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Abstract

The world is undergoing a process of fast and unprecedented urbanisation. It is
reported that by 2050 66% of the entire world population will live in cities.
Although this phenomenon is generally considered beneficial, it is also causing
housing crises and more inequality worldwide. In the past, the relationship
between design features of cities and socio-economic levels of their residents has
been investigated using both qualitative and quantitative methods. However,
both sets of works had significant limitations as the former lacked generalizability
and replicability, while the latter had a too narrow focus, since they tended to
analyse single aspects of the urban environment rather than a more complex set
of metrics. This might have been caused by the lack of data availability.
Nowadays, though, larger and freely accessible repositories of data can be used
for this purpose. In this paper, we propose a scalable method that delves deeper
into the relationship between features of cities and socio-economics. The method
uses openly accessible datasets to extract multiple metrics of urban form and
then models the relationship between urban form and socio-economic levels
through spatial regression analysis. We applied this method to the six major
conurbations (i.e., London, Manchester, Birmingham, Liverpool, Leeds, and
Newcastle) of the United Kingdom (UK) and found that urban form could explain
up to 70% of the variance of the English official socio-economic index, the Index
of Multiple Deprivation (IMD). In particular, results suggest that more deprived
UK neighbourhoods are characterised by higher population density, larger
portions of unbuilt land, more dead-end roads, and a more regular street pattern.

Keywords: urban form; socio-economics; spatial analysis; open data;
OpenStreetMap

Introduction
Cities are growing faster than ever before. In 1950, only 30% of the total world

population was living in cities. Today, this datum stands around 54%. By 2050, the

estimates project that 66% of the total world population will be urban, with cities

in developing countries attracting the greatest number of new city dwellers [1]. Ur-

banisation is regarded by institutions and governments as a positive phenomenon

as it brings, for example, better and less costly public services and improved living

standards due to the concentration of economic activities [2]. However, this very

same phenomenon is also reported to bring more inequality worldwide, with some

areas benefiting more from public investments and economic growth than others

[3]. It is thus necessary to develop a better understanding of the relationship be-

tween physical features of the urban environment and socio-economic levels of city

dwellers, to inform urbanists and city planners.
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Urban form had been investigated extensively in the past, in relation to socio-

economics and well-being. Jacobs, for example, observed different parts of her city

(i.e., New York) and reached the conclusion that the traditional compact pedestrian

friendly city form would have ensured the overall well-being of city dwellers [4].

Swiss architect Le Corbusier formulated a theory based on his personal perspective

and reached an opposite conclusion, instead. In his view, the optimal city form

was dispersed and more car-oriented [5]. The main limitation of these works lies in

the use of qualitative methodologies which render studies difficult to repeat, and

outcomes to generalise. More recently, researchers adopted quantitative methods

to study the relationship between features of the urban environment and socio-

economic aspects (see, for example, [6] and [7]). The main limitations of these works

is that they analysed relatively small geographic areas (e.g., single neighbourhoods)

and focused on single aspects of the urban environment (e.g., place accessibility)

despite the fact that urban form is, by definition, the interplay of multiple elements

and these should be thus studied together to best capture the socio-economics of

city neighbourhoods.

The choice of using qualitative methods or analysing single metrics might have

been dictated by the lack of available data. In the last decade, though, large data

repositories and new techniques of data collection (e.g., crowd-sourcing) have be-

come readily available (i.e., “open data revolution” [8, 9]). Researchers have recently

started to take advantage of such phenomenon and study cities through quantitative

methods. For example, they analysed crowd-sourced visual perceptions of different

urban environments in relation to socio-demographic factors [10] and urban quali-

ties, such as beauty [11].

Inspired by this set of works, which analysed urban form in a more comprehensive

manner, and by taking advantage of the “open data revolution” too, we propose

a quantitative method that uses openly accessible datasets and spatial regression

analysis to study the relationship between multiple features of urban form and

socio-economic indexes. Unlike previous works, our method (i) relies on multiple

descriptors of the urban environment and (ii) can be applied to cities of different

sizes and repeatedly over time, at almost no cost. To test this method, we applied

it to the UK major urban areas as identified by an official document (i.e., London,

Manchester, Birmingham, Liverpool, Leeds, and Newcastle) [12]. Both features of

urban form and information on the socio-economic levels of their communities were

extracted from openly accessible datasets. The former were extracted from Ord-

nance Survey (OS) VectorMap District and OpenStreetMap (OSM), while the latter

was obtained from the English IMD database. Outcomes of the spatial models could

explain between 27% and 70% of the variance of IMD, confirming the existence of a

relationship between urban form and socio-economics across the six cities. Further-

more, we found some aspects of urban form to have similar behaviours across the

case studies thus highlighting some common patterns. In particular, more deprived

neighbourhoods of urban UK were found to be characterised by higher population

density, more unbuilt land, a higher presence of dead-end roads, and a more regular

street pattern. The method proposed in this paper and its outcomes can be helpful

in the current urbanisation age as they constitute a data driven basis for reasoning

on possible design schemes and urban policies.
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The remainder of this paper is structured as follows. We firstly illustrate related

works. We then present our method, starting from the metrics of urban form and

the concept of socio-economic index, and by then following with the type of analysis

conducted. We discuss the results of its application to the six UK cities under study,

before offering our interpretations. We conclude with final remarks and limitations.

Related works
As we presented in the Introduction, the relationship between urban form and socio-

economic outcomes has been investigated in a variety of ways. Several authors used

qualitative methods based on observation or personal views. These authors can be

subdivided in two schools of thought: those supporting the compact pedestrian city

form and those favouring more spread out and car-oriented urban environments.

Jacobs belongs to the former group as she supported the features of the traditional

city, that is medium to high built density, perimeter blocks, walk-ability, and mixed-

use [4]. Similarly, Whyte praised human scale streets, walk-ability, and argued that

subtle urban details, such as shop widows, porticoes, steps, and doorways, were in-

dispensable for city liveability [13]. Gehl is on the same page and favours pedestrian

mixed-use streets, as well as active city edges (i.e., block frontages), which, in his

view, can promote social interactions as well as stimulate commercial activities [14].

The other school of thought was openly against the traditional city form instead.

Le Corbusier, for example, deemed it as disordered, chaotic, and unhealthy [5]. He

proposed a city based on super blocks (i.e., urban blocks of big dimension) delimited

by multi-lane highways and residential tower blocks retracted from the side-walks

and laid out in open space (the so-called “towers in the park”). Similarly, Hilber-

seimer despised the traditional city form and proposed plans characterised by a grid

of highways and repetitive, tall residential blocks aligned to them [15]. Although

these works presented insightful perspectives, they lack generalizability as they were

based on qualitative methods. Moreover, they are hardly replicable as mostly based

on personal views and observations.

More recently, thanks to the diffusion of computers and Geographic Information

Systems (GIS), the study of cities has become more quantitative. Vaughan et al.,

for example, adopted a renowned technique for the analysis of street networks (i.e.,

Space Syntax [16]) to study the relationship between integration (i.e., a measure

of spatial accessibility) and socio-economic levels of East London residents [6]. The

researchers reported that more accessible places, such as main streets, were associ-

ated with more affluent residents while less accessible ones, such as back streets and

interstitial spaces, were related to less advantaged citizens. Other scholars focused

on urban form and criminal activity and studied the relationship between dwelling

typologies and crime occurrences in a London borough [17]. These scholars found

the flat to be the safest house type. Researchers also separately investigated density

in relation to crime; however, they found discordant outcomes. Some reported ab-

sence of any relationship [18, 19], while a more recent work found that density was

overall beneficial against crime [17]. Hillier studied whether a specific configuration

of the street network, that of cul-de-sac, was associated with more or less crimes in

a London neighbourhood. Results suggested that cul-de-sac did not attract more

crimes than other spatial configurations when integrated in a street network with
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significant through movement and many properties facing the streets [7]. Other re-

searchers focused on the relationship between social aspects of urban life and the

configuration of cities. Similar to density, outcomes were contrasting. Some scholars

reported that higher densities improved social interactions [20] and that lower den-

sities not only decreased social ties, but also favoured more car-oriented behaviours

[21]. Contrary to this, other researchers found that higher densities diminished the

will of people to socialize and increased stress [22, 23, 24]. Although these studies

were based on quantitative methods rather than qualitative ones, findings are still

hardly generalizable as the geographic contexts under study were limited (e.g., a

single neighbourhood, a specific city). This was mainly due to a lack of data as most

of it was proprietary and thus hardly accessible. Furthermore, these works mainly

studied separate aspects of urban form in relation to socio-economics (e.g., spatial

accessibility and social class in the work by Vaughan et al. [6]). However, cities are

constituted by many interrelated components, which act in synergy rather than in

isolation [25, 26].

In the last decade, given the increased availability of open data repositories and

the rise of new data collection techniques (e.g. crowd-sourcing), the limitations

stated above (i.e., few and hardly accessible datasets) have almost disappeared.

Indeed, researchers have started to analyse cities in more comprehensive manners,

for example, through the analysis of pictures, which, by default, comprise of multiple

elements of the built environment. Quercia et al. used crowd-sourcing to ask more

than 3,000 respondents whether photos of different urban environments transmitted

beauty, quietness, and happiness [11]. The researchers then used this information to

understand what visual features (i.e., colours, textures) best correlated with these

qualities and found that the colour green was positively correlated, while wide

roads and faceless buildings were inversely correlated. Selasses et al. used the same

data collection technique (i.e., crowd-sourcing) to ask more than 7,000 people to

rate their visual perceptions of street views in terms of safety, social status, and

uniqueness [10]. The group of researchers then compared the responses to socio-

demographic data and found that spatial dissimilarities in the perception of safety

and social status better correlated with violent crimes than their absolute values.

Furthermore, they found that, safety perception being equal, these crimes were more

related to areas that looked more upper class. Although analysing multiple aspects

of urban form at the same time, these works focused on “point-based” analysis (e.g.,

the characteristics of the urban space which can be seen in a single picture). What

is still missing is a method that enables the analysis of multiple aspects of urban

form at an “area-based” level. We present next the details of a method that permits

this type of spatial analysis in a scalable manner.

Method
The methodology we propose mainly consists of two parts: (i) computation of met-

rics of urban form and socio-economics aggregated at areal level and (ii) quantitative

analysis based on spatial linear regression to understand the relationship between

the features of urban form and socio-economic levels of neighbourhoods. We present

next the metrics and the procedural steps for carrying out the analysis, before de-

scribing how we applied it in practice.
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Metrics

Urban form

Our method requires the computation of nine different metrics, capturing different

aspects of the built environment. Five of these were derived from previous works,

while four are being proposed in this paper. The five metrics derived from previous

works are:

• Connected Node Ratio (CNR). This measures the level of connectivity and

walk-ability of a street network and was derived from the work by Garrick and

Marshall [27]. CNR is computed as the ratio between the number of street

intersections that are not cul-de-sac (i.e., node degree equals to 0) and the total

number of street intersections in an area. We include this metric as several

different authors, including Jacobs [4] and Gehl [14], considered connectivity

and walk-ability fundamental aspects for thriving neighbourhoods. These not

only positively affected the health conditions of citizens, but also improved

social interactions, commercial activities, and provided informal protection

against crime.

• Intersection Density (ID). This metric quantifies the density of street inter-

sections in city areas. As for CNR, also ID has been extracted from the work

by Garrick and Marshall [27]. Intersection Density is computed as the ratio

between the total number of intersections lying in an area and the extension

(in square meters) of such area. The reason for including this metric is simi-

lar to the one stated above as ID and CNR are closely related. Generally, a

dense street network tends also to be more connected and walk-able and thus

be associated with the positive aspects mentioned above (i.e., better health

conditions, more social and economic benefits, more control against crime

[4, 14]).

• Percentage of Unbuilt Land (PUL). It measures the amount of land that is

not covered by buildings and was derived from previous work by Banister et

al. [28]. PUL is calculated dividing the extension (in square meters) of land

that is left unbuilt in a city area, by the overall extension (in square meters)

of such area (then multiplying this value by 100). PUL provides information

on how buildings are distributed across an area. Smaller values of PUL mean

that buildings are spread all over an area. Conversely, greater values of PUL

mean that buildings are concentrated in fewer spots. We include this metric

as the spatial distribution of buildings in city areas was considered a relevant

aspect by different researchers. Modernist planners, for example, favoured few

buildings surrounded by open space (i.e., “towers in the park”) [5, 15]. Authors

supportive of the compact city form favoured a more continuous urban fabric

instead [4, 13, 14].

• Population Density (PD). It quantifies how densely populated is a city area.

PD is a common statistical datum used by institutions and governments and

is computed as the ratio between the number of residents living in an area

and the extension (usually, in hectares) of such area. PD together with PUL

provides information on how built density is distributed across an area. For

example, a neighbourhood with a big portion of unbuilt land and a high pop-

ulation density is likely to be characterised by residential towers. Conversely,
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a neighbourhood with small unbuilt surface and a high population density is

likely to be characterised by perimeter blocks.

• Betweenness Centrality (BC). It measures the level of centrality of streets.

To be more specific, BC is based on the concept that a street is central if

it is included in many of the shortest paths linking pairs of nodes (street

intersections) in a street network. This metric was derived from the work by

Porta et al. [29]. We include BC as previous works showed it to be associated

with positive aspects of cities such as employment density [30], agglomeration

of economic activities [31], and street quality [32]. BC is usually computed for

street segments. However, since our method analyses areal units, some sort of

aggregation is necessary. We do so by calculating BC for the street segments

of the urban region under study, and by then identifying the maximum value

within each area of such region. We argue that the maximum value of BC can

be representative of the level of accessibility of different areas with respect to

the overall urban region.

We present next four metrics of urban form that we propose in this paper to

complement the previous ones:

• Percentage of Green Areas (PGA). This metric quantifies the amount of public

green space available in a city area. It is computed dividing the amount of

green space (in square meters) in an area by the total extension (in square

meters) of such area (then multiplying this value by 100). We include this

metric as several authors deemed the presence of greenery an important aspect

for city neighbourhoods. Jacobs, for example, argued that parks and garden

positively affected city liveability. However, she also pointed out that they

could potentially have negative effects, particularly in terms of safety, if these

were relegated to peripheral areas with low densities [4].

• Irregularity of the Street Network (ISN). It measures to what extent the

street network of a specific city area is irregular. ISN is computed by dividing

the standard deviation of the node degrees associated with the intersections

lying within an area by the average node degree relative to the same intersec-

tions. Intuitively, a small ISN value reflects an area with a small variation in

node degrees, for example, an area characterised by a grid layout, where the

majority of street intersections are four-way ones. Conversely, a great ISN

value corresponds to an area with a greater variation in node degrees, for ex-

ample, that of an area characterised by a mix of different street intersections

(e.g., cul-de-sac, three-way intersections, four-way intersections, six-way inter-

sections). We consider this metric as the configuration of the street network

was another aspect deemed important for city liveability by several authors.

For example, Jacobs generally favoured the grid layout [4]. However, she also

argued that this had to be interrupted by squares or diagonal roads as, in

her view, these urban elements would have offered “visual interruptions” that

enhanced urban life.

• Dead-end Density (DD). It measures the density of dead-end roads (cul-de-

sac) in a specific city area. It is calculated as the ratio between the number of

cul-de-sac lying in an area and the extension (in square meters) of such area.

We chose this metric as the presence of dead-end roads in neighbourhoods
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attracted the attention of several authors. On the one hand, Jacobs argued

that cul-de-sac negatively affected urban liveability as they diminished con-

nectivity and thus the positive effects linked to it (e.g., better health and

socio-economic outcomes, more safety against crime) [4]. On the other, New-

man supported cul-de-sac as a reduced connectivity would have had positive

outcomes, especially in terms of safety, as fewer strangers and more locals

would have walked in neighbourhoods [33].

• Offering Advantage of Historic Properties (OAHP ). It quantifies whether a

city area offers more or less historic properties (i.e., built pre-1900) than the

average city area. 1900 is selected as temporal threshold as, from roughly that

point on, the modernist style started to unfold [34] and thus properties built

in the period following this year cannot be considered historic. Note that this

threshold is mainly valid for the European context. To compute this metric,

we use a formula adopted in a previous work (i.e., Offering Advantage) [35]

that showed to be effective in capturing variations in the offering of urban

elements across a city. In this paper, Offering Advantage is adapted to reflect

to what extent a city area ak offers more historic properties hi, compared to

the average area. More specifically:

OA(hi, ak) =
count(hi, ak)∑N
j=1 count(hj , ak)

·
∑N

j=1 count(hj)

count(hi)

where OA(hi, ak) corresponds to the Offering Advantage of historic properties

hi in the area ak; count(hi, ak) represents the number of historic properties

hi in the area ak; N is the total number of historic properties; count(hi)

is the number of historic properties hi across a whole city. OAHP can be

considered a proxy for the traditional urban form. The more an area offers

historic properties, the more likely is that such area is characterised by features

of the traditional compact city form (e.g., density, connectivity, perimeter

blocks). We include OAHP as compactness and distribution of built density

were deemed fundamental aspects that affected urban life by several authors.

Jacobs, for example, supported the traditional compact city form as, in her

view, it enhanced social tights, commercial activities, and safety [4]. Modernist

architects, such as Le Corbusier, on the other hand, despised such city form

as they saw it as overly dense and unhealthy, and proposed more dispersed

urban plans [5].

Socio-economic indexes

Apart from quantitatively capturing urban form by means of the nine metrics above

mentioned, our method also requires access to an index that captures the socio-

economic levels of the area under study. Such indexes are ready available for many

countries around the world. Although they differ in how they are computed, most

of them are based on the concept that wealth or poverty are not caused only by

economic factors (e.g., income, employment) but also by other aspects of life (e.g.,

education, health) and are thus composite. Socio-economics indexes are usually com-

puted at a fine level of spatial granularity in developed countries (though, they tend
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to be coarser in developing ones). In England and Wales, there exists, for example,

the Index of Multiple Deprivation (IMD), [36] which is computed by weighting seven

different domains (i.e., income, employment, education, health, crime, barriers to

housing and services, living environment), for small census areas of approximately

1,500 residents. In developing countries, there exists the Multidimensional Poverty

Index (MPI), [37] which is calculated as a weighted mean of three macro domains

(i.e., health, education, and standard of living) at household level.

Analytical approach

Having illustrated the metrics that our method requires, we now present the ana-

lytical approach. This is based on spatial linear regression, as it allows to directly

compare and interpret regression coefficients, and thus to measure to what extent

our metrics of urban form can explain of the variance of the socio-economic index

relative to one another. The analytical approach consists of a four-step process: (i)

selection of the areal unit of analysis and computation of the metrics of urban form

and socio-economics for such unit; (ii) normalisation and standardisation of the

metrics to meet the assumption of linear regression and obtain comparable regres-

sion coefficients; (iii) test for collinearity to avoid overinflated regression coefficients

and unexpected signs; (iv) test for spatial autocorrelation to check for this issue and

use of spatial regression in case the phenomenon is present. We follow with more

details next.

Spatial unit of analysis

The spatial unit of analysis is the basic geographic entity for which the metrics

presented above are computed. While there is no systematic method to select such

unit, two considerations should be taken into account when choosing one. First,

given that some of the metrics are based on the count of street intersections, the

spatial unit should be big enough to contain some of these elements. For example,

a unit of analysis comprising of a 500 meters by 500 meters block might not be

suited for the approach proposed, as it might not have any intersection within its

boundary. Second, official units that existed for a long period of time are generally

better suited than, for example, more grid-shaped ones. Historical boundaries, in

fact, tend to keep the morphological unity of neighbourhoods, for example, by not

cutting buildings or blocks. This provides metrics that better reflect what exists in

the real world. Once the spatial unit of analysis is selected, metrics of urban form

and socio-economics should be computed and aggregated for such unit.

Normalisation and standardisation

Linear regression requires that candidate variables are normally distributed. Nor-

malising the metrics is thus necessary to meet this assumption. This can be achieved

in different ways, depending on how the values of the metrics are distributed. Com-

mon normalisation techniques are exponentiation and logarithmic transformation.

Standardisation is required because the metrics have different magnitudes: some

are measures of density (e.g., Population Density, Dead-end Density), some others

are percentages (e.g., Percentage of Unbuilt Land, Percentage of Green Areas). If

these were regressed untransformed against the socio-economic index, their relative
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regression coefficients would be hard to compare and interpret. To avoid this, our

method requires the computation of the standard scores (or z scores) associated

with the normalised metrics. This can be achieved through the following formula:

z =
X − µ

σ

where X represents the metric raw value, µ is the mean value of such metric, and

σ its standard deviation.

Test for collinearity and linear model

It is possible that two or more candidate variables (the metrics of urban form) show

collinearity, that is they are strongly correlated. If strongly collinear variables are

used in a regression, it is likely that their relative regression coefficients would be

inflated or show unexpected signs. Since this approach is based on the interpretation

of such coefficients, it is necessary to detect and discard strongly collinear variables.

This can be achieved through the computation of the Variance Inflation Factors

(VIFs) associated with each candidate variable. Let reg be a regression model with

predictor variables v1, vi, ..., vn. The VIF of the variable vi is obtained by, first,

performing linear regression with vi as dependent variable and the other variables

as independent ones v1, vi−1, vi +1, ..., vn, and, second, by using the overall model

fit (i.e., R2 value) obtained at the previous step in the following formula:

V IF =
1

1 −R2
.

If a variable has a strong linear relation with at least another one, its correlation

coefficient is likely to be close to 1 and the VIF related to that variable large.

A VIF equal to or greater than 10 is a sign of a collinearity issue [38]. If the

candidate variables show VIFs smaller than 10, they can be regressed against the

socio-economic index. Conversely, if the candidate variables have VIFs equal to

or greater than 10, it is necessary to implement a stepwise procedure that, first,

excludes the candidate variable with the highest VIF and, second, repeats the same

process until none of the variables has a VIF equal to or greater than 10. At the

end of this procedure, the candidate variables should be devoid of collinearity and

can be regressed against the socio-economic index.

Once obtained the linear model has been obtained, our method requires to check

for spatial autocorrelation. This phenomenon occurs when observations located near

one another are correlated or, as Tobler put it: ‘everything is related to everything

else, but near things are more related than distant things’ [39]. Not considering this

special dependency in linear models can cause over-inflated regression coefficients or

unexpected signs. To check for this issue, our method relies on a renowned technique

in spatial studies called Moran’s test [40]. This checks whether the residuals of a

regression analysis are spatially autocorrelated. The outputs of the Moran’s test

are an index I and a p-value. The former varies between -1 and 1, and can be

interpreted similarly to a Pearson’s correlation coefficient. The latter measures the

statistical significance of the test. A negative Moran’s I means that dissimilar values

cluster together thus forming a dispersed pattern. Conversely, a positive Moran’s
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I means that similar values are located near one another thus forming a clustered

pattern. If the Moran’s test is not significant (i.e., there is no statistical evidence

that the residuals are spatially autocorrelated), the linear model can be trusted

and interpreted. Conversely, if the Moran’s test were to be significant (i.e., there is

statistical evidence of the presence of spatial autocorrelation in the residuals), our

method requires the use of a spatial model that incorporates the overlooked spatial

information. We propose the use of the Spatial Autoregressive (SAR) model, a

type of spatial model that accounts for the proximity of observations in space by

including a spatial weighting matrix in the equation [41]. To ascertain that the SAR

model accounts for all the spatial autocorrelation present in the data, our method

requires to perform again the Moran’s test. If the outputs are negative, the SAR

model can be accepted and interpreted. Conversely, if they are positive, it should

be rejected.

We present next the application of the proposed method to six UK cities.

Application of the method
We applied the method presented above to UK urban areas. To do so, we first

identified what areas are considered urban. We extracted such information from

an official document called Rural Urban Classification [12]. In this document, ar-

eas were classified in ten classes depending on their level of “urbanity”, with the

most rural category being Hamlets and Isolated Dwellings in a Sparse Setting and

the most urban being Major conurbation. We chose the areas classified as Major

conurbation for this analysis. The resulting urban areas corresponded to the cities

of London, Manchester, Liverpool, Birmingham, Newcastle, and Leeds. These vary

quite substantially both in socio-economic, historic, and cultural terms and in size.

London covers the vastest surface and is the most populated, while Newcastle is

the smallest and least populated of the set. We provide more information on the

six urban areas under study in Table 1 and a map with their locations in Figure 1.

Table 1 Population and extension of the six cities under study. Source: UK Census 2011 [42].

City Population Surface (ha)

London 8,173,941 229,546
Birmingham 2,736,460 94,661
Manchester 2,682,528 144,284
Leeds 2,226,058 94,315
Liverpool 1,381,189 52,267
Newcastle 1,104,825 57,127

The first step of our method consists in the computation of the nine metrics of

urban form and the socio-economic index at a suitable spatial unit of analysis. We

selected the ward as spatial unit of analysis for the present study, for two reasons.

First, their spatial extension was never too small to cause issues in the computation

of the metrics, yet it was small enough to offer city planners fine grained units of

analysis and possible intervention. Second, wards are long standing administrative

boundaries defined by the UK government, which have both electoral and ceremonial

functions, and were first implemented in the Middle Ages [43]. We identified 847

wards for London, 238 for Manchester, 183 for Birmingham, 119 for Newcastle, 100

for Liverpool, and 93 for Leeds.
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Having chosen the spatial unit at which to perform our analysis, we then needed

access to openly accessible datasets from which to compute the metrics of urban

form and socio-economics. We used five of such datasets: OS VectorMap District,

Dwellings by Property Build Period and Type, the 2011 UK Census, OSM, and

IMD. We present these datasets next.

Ordnance Survey (OS) VectorMap District. This is one of the official digital maps

of the UK [44]. It contains information on various geographic objects such as roads,

building footprints, and natural areas. The content of this dataset is generated

and kept updated by Ordnance Survey, the UK official mapping agency, and was

made freely accessible for the first time in 2010. The geographic information is

provided in vectorial format for tiles of 100 km by 100 km. We selected the tiles

corresponding to the six urban areas under study and extracted the information

needed for the computation of the metrics. More specifically, we computed the

degrees of each node (i.e., street intersection) in the street networks and the areas

occupied by buildings in the six cities under study. This information was then used

to compute six of the nine metrics of urban form at ward level: Connected Node

Ratio (CNR), Intersection Density (ID), Dead-end Density (DD), Irregularity of

the Street Network (ISN), Percentage of Unbuilt Land (PUL), and Betweenness

Centrality (BC).

Dwellings by Property Build Period and Type. This database contains the count

of properties in England and Wales for several build periods and housing types

[45]. To be more specific, the information on build periods is subdivided in twelve

classes of around ten years each, with the first being the class with properties built

before 1900 and the last being the one with properties built between 2010 and 2015.

This information is provided for official census areas of about 1,500 residents, the

Lower-layer Super Output Areas (LSOAs). However, LSOAs are much smaller than

wards (indeed too small for our analysis). The information on build periods was

thus aggregated at the level of wards by summing the values associated with the

LSOAs contained in each ward. This information was then used to compute the

metric Offering Advantage of Historic Properties (OAHP ).

2011 Census: Population and Household Estimates for Wards and Output Areas in

England and Wales. This database contains information on the population density

(i.e., persons per hectare) of each ward in England and Wales [42]. This data was

used to compute the metric Population Density (PD).

OpenStreetMap. With more than three million users, OSM is probably the best

known example of geographic crowd-sourcing [46]. OSM contributors are collectively

building and keeping updated the first free and editable map of the world. Many

studies have been carried out to ascertain the quality of its content in different

parts of the world, for example in the UK [47], France [48], and Germany [49], and

reported an overall good level of spatial accuracy, especially in urban areas. For

the purpose of this analysis, we used the OMS dataset as source of information

for public green areas. Once these were identified, we assigned them to each of the

wards of the urban regions under study and computed their areas. This information

was then used to compute the metric Percentage of Green Areas (PGA).
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Table 2 Metrics of urban form and IMD with relative descriptions, means, and standard deviations.

Variable name Description Mean SD

Connected Node Ratio
(CNR)

Level of connectivity of the
street network

0.743703 0.081798

Intersection Density (ID) Density of street intersections 0.619632 0.328992
Percentage of Unbuilt Land
(PUL)

Proportion of land left unbuilt 73.234177 12.303271

Population Density (PD) Density of city dwellers 62.762976 43.150516
Betweenness Centrality (BC) Level of accessibility 0.027086 0.040125
Percentage of Green Areas
(PGA)

Amount of green areas 7.929976 8.185188

Irregularity of the Street Net-
work (ISN)

Level of irregularity of the
street network

0.365015 0.058786

Dead-end Density (DD) Density of dead-end roads
(cul-de-sac)

0.200358 0.111242

Offering Advantage of His-
toric Properties (OAHP )

Weighted offering of historic
properties

0.904616 0.994179

Index of Multiple Deprivation
(IMD)

Socio-economic deprivation 24.162269 13.067144

Index of Multiple Deprivation. This dataset includes information on the socio-

economic deprivation of communities of England and Wales [36]. It is computed

for LSOAs by weighting seven different domains: income deprivation, employment

deprivation, health deprivation, education deprivation, barriers to housing and ser-

vices, crime levels, and living environment deprivation. IMD is provided as an ag-

gregate score: higher values correspond to more deprived areas, lower values to more

advantaged ones. Since the spatial unit adopted in this analysis was the ward, we

aggregated IMD values at the level of such unit by averaging the IMD values associ-

ated with the LSOAs contained in each ward. This was possible since the variation

of IMD scores of the LSOAs contained in each ward was small (i.e., their standard

deviation values were small and always smaller than their average values). This data

constituted the metric of socio-economic deprivation (IMD).

We present a summary table with metrics, relative brief descriptions, means, and

standard deviations in Table 2.

Results
In this section, we present first some preliminary results drawn from the observation

of the density distribution plots of the metrics of urban form and IMD. Second, we

illustrate the outcomes of the regression analyses performed for each city. Third, we

offer interpretations for the behaviours of the regression coefficients.

Preliminary Results

We computed frequency distribution plots for each metric under study, to explore

what data we were dealing with and what it meant in terms of urban form. We

present these plots, for each city under study, in Figure 2. As shown, none of the

metrics were normally distributed, with only Connected Node Ratio (CNR) show-

ing a distribution close to the normal. The majority of the metrics (six out of

nine) showed positive skews, having most of their values close to their respective

first quartiles. These were: Percentage of Green Areas (PGA), Intersection Density
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(ID), Dead-end Density (DD), Population Density (PD), Betweenness Central-

ity (BC), and Offering Advantage of Historic Properties (OAHP ). Irregularity of

the Street Network (ISN) and Percentage of Unbuilt Land (PUL) showed negative

skews, instead, with most of their values concentrating around their respective third

quartiles. IMD also presented a non-normal distribution (i.e., positive skew).

We drew some observations from these preliminary results. Most metrics of urban

form had similar distributions across the six cities under study. This was not sur-

prising since the metrics were computed for regions within the same country, which

thus had been subject to similar historic, social, and cultural phenomena. However,

there were also some unique variations. First, the urban form of London seemed to

be denser in terms of built form and population compared to the other cities (i.e.,

more low values of PUL, more high values of PD). Moreover, it seemed to have a

better connected street network (i.e., more high values of CNR, more low values

of DD) and being less deprived (i.e., more low values of IMD). Second, Birming-

ham’s urban features showed peaks of values rather than more varied distributions.

In particular, most of its neighbourhoods seemed to have low values of ID (around

0.5), moderately high values of PUL (around 70%), and low values of OAHP (close

to 0). Third, Newcastle seemed to offer less green areas than the other cities. The

majority of its neighbourhoods, in fact, showed values of PGA close to 0. Finally,

Leeds seemed to be more sparsely built (i.e., more high values of PUL) and offer

more historic properties (i.e., more high values of OAHP ).

Linear models

After having normalised and standardised the variables of urban form, we checked

whether they were collinear through the VIF test. Outcomes of this test indeed

showed that some of the variables presented collinearity. In particular, CNR and

ID were strongly collinear in all cities, with VIFs significantly greater than 10.

PUL was found to be collinear only in Leeds. Such variables were thus discarded

from the list of candidates for the regression analysis.

We then input the remaining variables in six regression models, one for each

city, with IMD as dependent variable. Model outcomes suggested that multiple

features of urban form were associated with deprivation. Models were all statistically

significant, at 99% confidence level, and generally presented moderate fits, with four

models out of six being able to explain around 50% of the variance of IMD. To

be more specific, urban form could explain 50% of the variance of deprivation in

Birmingham and Leeds; it could explain 49% of the variance in London and 48% in

Manchester. The explanatory power of the models for Liverpool and Newcastle was

lower, instead. Urban form could explain 25% of the variance of IMD in the first

city and only 11% in the second.

To check whether spatial autocorrelation was not affecting these outcomes, we

performed the Moran’s test on the residuals. Outputs of such test showed statis-

tical evidence of the presence of spatial autocorrelation in all models. Moran’s I

values were statistically significant, at 99% confidence level, with a minimum value

of 0.16 (Manchester, Leeds, and Newcastle) to a maximum of 0.44 (London). Given

the presence of spatial autocorrelation, which could have biased regression coeffi-

cients and overall model fit, we implemented the SAR technique to account for such
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phenomenon. SAR models were all statistically significant, at 99% confidence level,

and showed greater explanatory powers and smaller regression coefficients, meaning

that part of IMD was indeed explained by the spatial proximity of observations.

To be more specific, the model for Birmingham could explain 67% of the variance

of IMD, the one for London could explain 70%, the one for Manchester 56%, the

one for Leeds 59%, the one for Liverpool 49%, and the one for Newcastle 27%. We

performed a second Moran’s test to ascertain whether spatial autocorrelation did

not affect the residuals of the SAR models. Outputs of such test confirmed that

there was no statistical evidence of the presence of the issue in none of the models

(i.e., p-values > 0.05). Full results of the linear regression (LR) and SAR models can

be found in Table 3. Knowing that models were robust, we proceeded to investigate

their relative regression coefficients. Common patterns are summarised below:

• Dead-end Density (DD) was statistically significant and positively associated

with deprivation, in five cities out of six (i.e., Birmingham, London, Manch-

ester, Liverpool, and Newcastle);

• Irregularity of the Street Network (ISN) was significant and negatively asso-

ciated with deprivation, in four cities out of six (i.e., Birmingham, Manchester,

Liverpool, and Newcastle);

• Percentage of Unbuilt Land (PUL) was significant and positively associated

with deprivation, in four cities out of six (i.e., London, Manchester, Liverpool,

and Newcastle);

• Population Density (PD) was significant and positively associated with de-

privation, in four cities out of six (i.e., Birmingham, London, Manchester, and

Leeds).

For what concerned the remaining coefficients, Betweenness Centrality (BC) was

associated with deprivation in two cities out of six (i.e., London and Leeds), Of-

fering Advantage of Historic Properties (OAHP ) was related to advantaged areas

in London only, while Percentage of Green Areas (PGA) was negatively associated

with deprivation in Newcastle only. We elaborate more on these findings next.

Interpretations

As mentioned above, several regression coefficients (i.e., DD, ISN , PUL, and PD)

showed similar patterns across the cities under study. This meant that we could

identify an urban form that was associated with deprivation at country level. In

particular, deprived English neighbourhoods appeared to be characterised by high

population density, vast portions of unbuilt land, numerous cul-de-sac, and regular

street patterns. This seemed to closely resemble the modernist “towers in the park”

design scheme, which saw the concentration of residents in small portions of land

(i.e., residential towers laid out in open space), conspicuous presence of dead-end

roads, and regular street patterns of major roads [5, 15].

The link between these urban features and deprivation thus seemed to discredit

the modernist theories and support the ones of the compact city form [4, 13, 14], for

the UK context. Jacobs, for example, was in favour of perimeter blocks rather than

isolated residential towers as the retraction of buildings from side walks diminished

social interactions, as fewer points of exchange (e.g., doors, windows, porticoes) be-

tween buildings and streets were present [4]. Furthermore, they reduced commercial
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Table 3 LR and SAR models for the six urban areas under study with outcomes of the Moran’s
test. P -value symbols correspond to: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

London Manchester
LR SAR LR SAR

p-val. β p-val. β p-val. β p-val. β

(intercept) 0.00 -0.01 0.00 -0.02
CNR - - - -
ID - - - -
PUL *** 0.36 *** 0.27 *** 0.91 *** 0.78
PD *** 1.06 *** 0.60 *** 0.35 *** 0.27
BC ** 0.10 . 0.04 -0.05 -0.07
PGA 0.01 -0.01 0.06 0.04
ISN * 0.11 0.03 *** -0.53 *** -0.46
DD 0.02 * 0.08 *** 0.96 *** 0.85
OAHP *** -0.17 *** -0.14 -0.06 -0.05

adj. R2 0.49 0.70 0.48 0.56
p-value 0.00 0.00 0.00 0.00

Moran’s 0.04 0.03 0.16 0.02
p-value 0.17 0.08 0.00 0.26

Birmingham Leeds
LR SAR LR SAR

p-val. β p-val. β p-val. β p-val. β

(intercept) 0.00 -0.05 0.00 -0.01
CNR - - - -
ID - - - -
PUL 0.12 0.13 - -
PD *** 0.45 *** 0.35 ** 0.44 ** 0.37
BC ** 0.19 0.06 ** 0.21 * 0.17
PGA * 0.14 0.07 -0.10 -0.07
ISN * -0.23 * -0.17 -0.10 -0.10
DD * 0.24 * 0.18 . 0.23 0.19
OAHP . 0.11 0.06 -0.04 -0.05

adj. R2 0.50 0.67 0.50 0.59
p-value 0.00 0.00 0.00 0.00

Moran’s 0.30 0.03 0.16 -0.02
p-value 0.00 0.21 0.00 0.59

Liverpool Newcastle
LR SAR LR SAR

p-val. β p-val. β p-val. β p-val. β

(intercept) 0.00 -0.02 0.00 0.01
CNR - - - -
ID - - - -
PUL . 0.40 * 0.36 * 0.60 * 0.50
PD . 0.33 0.18 0.10 0.07
BC 0.14 0.07 . 0.16 0.13
PGA -0.06 -0.02 * -0.20 . -0.14
ISN . -0.28 . -0.26 . -0.38 . -0.34
DD ** 0.66 ** 0.58 ** 0.62 ** 0.53
OAHP -0.11 -0.12 0.07 0.05

adj. R2 0.25 0.49 0.11 0.27
p-value 0.00 0.00 0.01 0.00

Moran’s 0.25 0.01 0.16 -0.02
p-value 0.00 0.37 0.00 0.56
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activity, as there was no physical space on the sides of streets for amenities. Finally,

isolated tower blocks also reduced safety, as streets were not informally controlled by

windows facing them (the so-called “eyes on the street” effect). Similarly, she also

supported well-connected streets rather than cul-de-sac, as the latter diminished

connectivity and thus also the ability of pedestrians to move in the urban space.

This aspect, in her view, was not only fundamental for the vitality of urban spaces

but also for their economic prosperity and safety. She argued that fewer pedestrians

corresponded to fewer social interactions, smaller use of amenities, and fewer “eyes

on the street” to prevent crime. Finally, she supported street networks with irreg-

ularities (e.g., diagonal roads and squares) rather than overly regular grids. This

aspect, in her view, would have provided “visual interruptions”, which enhanced

the perception of space and, ultimately, urban life.

The link between presence of cul-de-sac and deprivation seemed also to discredit

the theory proposed by Newman (i.e., cul-de-sac were beneficial against crime as

they reduced passage of people thus making urban spaces more controllable [33]).

Although we did not test a pure measure of crime, a domain associated with such

topic was included in the computation of IMD.

Three more associations were found to be significant, although not across all cities.

The relationship between BC and deprivation seemed to be linked to the detrimen-

tal effects of too much accessibility, which a recent study found to be associated with

more road traffic [50], on people’s well-being. These negative effects, in fact, could

be associated with more air and noise pollution, more congestion, and higher levels

of stress. The inverse relationship between OAHP , our proxy for the traditional

urban form, and deprivation seemed to be backed up by theories of the compact

city form [4, 13, 14]. As we mentioned earlier, aspects of the traditional urban form

(e.g., density, connectivity, perimeter blocks) were deemed fundamental for social,

economic, and safety reasons. Finally, the negative relationship between PGA and

deprivation in Newcastle could be linked to the beneficial effects of urban greenery

on the well-being of residents. This was supported, for example, by the study of

Maas et al. who found that higher percentages of urban green were associated with

higher scores of perceived health [51].

Limitations
We ought to acknowledge some limitations for this work. First, urban form is not the

only factor influencing the socio-economic levels of city areas. Many other aspects

are at stake, for example, specific housing policies, economic interventions, gentri-

fication. While it would be impossible to account for all of these different factors

in one model, research outcomes from other fields (e.g., demography, econometrics)

can be used to contextualise and interpret the results provided by the application

of our method. Second, the proposed approach and relative outcomes do not imply

causation. For instance, this means that, although one may find that connectiv-

ity is associated with better socio-economic outcomes, increasing the connectivity

of a neighbourhood might not necessarily bring actual improvements of the socio-

economic conditions of the resident population. Third, the results found for the

British cities cannot be generalised as they only hold for the specific geographic

regions (i.e., the six cities under study) and time frame (i.e., 2015) investigated
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in this work. Nonetheless, one can use the very same method to test larger areas

and different time frames and thus extend generalisability. Fourth, the selection of

the spatial unit of analysis inevitably comes with the issue of the Modifiable Areal

Unit Problem [52]. This states that values of metrics can vary quite substantially if

computed for different spatial units. This can clearly bias the outcomes of a spatial

analysis. While there is no systematic method to address this issue, one should be

aware of this problem and eventually test different units of analysis. Finally, the

proposed method models the relation between aspects of urban form and socio-

economics in a linear fashion. However, it is possible that such relationships are

not linear. For example, interactions between metrics of urban form might be bet-

ter suited to explain socio-economic levels than the metrics taken separately. This

warrants a separate future investigation.

Conclusions
With the world undergoing a process of fast urbanisation, inequality is on the rise

as some areas are benefiting more than others of public fundings and international

investments. Analysing the relationship between urban form and socio-economics

has thus become urgent as it can assist planners and policy makers when debating

how to design cities and where to allocate resources. In this paper, we proposed

a quantitative method to analyse such relationship at scale through spatial linear

regression. More specifically, the method extracts metrics of urban form and socio-

economics from openly accessible datasets. It then identifies, through regression

analysis, what set of urban features are associated with socio-economic levels of

city areas. When applied to the major UK cities, the method found that urban

form could explain up to 70% of the variance of IMD, an official deprivation index.

We also observed that some specific regression coefficients showed common patterns

across the cities under study: high population density, vast portions of unbuilt land,

presence of cul-de-sac, and regular street patterns were all related to deprivation.

By connecting these findings to previous works, we argued that the relationship

between this specific combination of urban features and deprivation discredited

modernist theories and supported theories of the traditional city form, in the UK

case.

img/6cities

Figure 1 Location of the six urban areas under study.

img/final

Figure 2 Density distribution plots for the metrics of urban form and IMD, for the six cities. BR:
Birmingham. LN: London. MA: Manchester. LE: Leeds. LI: Liverpool. NC: Newcastle.
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