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Abstract. In this paper we present an adaptive refinement algorithm
for solving elliptic partial differential equations via a radial basis function
(RBF) collocation method. The adaptive scheme is based on the use of
an error indicator, which is characterized by the comparison of two RBF
collocation solutions evaluated on a coarser set and a finer one. This
estimate allows us to detect the domain parts that need to be refined by
adding points in the selected areas. Numerical results support our study
and point out the effectiveness of our algorithm.

Keywords: Meshfree methods · Adaptive algorithms · Refinement tech-
niques · elliptic PDEs.

1 Introduction

In this paper we present a new adaptive refinement scheme for solving elliptic
partial differential equations (PDEs). Our adaptive algorithm is applied to a
nonsymmetric radial basis function (RBF) collocation method, which was orig-
inally proposed by Kansa [5]. This approach has engendered a large number of
works, mainly by scientists from several different areas of science and engineer-
ing (see e.g. [1,2,3,4,7] and references therein). Basically, the adaptive scheme
we propose is based on the use of an error indicator characterized by the com-
parison of two approximate RBF collocation solutions, which are evaluated on a
coarser set and a finer one. This estimate allows us to identify the domain parts
that need to be refined by adding points in the selected areas. In our numerical
experiments we show the efficacy of our refinement algorithm, which is tested
by modeling some Poisson-type problems.

The paper is organized as follows. In Section 2 we review some basic informa-
tion on Kansa’s collocation method, which is applied to elliptic PDEs. Section
3 describes the adaptive refinement algorithm. In Section 4 we show some nu-
merical results carried out to illustrate the performance of the adaptive scheme.
Section 5 contains conclusions.

⋆ Corresponding author
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2 Nonsymmetric RBF Collocation

Given a domain Ω ⊂ R
d, we consider a (time independent) elliptic PDE along

with its boundary conditions

Lu(x) = f(x), x ∈ Ω,

Bu(x) = g(x), x ∈ ∂Ω,
(1)

where L is a linear elliptic partial differential operator and B is a linear boundary
operator.

For Kansa’s collocation method we choose to represent the approximate so-
lution û by a RBF expansion analogous to that used in the field of RBF inter-
polation [3], i.e. û is expressed as a linear combination of basis functions

û(x) =

N
∑

j=1

cjφε(||x− zj ||2), (2)

where cj is an unknown real coefficient, || · ||2 denotes the Euclidean norm, and
φε : R≥0 → R is some RBF depending on a shape parameter ε > 0 such that

φε(||x− z||2) = φ(ε||x− z||2), ∀x, z ∈ Ω.

In Table 1 we list some examples of popular globally supported RBFs, which are
commonly used for solving PDEs (see [3] for details).

RBF φε(r)

Gaussian (GA) e−ε2r2

Inverse MultiQuadric (IMQ) (1 + ε2r2)−1/2

MultiQuadric (MQ) (1 + ε2r2)1/2

Table 1. Some examples of popular RBFs.

In (2) we can distinguish between the set X = {x1, . . . ,xN} of collocation
points and the set Z = {z1, . . . , zN} of centers. Additionally, for the sake of
convenience we split the set X into a subset XI of interior points and a subset
XB of boundary points, so that X = XI ∪XB .

Matching the PDE and the boundary conditions in (1) at the collocation
points X, we obtain a linear system of equations

Φc = v,

where c = (c1, . . . , cN )T is the vector of coefficients, v = (v1, . . . , vN )T is the
vector of entries

vi =

{

f(xi), xi ∈ XI ,

g(xi), xi ∈ XB .
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and Φ ∈ R
N×N is the collocation matrix

Φ =

[

ΦL

ΦB

]

. (3)

The two blocks in (3) are defined as

(ΦL)ij = Lφε(||xi − zj ||2), xi ∈ XI , zj ∈ Z,

(ΦB)ij = Bφε(||xi − zj ||2), xi ∈ XB , zj ∈ Z,

Since the collocation matrix (3) may be singular for certain configurations of
the centers zj , it follows that the nonsymmetric collocation method cannot be
well-posed for arbitrary center locations. However, it is possible to find sufficient
conditions on the centers so that invertibility of Kansa’s matrix is ensured. For a
more detailed analysis of Kansa’s collocation method and some variations thereof
derived from applications, see e.g. [3,6] and references therein.

3 Adaptive Refinement Algorithm

In this section we present the adaptive algorithm proposed to solve time inde-
pendent PDE problems by Kansa’s approach.

Step 1. We define two sets, X
N

(0)
1

and X
N

(0)
2

, of collocation points and two

sets, Z
N

(0)
1

and Z
N

(0)
2

of centers. Each couple of sets has size N
(0)
1 and N

(0)
2 ,

respectively, with N
(0)
1 < N

(0)
2 and the symbol (0) identifying the initial iteration.

We then split the related sets as follows:

– XN1
(0) = XI,N1

(0) ∪ XB,N1
(0) and XN2

(0) = XI,N2
(0) ∪ XB,N2

(0) are sets of
interior and boundary collocation points, respectively;

– ZN1
(0) = ZI,N1

(0) ∪ ZA
B,N1

(0) and ZN2
(0) = ZI,N2

(0) ∪ ZA
B,N2

(0) are sets of

interior and additional boundary centers, respectively.

Here we assume that XI,Ni
(0) = ZI,Ni

(0) , with i = 1, 2, while the set ZA
B,Ni

(0) of

centers is taken outside the domain Ω as suggested in [3]. However, we note that
it is also possible to consider only a set of data as collocation points and centers.

Step 2. For k = 0, 1, . . ., we iteratively find two collocation solutions of the form

(2), called ûN1
(k) and ûN2

(k) , which are respectively computed on N
(k)
1 and N

(k)
2

collocation points and centers.

Step 3. We compare the two approximate RBF solutions by evaluating error on

the (coarser) set containing N
(k)
1 points, i.e.

|ûN2
(k)(xi)− ûN1

(k)(xi)|, xi ∈ XN1
(k) .

Observe that here we assume that the solution computed on N
(k)
2 discretization

points gives more accurate results than the ones obtained with only N
(k)
1 points.
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Step 4. After fixing a tolerance tol, we determine all points xi ∈ XN1
(k) such

that

|ûN2
(k)(xi)− ûN1

(k)(xi)| > tol. (4)

Step 5. In order to refine the distribution of discretization points, we compute
the separation distance

qX
N1

(k)
=

1

2
min
i6=j

||xi − xj ||2, xi ∈ XN1
(k) . (5)

Step 6. For k = 0, 1, . . . we update the two sets XN1
(k+1) and XN2

(k+1) of collo-
cation points (and accordingly the corresponding sets ZN1

(k+1) and ZN2
(k+1) of

centers) as follows. For each point xi ∈ XN1
(k) , such that the condition (4) is

satisfied, we add to xi:

– four points (the blue circles depicted in the left frame of Figure 1), thus
creating the set XN1

(k+1) ;

– eight points (the red squares shown in the right frame of Figure 1), thus
generating the set XN2

(k+1) .

In both cases the new points are given by properly either adding or subtracting
the value of (5) to the components of xi. Furthermore, we remark that in the
illustrative example of Figure 1 the point xi is marked by a black cross, while
the new sets are such that XN1

(k) ⊂ XN2
(k) , for k = 1, 2, . . ..

Step 7. The iterative process stops when having no points anymore which fulfill
the condition (4), giving the setXN2

(k∗) back. Note that k∗ is here used to denote
the last algorithm iteration.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

Fig. 1. Illustrative example of refinement for sets XN1
(k) (left) and XN2

(k) (right) in
the adaptive algorithm.
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4 Numerical Results

In this section we summarize the results derived from application of our adaptive
refinement algorithm, which is implemented in Matlab environment. All the
results are carried out on a laptop with an Intel(R) Core(TM) i7-6500U CPU
2.50 GHz processor and 8GB RAM.

In the following we restrict our attention on solving some elliptic PDE prob-
lems via the nonsymmetric RBF collocation method. In particular, in (1) we
consider a few Poisson-type problems, taking the Laplace operator L = −∆ and
assuming Dirichlet boundary conditions. Hence, the PDE problem in (1) can be
defined as follows:

−∆u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(6)

Then, we focus on two test problems of the form (6) defined on the domain
Ω = [0, 1]2. The exact solutions of such Poisson problems are

P1 : u1(x1, x2) = sin(x1 + 2x2
2)− sin(2x2

1 + (x2 − 0.5)2),

P2 : u2(x1, x2) =
1

2
x2

[

cos(4x2
1 + x2

2 − 1)
]4

+
1

4
x1.

A graphical representation of these analytic solutions is shown in Figure 2.

Fig. 2. Graphs of exact solutions u1 (left) and u2 (right) of Poisson problems.

In our numerical tests we analyze the performance of the adaptive refine-
ment strategy applied to Kansa’s collocation method by using globally supported
RBFs such as MQ, IMQ and GA (see Table 1). We remark that the use of com-
pactly supported RBFs is also possible and effective but our tests showed that
the most accurate results were obtained with quite large supports. So the use of
compactly supported functions does not provide particular benefits w.r.t. glob-
ally supported RBFs. For this reason and for the sake of brevity, we do not
consider this case in the present paper.
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The two starting sets defined in Section 3 consist of N1
(0) = 289 and N2

(0) =
1089 grid collocation points, while the tolerance in (4) is given by tol = 10−4.
In particular, in order to measure the quality of our results, we compute the
Maximum Absolute Error (MAE), i.e.,

MAE = max
1≤i≤Neval

|u(yi)− û(yi)|.

which is evaluated on a grid of Neval = 40 × 40 evaluation points. Moreover,
in regards to the efficiency of the adaptive scheme, we report the CPU times
computed in seconds.

In Tables 2–4 we present the results obtained, also indicating the final number
Nfin of collocation points required to achieve the fixed tolerance. Further, as an
example, for brevity in only one case for each test problem, we report the “refined
grids” after applying iteratively the adaptive algorithm. More precisely, in Figure
3 we graphically represent the final distribution of points obtained after the last
algorithm iteration by applying: the MQ-RBF with ε = 4 for the test problem
P1 (left), and the IMQ-RBF with ε = 3 for the test problem P2 (right).

Test Problem Nfin MAE CPU time

P1 856 8.28× 10−5 1.2
P2 798 2.66× 10−4 1.7

Table 2. MQ, ε = 4, tol = 10−4.

Test Problem Nfin MAE CPU time

P1 1001 3.10× 10−5 1.7
P2 808 1.10× 10−4 1.8

Table 3. IMQ, ε = 3, tol = 10−4.

Test Problem Nfin MAE CPU time

P1 898 3.49× 10−4 2.1
P2 843 2.08× 10−4 1.9

Table 4. GA, ε = 9, tol = 10−4.

Analyzing the numerical results, we can observe as the adaptive algorithm
allows us to increase the number of points in the regions where the solution is not
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Fig. 3. Final distribution of points obtained after applying the refinement process with
MQ, ε = 4, for problem P1 (left) and with IMQ, ε = 3, for problem P2.

accurate enough. From the tables we note as MQ and IMQ give more accurate
results than GA. In fact, though the number of points required to satisfy the fixed
tolerance is quite similar for all used RBFs, we can remark a greater instability
of GA that needs a larger value of ε to work effectively. Finally, in terms of
computational efficiency the algorithm converges in few seconds in each of the
tests carried out.

5 Conclusions

In this work we presented an adaptive refinement algorithm to solve time in-
dependent elliptic PDEs. This refinement strategy is tested on a nonsymmetric
RBF collocation scheme, known as Kansa’s method. More precisely, here we pro-
posed an adaptive approach based on a refinement technique, which consisted
in comparing two collocation solutions computed on a coarser set of collocation
points and a finer one. This process allowed us to detect the domain areas where
it is necessary to adaptively add points, thus enhancing accuracy of the method.
Numerical results supported this study by showing the algorithm performance
on some Poisson-type problems.

As future work we are interested in investigating and possibly extending
our adaptive schemes to hyperbolic and parabolic PDE problems. Moreover, we
are currently working on the optimal selection of the RBF shape parameter in
collocation schemes. However, this is out of the scopes of the present paper and
it will be dealt with in forthcoming works.
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