quadratically: this is obtained by deriving
two estimates of the covariance by correlating the N mocks of the
first observable with the true map of the second observable, and
then performing the opposite: we demonstrate below that the total
covariance can then just be obtained as the average of these two
‘half’ covariances. The results thus obtained are a faithful estimate
of the global N × N crossing.

In the reminder of this Appendix we discuss the various tech-
niques adopted to generate mock maps for both galaxy/cluster
catalogues and for gamma-ray maps. In Appendix B we derive
a method which allows us to drastically reduce the computing
power necessary for the mock analysis and in Appendix C we
show results of the methods, applied to some specific cases based,
for definiteness, on the 2MPZ galaxy catalogue and the Fermi-LAT
gamma-ray maps.

A P P E N D I X A : G E N E R AT I O N O F MO C K S

The methods we use to generate mock maps starting from a tue map
are the following:

(i) Bootstrap
(ii) Jackknife
(iii) Phase Randomization
(iv) Gaussian Realizations (synfast)
(v) Lognormal Realizations (Flask)

We can group these five methods in two categories: resam-
pling procedures (bootstrap and jackknife), that allow us to build
mocks just with a reorganization of the original data sample
(galaxes/clusters or gamma-ray map); generated fields procedures
(phase randomization, synfast, and Flask), that use the statistical
distribution of the original data sample to build mocks.

We pre-process our data sets (either galaxies/clusters or gamma-
rays) in HEALPix format: this allows us to adopt the same procedure
for both type of observables. Galaxies/cluster maps are produced in
terms of number counts per pixels, gamma-rays maps in terms of
photon intensity per pixel. We adopt a HEALPix pixellation format
with resolution parameter Nside = 1024, which correspond to a total
number of pixels Npix = 12582 912 and mean spacing of ∼0.06◦.
Being interested in the unresolved component of the gamma-ray
emission, we apply masks for resolved point sources and galactic
emission, as described in Section 2.1. Masks may apply also to
the galaxies/clusters catalogues. The presence of (typically quite
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different) masks for the two fields make the determination of the
covariance matrix quite complex and involved, for which the mock
techniques becomes especially useful.

For each method used to produce the mock realizations of both
the galaxies/clusters and gamma-ray maps, we test that the ensuing
autocorrelation APS is recovered from the mocks: we measure the
auto APS for each mock map and verify that the average of these
APS recover the APS of the corresponding data maps.

A1 Bootstrap

A map in HEALPix format is an array of pixels where each element
represents the intensity of the specific pixel. To make one bootstrap
realization we follow these steps:

(i) We divided the full array in Nsub sub-arrays, so that each of
them has Npix /Nsub pixels;

(ii) We label each of the sub-array;
(iii) We randomly pick Nsub sub-arrays with replacements and

form a new resampled HEALPix map

Reiterating these three steps would produce Nr bootstrap realiza-
tions. The new HEALPix map originated in this way is characterized
by the same number of pixels of the original data set, but each of
the sub-array can be selected more than one times or not selected
at all; for this reason we have to weight each sub-array by the
number of times it is selected. This procedure is called bootstrap
with replacements (Norberg et al. 2009).

In this case the estimator of the APS covariance matrix is given
by:

�̂B = 1

Nr − 1

Nk∑
k=1

(xk
i − x̄i)(x

k
j − x̄j ) , (A1)

where xi is the i-th bootstrap realization and Nr is the number of
realizations and,

x̄i = 1

Nr

Nr∑
k=1

xk
i . (A2)

A2 Jackknife

As for the bootstrap technique, also for the jackknife method
the map is divided in Nsub sub-arrays with the same number
of pixels. Each of the sub-arrays is labelled, but in this case a
realization is obtained by systematically omitting one of the sub-
array in each realization. The resampling of the data set consists
of Nsub − 1 remaining sub-arrays with volume (Nsub − 1)/Nsub

times the volume of the original data set (Norberg et al. 2009). By
definition there are only Nr = Nsub different copies of the data set
that are created in this way. In this case the APS covariance matrix
estimator reads:

�̂J = Nr − 1

Nr

Nr∑
k=1

(xk
i − x̄i)(x

k
j − x̄j ) , (A3)

where x̄i is given by equation (A2). The factor (Nr − 1) accounts
for the lack of independence between the Nr copies of the data set.

A3 Phase randomization

The implementation of this procedure is described in De
Domenico & Lyberis (2012). It based on the fact that it is always

possible to write an intensity map as a linear combination of
spherical harmonics:

f (θ, φ) =
∞∑

�=0

�∑
m=−�

a�m Y�m(θ, φ) . (A4)

from which the angular power spectrum is obtained:

C� = 1

2� + 1

�∑
m=−1

|a�m|2 . (A5)

It is clear that equation (A5) is invariant under a phase rotation on
the harmonic amplitudes alm:

a�m −→ a�meiϕ�m ϕ�m ∈ R . (A6)

Taking advantage of this symmetry, we can build independent
realizations of the initial intensity map, each sharing the same APS.
Since we determine the true-map APS from a masked sky, we need
to correct for it, in order to produce a mock map that contains the
correct statistical properties of the original map. The procedure we
adopt is:

(i) Measure the auto APS (Cγγ

� or C
gg

� for gamma-rays or
galaxies/clusters) from the masked data maps

(ii) Transform: a�m −→ ã�m = a�meiϕ�m

(iii) Construct a full-sky mock map: f̃ (θ, φ) =∑∞
�=0

∑�

m=−� ã�m Y�m(θ, φ)
(iv) Correct the mock map for incomplete sky: f̃ (θ, φ) −→

f̃ (θ, φ) × W (θ, φ) × f
−1/2
sky

The (fsky)−1/2 accounts for the fact that the original map was
masked and therefore the obtained harmonic amplitudes has reduced
power as compared to the true one. W(θ , φ) restores the mask on
the mock map. Let us notice that this method looses information
on the shot-noise, and therefore it can produce underestimate of the
covariance in situations where the shot-noise is large.

The evaluation of the APS covariance matrix is finally done with
equation (A3)

A4 Gaussian realizations (Synfast)

Synfast6 is a HEALPix routine that allows us to generate realizations
of a Gaussian random fields on a sphere, starting from an input
APS. The procedure we therefore start from the APS describing the
statistical distribution of the data sample we want to replicate:

(i) Measure the auto APS (Cγγ

l or C
gg

l for gamma-rays or
galaxies/clusters) from the masked data maps

(ii) The obtained APS is fed to synfast, which outputs a full-sky
mock map: f̃ (θ, φ)

(iii) Mask the mock map: f̃ (θ, φ) −→ f̃ (θ, φ) × W (θ, φ)

The evaluation of the APS covariance matrix is finally done with
equation (A3)

A5 Lognormal realizations (FLASK)

Flask7 is a C++ code, parallelized with OpenMP, based on the work
of Xavier et al. (2016) and created to generate mock realizations
of galaxy distributions starting from their 3D power spectrum. Like
synfast, it generates multiple correlated fields on spherical shells,

6https://healpix.jpl.nasa.gov/html/facilitiesnode14.htm
7http://www.astro.iag.usp.br/ flask
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after providing the power spectrum describing the distribution to
be replicated. Differently from synfast, the generated maps are
obtained from a lognormal distribution. The tomographic approach
used by Flask slices the 3D space into spherical shells (redshift
slices), each one discretized in Healpix maps. After generating the
fields, Flask can apply selection functions and noise to them. The
output can be in the form of a source catalogue and/or Healpix
maps, among others.

We use Flask to generate Nr independent realizations. The
evaluation of the APS covariance matrix is finally done with
equation (A3). Although the code is thought to work for galaxy
distributions in different redshift bins, we tried to use it also for
gamma-ray maps, by using the APS instead of the 3D power
spectrum.

A6 Covariance estimators’ relations

As we have shown in the previous sections, we can set a different
APS covariance matrix estimator for each of the methods we use
to produce mocks. It can be useful to have a look to the relation
between the different estimators.

Given a data vector X = {x1, x2, ..., xNr } we can write the generic
expression for the covariance matrix of X as:

cov[X] = 1

Nr

Nr∑
k=1

(xk
i − x̄i)(x

k
j − x̄j ) (A7)

with x̄i is given by equation (A2). Equation (A7) can also be
rewritten as:

cov[X] = 1

Nr

Nr∑
k=1

xk
i x

k
j − 1

Nr
2

Nr∑
k=1

xk
i

Nr∑
k=1

xk
j . (A8)

The unbiased definition of the sample covariance when the mean is
derived from the sample itself is:

�̂U ≡ Nr

Nr − 1
× cov[X]

= 1

Nr − 1

Nr∑
k=1

xk
i x

k
j − 1

Nr

1

Nr − 1

Nr∑
k=1

xk
i

Nr∑
k=1

xk
j . (A9)

We can relate the estimator of equation (A9) to the ones obtained
with the jackknife (A3) and bootstrap (A1) techniques as:

Jackknife: �̂J = (Nr − 1)2

Nr

× �̂U (A10)

Bootstrap: �̂J = �̂U (A11)

APP ENDIX B: SEMI-ANALYTIC PREDICTI ON
O F T H E C RO S S - C O R R E L AT I O N C OVA R I A N C E

The derivation of the covariance matrix for the cross-correlation
APS requires us to combine the information arising from the
generation of many different set of maps. In order to obtain stable
results, the required number of realizations for each of the two
observables can be large (in our analysis on the cross-correlations
between clusters and gamma-rays, we produced 2000 mocks for
each set), and can require us to produce maps in several energy
bins (for gamma-rays) and redshift bins (for galaxies/clusters). In
this section we show that we can obtain a reliable estimate of
the full covariance matrix by performing a simpler combination,
namely we can construct two partial estimates of the covariance
matrix by combining separately: (i) the galaxies/clusters mock

with the measured gamma-ray map; (ii) the gamma-ray mocks
with the measured galaxies/clusters maps. The final estimate of the
covariance is obtained as the average of these two ‘half’ covariances.
This reduces the number of combinations from (Nr )2 × (nE × nz)
to 2(Nr × nE × nz) (where Nr denotes the number of mock maps
produced for each of the nE energy bins and nz redshift bins),
which is Nr /2 times faster. We show that this approach is correct
in the limit of a large number (Nr ) of realizations, by following a
theoretical derivation based on the Gaussian prediction for the APS
covariance matrix. We have numerically verified that the result
shown here hold in a more general situation where Gaussianity is
not necessarily present. The method we are going to describe is
valid in the case where the cross-correlation term is small when
compared to the product of the autocorrelations for galaxies and
gamma-rays.

Let us start with the Gaussian prediction for the APS covariance
matrix: (Hu & Jain 2004):

�
gγi

�� ≡ cov[Cgγi

� , C
gγi

� ] = C
gg

� C
γiγi

� + (Cgγi

� )2

(2� + 1)	� fsky
δK
��′ , (B1)

where 	l is the bin width, fsky is the fraction of the sky probed by
the surveys, and δK is the Kronecker symbol.

Let us denote with a hat symbol quantities which are measured
on the real maps, while quantities obtained from mocks do not have
the hat symbol. For instance, Ĉ

gg

l and Ĉ
γ γ

l are the galaxies/clusters
the gamma-ray autocorrelation APS measured on the true data
maps. Let us define a covariance term obtained by computing the
cross-correlation between the real galaxy distribution and the mock
gamma-rays realizations. From equation (B1) and considering that
we construct the covariance from the mock by averaging over the
Nr realizations:

�
ĝγi

��′ ≡ cov[Cĝγi

� , C
ĝγi

�′ ] ∝ Ĉ
gg

�

1

Nr

Nr∑
n=1

C
γiγi ,n

�

+ 1

Nr

Nr∑
n=1

(Cĝγi ,n

� )2. (B2)

Let us then define the corresponding counterpart term obtained by
using the mocks for galaxies/clusters and data for gamma-rays:

�
gγ̂i

��′ ∝ Ĉ
γiγi

l

1

Nr

Nr∑
n=1

C
gg,n

l + 1

Nr

Nr∑
n=1

(Cgγ̂i ,n

l )2 . (B3)

When instead we use only mocks, equation (B1) gives:

�
gγi

��′ ∝
(

1

Nr

Nr∑
n=1

C
gg,n

l

)(
1

Nr

Nr∑
n=1

C
γiγi ,n

l

)

+ 1

N2
r

N2
r∑

n=1

(Cgγi ,n

l )2. (B4)

If we take the average of the expressions (B2) and (B3), we obtain:

(�gγi

��′ )ave = 1

2

(
�

ĝγi

��′ + �
gγ̂i

��′
)

∝ Ĉ
γiγi

l

1

Nr

Nr∑
n=1

C
gg,n

l

+Ĉ
gg

l

1

Nr

Nr∑
n=1

C
γiγi ,n

l + 1

Nr

Nr∑
n=1

(Cgγi ,n

l )2. (B5)

Since the measurements of the APS (Ĉgg

l and Ĉ
γ γ

l ) obtained using
the real map are well reproduced by the APS measurements from
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mock maps:

Ĉ
gg

l � 1

Nr

Nr∑
n=1

C
gg,n

l

Ĉ
γi γi

l � 1

Nr

Nr∑
n=1

C
γiγi ,n

l . (B6)

we obtain:

(�gγi

��′ )ave ∝
(

1

Nr

Nr∑
n=1

C
gg,n

l

)(
1

Nr

Nr∑
n=1

C
γiγi ,n

l

)

+ 1

N2
r

N2
r∑

n=1

(Cgγi ,n

l )2 . (B7)

We then observe that in the limit of large Nr :

1

N2
r

N2
r∑

n=1

(Cgγi ,n

l )2 � 1

Nr

Nr∑
n=1

(Cgγi ,n

l )2 . (B8)

In this case, equation (B4) and equation (B7) give the same result.
Therefore we can obtain a reliable estimate of the covariance by
simply averaging over the sum of the two ‘half’ contributions:

�
gγi

��′ = 1

2

(
�

ĝγi

��′ + �
gγ̂i

��′
)

. (B9)

A P P E N D I X C : C O M PA R I S O N O F TH E
M E T H O D S TO PRO D U C E M A P MO C K S

In this Appendix we report some results for the determination of
the cross-correlation covariance matrix obtained using the methods
described in Appendix A and using the relation shown in equa-
tion (B9) to join the separate information coming respectively from
the gamma and galaxy mock maps. For definiteness, in this analysis
we use the 2MASS Photometric Redshift catalogue (2MPZ; Bilicki
et al. 2014) that is a galaxy catalogue built by cross-matching
2MASS XSC, WISE, and SuperCOSMOS all-sky samples with
galaxy photometric redshift reconstructed via an artificial neural
network. The employed algorithm is the one described in Collister &
Lahav (2004) and trained on several redshift surveys (2MRS, SDSS,
6dFGS, 2dFGRS, and ZCAT). The all-sky accuracy of the redshift
reconstructed by the network is close to σ z = 0.015 for nearly all
the data set with few outliers. The resulting 2MPZ sample contains
almost 1 million galaxies with a median redshift of z = 0.07. In

the left-hand panel of Fig. C1 we show the 2MPZ catalogue in
HEALPix projection and in the right-hand panel we show its redshift
distribution. We use this catalogue to test our methods to exploit the
large statistics in terms of number of galaxies (934 175), that allow
us to reduce the galaxy shot-noise contribution.

We produce 256 galaxy mock maps starting from the 2MPZ
galaxy catalogue and 256 gamma-ray maps in each energy bins used
also in the main text analysis (see Table 1) using the five methods
described in Appendix A. With this relative small number of mocks,
per energy bin, we can test the accuracy in the estimation of the
diagonal of the cross-correlation covariance matrix and compare it
with its Gaussian prediction of equation (B1). For the non-diagonal
terms, we need to produce a much larger number of mocks, and
in the analysis of the main text we use 2000 realizations for each
observable.

The results are shown in Figs C2–C6. In each figure we show
the variance estimated using equation (B7) (coloured lines) for a
low (left-hand panel), intermediate (centre), and large (right-hand
panel) energy bin; in all plots, the black line represents the Gaussian
prediction. Each plot is accompanied by a lower panel, where we
show the ratio between the result for each combination and the
Gaussian variance.

In Fig. C2 the method to produce gamma-ray mocks is fixed to
phase randomization, and the galaxy mocks methods are rotated
among the five options discussed in Appendix A. We notice that
phaseGAM + bootstrapGAL tend to systematically underestimate
the covariance, producing results even smaller by ∼ 30 per cent
than the Gaussian prediction. This happens for all energy bins. The
combination phaseGAM + phaseGAL slightly underestimate by
a few per cent the Gaussian variance in the first energy bin, but
it is almost Gaussian in the other cases; the other combinations
produce estimates in excess of the Gaussian prediction of about
∼ 30 per cent for phaseGAM + phaseGAL/flaskGAL and about
60 per cent for phaseGAM + jackknifeGAL.

A similar behaviour is observed in Fig. C3, where synfast is used
to produce the gamma-ray mocks. All the combinations show almost
the same trend observed in Fig. C2. We expected similar results
between the phase randomization and synfast technique, since the
two technique are quite similarly implemented in the generation of
mock maps.

Fig. C4 shows the result for the bootstrap method applied to
gamma rays, in combination with all methods for the galaxy
mocks. In this case we observe that all the combinations ex-
cept bootstrapGAM + jackknifeGAL underestimate the Gaus-

Figure C1. Left-hand panel: All-sky map of the 2MPZ catalogue in HEALPix projection with Nside = 128. Right-hand panel: Redshift distribution of the
2MPZ catalogue.
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Figure C2. Diagonal of the cross-correlation covariance matrix estimated using 256 mocks; in black the Gaussian predictions; the coloured lines are the
variances estimated using the phase randomization method for gamma maps + all the other methods for galaxy maps. In the lower panels it is shown that the
ratio between each of the coloured lines and the Gaussian variance; the grey shaded area represents a 50 per cent interval.

Figure C3. Same as Fig. C2 but using the Synfast methods for the gamma maps.

Figure C4. Same as Fig. C2 but using the Bootstrap methods for the gamma maps.

sian prediction of about ∼ 30 per cent in the case of boot-
strapGAM + synfastGAL/flaskGAL, and by more than 50 per cent
for bootstrapGAM + phaseGAL/bootstrapGAL.

The jackknife applied to gamma-rays in combination with all
methods for galaxies is shown in Fig. C5. In this case, all the

combinations largely overestimate the Gaussian prediction with
just jackknifeGAM + bootstrapGAL/phaseGAL remaining below
a 50 per cent difference.

Finally, we show in Fig. C6, the adoption of Flask to produce
gamma-ray mocks: it is clear that all the combinations show an
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Figure C5. Same as Fig. C2 but using the Jackknife methods for the gamma maps.

Figure C6. Same as Fig. C2 but using the Flask methods for the gamma maps.

inconsistent behaviour, with peculiar fluctuations for multipole
scales smaller than 800. This behaviour is likely due to the fact
that Flask is built to reproduce a galaxy distribution and is not
general enough to be used for gamma-ray maps. We decided to test
its use also to generate gamma-ray mocks: although the APS is well
reproduced, the behaviour of the covariance does not give results
which look trustable, especially when compared with all the other
methods shown above.

In conclusion, from the extensive analysis of the different
combinations, we found that FlaskGAL + PhaseGAM repre-

sents a good options for estimating the covariance matrix for the
cross-correlation APS of galaxies/clusters with gamma-rays. This
combination produces covariance in slight excess of the Gaussian
prediction for almost all situation tested.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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