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Adaptive Refinement Techniques for RBF-PU

Collocation⋆

R. Cavoretto[0000−0001−6076−4115] and A. De Rossi[0000−0003−1285−3820]

Department of Mathematics “Giuseppe Peano”, University of Torino
Via Carlo Alberto 10, 10123 Torino, Italy

{roberto.cavoretto,alessandra.derossi}@unito.it

Abstract. We propose new adaptive refinement techniques for solving
Poisson problems via a collocation radial basis function partition of unity
(RBF-PU) method. As the construction of an adaptive RBF-PU method
is still an open problem, we present two algorithms based on different
error indicators and refinement strategies that turn out to be particu-
larly suited for a RBF-PU scheme. More precisely, the first algorithm
is characterized by an error estimator based on the comparison of two
collocation solutions evaluated on a coarser set and a finer one, while
the second one depends on an error estimate that is obtained by a com-
parison between the global collocation solution and the associated local
RBF interpolant. Numerical results support our study and show the ef-
fectiveness of our algorithms.

Keywords: Adaptive algorithms · Refinement strategies · RBFmethods
· Meshless methods · Elliptic PDEs.

1 Introduction

In this work we face the problem of designing new adaptive refinement algorithms
for solving 2D Poisson problems via radial basis functions (RBFs) methods.
Here, we focus on the construction of adaptive techniques based on the use of the
partition of unity (RBF-PU) method, which is known in literature in the context
of meshless methods for solution of interpolation and collocation problems (see
[5,6]). More precisely, we present two algorithms within a RBF-PU framework,
which in this paper we will call Algorithm 1 and Algorithm 2. The former is
characterized by an error estimator based on the comparison of two collocation
solutions evaluated on a coarser set and a finer one, the latter instead depends on
an error estimate that is obtained by a comparison between the global collocation

⋆ The authors acknowledge support from the Department of Mathematics “Giuseppe
Peano” of the University of Torino via Project 2019 “Mathematics for applica-
tions”. Moreover, this work was partially supported by INdAM – GNCS Project
2019 “Kernel-based approximation, multiresolution and subdivision methods and
related applications”. This research has been accomplished within RITA (Research
ITalian network on Approximation).
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solution and the associated local RBF interpolant. Numerical experiments show
performance of both adaptive procedures.

The paper is organized as follows. Section 2 contains a description of the
RBF-PU method for solving Poisson PDE problems. In Section 3 we present
two adaptive algorithms that involve different refinement strategies. In Section
4 we show some numerical results obtained to illustrate the performance of the
refinement techniques.

2 RBF-PU Method for 2D Poisson PDEs

2.1 The RBF-PU Method

Given an open and bounded domain Ω ⊆ R
2 and a function u : Ω → R, we

consider a set XN = {xi}Ni=1 ⊆ Ω of collocation points. The domain Ω is then

covered by d subdomains Ωj such that
⋃d

j=1 Ωj ⊇ Ω with some mild overlaps
among them [6]. In addition, we assume that the subdomains are circles of fixed
radius so that the covering of Ω is given by {Ωj}dj=1. Associated with each
subdomain Ωj we introduce a family of compactly supported, nonnegative and
continuous weights wj , with supp(wj) ⊆ Ωj . The weight functions wj form a
partition of unity, i.e.

d
∑

j=1

wj(x) = 1, ∀x ∈ Ω.

As functions wj we choose to use Shepard’s weights, which involve compactly
supported functions such as Wendland C2 functions defined on Ωj (see [5]). The
RBF-PU method can thus be expressed as follows

ũ(x) =

d
∑

j=1

wj(x)ũj(x), x ∈ Ω, (1)

where ũj defines the local RBF approximant

ũj(x) =

Nj
∑

i=1

cjiφε(||x− x
j
i ||2). (2)

In (2) Nj indicates the number of points xj
i ∈ XNj

= XN ∩Ωj , c
j
i represents an

unknown real coefficient, || · ||2 is the Euclidean norm, and φ : R≥0 → R denotes
a RBF depending on a positive shape parameter ε such that

φε(||x− z||2) = φ(ε||x− z||2), ∀x, z ∈ Ω.

Some examples of popular RBFs [3,6] are given by

φε(r) =
√
1 + ε2r2, MultiQuadric (MQ),

φε(r) = exp(−εr)(ε3r3 + 6ε2r2 + 15εr + 15), Matérn C6 (M6).
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2.2 Solution of Poisson Problems

In order to show some applications of the RBF-PU collocation method to elliptic
PDEs, we define a Poisson problem with Dirichlet boundary conditions

−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω,
(3)

where ∆ is the Laplace operator [4]. Moreover, for convenience, we split the set
XN of discretization points into a set XNI

of interior points and a set XNB
of

boundary points such that XN = XNI
∪XNB

, where NI and NB represent the
number of interior and boundary collocation points, respectively.

Now, to find an approximate solution of the form (1), the problem (3) is
discretized as follows

−∆ũ(xi) = −
d
∑

j=1

∆ (wj(xi)ũj(xi)) = f(xi), xi ∈ XNI
,

ũ(xi) =

d
∑

j=1

wj(xi)ũj(xi) = g(xi), xi ∈ XNB
.

(4)

The differential operator can be expanded to get

−∆ (wj(xi)ũj(xi)) = −∆wj(xi)ũj(xi)− 2∇wj(xi) · ∇ũj(xi)

−wj(xi)∆ũj(xi), xi ∈ XNI
.

(5)

We then define the vector ũj = (ũj(x
j
1), . . . , ũj(x

j
Nj

))T of local nodal values

and the local coefficient vector cj = (cj1, . . . , c
j
Nj

)T . Further, if we denote by

Aj ∈ R
Nj×Nj the matrix of entries Aki = φε(||xj

k −x
j
i ||2), k, i = 1, . . . , Nj , from

(2) we know that cj = A−1
j ũj , and so we obtain

∆ũj = A∆
j A−1

j ũj , ∇ũj = A∇
j A−1

j ũj , (6)

where A∆
j and A∇

j , j = 1, . . . , Nj , are the matrices whose entries are

(A∆
j )ki = ∆φ(||xj

k − x
j
i ||2), (A∇

j )ki = ∇φ(||xj
k − x

j
i ||2).

Associated with each subdomain Ωj , we consider the following diagonal matrix

W∆
j = diag

(

∆wj(x
j
1), . . . , ∆wj(x

j
Nj

)
)

,

with W∇
j and Wj defined in similar way. To derive the discrete operator Pj ,

we differentiate (4) by using a product derivative rule and then apply the re-
lations given in (6). By means of (5) and incorporating the Dirichlet boundary
conditions, the discrete local Laplacian is given by

(Pj)ki =

{

(P̄j)ki, x
j
i ∈ XNI

,

δki, x
j
i ∈ XNB

,
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where δki is the Kronecker delta and

P̄j =
(

W∆
j Aj + 2W∇

j ·A∇
j +WjA

∆
j

)

A−1
j .

By assembling the local matrices Pj into the global matrix P , i.e.

(Pj)ki =

d
∑

j=1

(Pj)ηkj ,ηij
, k, i = 1, . . . , N,

we can obtain the global discrete operator and solve the sparse linear system

Py = u, (7)

where u = (u1, . . . , uN )T is defined by

ui =

{

f(xi), xi ∈ XNI
,

g(xi), xi ∈ XNB
,

and the numerical solution y = (ũ(x1), . . . , ũ(xN ))T is obtained by inverting the
collocation matrix P in (7) (see [1]).

3 Adaptive Refinement Techniques

In this section we present two refinement algorithms that can be used to solve
a Poisson problem via the RBF-PU method. They are based on different error
indicators and refinement strategies, which are applied in the adaptive process.

3.1 Algorithm 1

At first, we define two sets of grid collocation points of size N
(0)
1 and N

(0)
2 , such

that N
(0)
1 < N

(0)
2 , where the symbol (0) identifies the iteration number. For the

sake of clarity, we denote these sets as X
N

(0)
1

and X
N

(0)
2

, respectively. Then, the

iterative procedure starts and, for k = 0, 1, . . ., the collocation solutions ũ
N

(k)
1

and ũ
N

(k)
2

of the form (1) are computed on N
(k)
1 and N

(k)
2 collocation points. In

order to know where we need to refine, we compare the two approximate solutions
evaluated at the (coarser) set X

N
(k)
1

, supposing that the solution computed on

the set X
N

(k)
2

is more accurate than the previous one. So the error indicator is

given by

E
(k)
i = |ũ

N
(k)
2

(x
(k)
i )− ũ

N
(k)
1

(x
(k)
i )|, x

(k)
i ∈ X

N
(k)
1

.

After fixing a tolerance τ , we detect all points x
(k)
i ∈ X

N
(k)
1

such that

E
(k)
i > τ. (8)
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To refine the distribution of discretization points, we compute the separation

distance

q
X

(k)
N1

=
1

2
min
i6=j

||x(k)
i − x

(k)
j ||2, x

(k)
i ,x

(k)
j ∈ X

N
(k)
1

, (9)

and, afterward, for k = 0, 1, . . . , we update the sets X
N

(k+1)
1

and X
N

(k+1)
2

of

collocation points. In particular, if the condition (8) is satisfied, we add to x
(k)
i

four and eight points to generate the sets X
N

(k+1)
1

and X
N

(k+1)
2

, respectively (see

Figure 1, left to right). In both cases the new sets are obtained by either adding

or subtracting the value of (9) to the components of x
(k)
i . Notice that these

new sets are such that X
N

(k)
1

⊂ X
N

(k)
2

, for k = 1, 2, . . .. Finally, the adaptive

algorithm stops when there are no points anymore that satisfy the condition (8),
returning the set X

N
(k∗)
2

, with k∗ denoting the last iteration.
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Fig. 1. Example of refinement around the point x
(k)
i , marked by a black cross, to

generate the new sets X
N

(k+1)
1

(left) and X
N

(k+1)
2

(right).

3.2 Algorithm 2

At the beginning, we define a set XN(0) of grid collocation points, i.e. XN(0) =
XN , with the symbol (0) identifying – as in Algorithm 1 – the iteration of our
adaptive procedure. So for k = 1, 2, . . . we compute the collocation solution ũN(k)

of the form (1), and then for each subdomain Ωj , j = 1, . . . , d, we construct a

local RBF interpolant Iũ
(k)
Ωj

. It is obtained by using the (local) approximate

values, which are obtained by solving the global collocation system (7). Acting

in this way, we can give an error estimate evaluating ũN(k) and Iũ
(k)
Ωj

on a set

Ξ(k) = {ξi}nk

i=1 of check points, being nk the number of check points at the k-th
iteration. Thus, the error indicator is given by

E
(k)
i = |ũN(k)(ξ

(k)
i )− Iũ

(k)
Ωj

(ξ
(k)
i )|, ξ

(k)
i ∈ Ξ(k). (10)
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Now, fixed two positive tolerances τmin < τmax and the k-th iteration, if E
(k)
i

in (10) is larger than τmax, we add the point ξ
(k)
i among the collocation points.

Instead, if E
(k)
i is smaller than τmin, the check point is removed along with its

nearest point. We can thus define the sets

Z
T

(k)
max

= {ξ(k)i ∈ Ξ(k) : E
(k)
i > τmax, i = 1, . . . , T (k)

max}

and

Z
T

(k)
min

= {x̄(k)
i ∈ XN(k) : E

(k)
i < τmin, i = 1, . . . , T

(k)
min},

where x̄
(k)
i is the point closest to ξ

(k)
i . Iteratively, for k = 2, 3, . . ., we can there-

fore obtain a new set of discretization points

XN(k) = X
N

(k)
I

∪X
N

(k)
B

, where X
N

(k)
I

= (X
N

(k−1)
I

∪ Z
T

(k−1)
max

)\Z
T

(k−1)
min

.

The process stops when the set Z
T

(k)
min

is empty. Note that this adaptive refinement

technique, which obeys the common paradigm of solve-estimate-refine/coarsen
till a stopping criterion is satisfied, is based on the adaptive scheme given in [2].

4 Numerical Experiments

In this section we summarize the results obtained by the use of the refinement
algorithms, described in Section 3 and implemented in Matlab. All tests are
carried out on a laptop with an Intel(R) Core(TM) i7-6500U CPU 2.50 GHz
processor and 8GB RAM.

In this study we focus on two Poisson problems of the form (3) defined on
the unit square, i.e. the domain Ω = [0, 1]2. The exact solutions of our elliptic
problems are

T1 : u1(x1, x2) = sin(x1 + 2x2
2)− sin(2x2

1 + (x2 − 0.5)2),

T2 : u2(x1, x2) = exp(−8((x1 − 0.5)2 + (x2 − 0.05)2)).

In Figure 2 we give a graphical representation of these analytic solutions.
In the tests we illustrate the performance of the adaptive RBF-PU scheme

obtained by using the M6-RBF with ε = 3 and applying each of the two refine-
ment algorithms. On the one hand, for Algorithm 1 the two starting sets defined
in Subsection 3.1 consist ofN1

(0) = 289 andN2
(0) = 1089 grid collocation points,

while the tolerance is τ = 10−5. On the other hand, for Algorithm 2 described in
Subsection 3.2 we start with N (0) = 121 grid collocation points, whose stepsize is
h0 and tolerances are given by (τmin, τmax) = (10−8, 10−5); then, we refine such
points by generating iteratively grid points, which have a stepsize hk = hk−1/2,
k = 1, 2, . . ., and are used as check points in (10). To measure the quality of our
results, we compute the Root Mean Square Error (RMSE), that is,

RMSE =

(

1

Neval

Neval
∑

i=1

|u(zi)− ũ(zi)|2
)1/2

.
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Fig. 2. Graphs of exact solutions of Poisson problems T1 (left) and T2 (right).

which is evaluated on a grid of Neval = 40 × 40 evaluation points. Then, to
analyze the stability of the method, we evaluate the Condition Number (CN) of
the sparse collocation matrix P in (7) by using the Matlab command condest.
As to efficiency we report the CPU times computed in seconds.

Therefore, in Tables 1–2 we present the results obtained, also reporting the
final number Nfin of discretization points. In addition, in Figure 3 we show the
“final grids” obtained by applying the adaptive refinement techniques.

Test Problem Nfin RMSE CN time

T1 1058 5.54e−6 1.35e+07 4.1
T2 1445 3.88e−6 1.03e+07 4.7

Table 1. Results obtained by using Algorithm 1 with M6, ε = 3 and τ = 10−5.

Test Problem Nfin RMSE CN time

T1 920 1.64e−5 4.76e+06 3.2
T2 1079 1.19e−5 9.16e+06 4.4

Table 2. Results obtained by using Algorithm 2 with M6, ε = 3 and (τmin, τmax) =
(10−8, 10−5).

From these results, we observe as Algorithm 1 increases the number of points
only in some more specific areas where the solution behavior varies, while Al-
gorithm 2 distributes the points in a more uniform way. This results in greater
accuracy of Algorithm 1, even if it is paid with a larger final number of points
returned by the iterative procedure. These differences are also evident in terms
of efficiency, because Algorithm 2 turns out to converge slightly more quickly
than Algorithm 1. However, we note that both algorithms complete their work
in few seconds. Similar conclusions can be done as regards the CN.

Finally, to assess the advantage of our adaptive schemes, as a comparison in
case of the problem T1 we report the results obtained by applying the RBF-PU
method on a uniform point set. In particular, in order to achieve a similar level
of accuracy as found in Tables 1–2, we need 6400 collocation points to get a
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Fig. 3. Final distribution of discretization points obtained by applying the adaptive
algorithms with M6, ε = 3, for problems T1 (left) and T2 (right). Top: Algorithm 1,
bottom: Algorithm 2.

RMSE = 5.57e−6 in 6.5 seconds (cf. Table 1), and 2500 collocation points to
reach a RMSE = 1.74e−5 in 3.3 seconds (cf. Table 2). As evident from these
experiments, the adaptive algorithms are useful to reduce discretization error
and CPU time, mainly when a higher level of accuracy is required.
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