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The four decay modes D0 → φπ0, D0 → φη, D+ → φπ+, and D+ → φK + are studied by using a data 
sample taken at the centre-of-mass energy 

√
s = 3.773 GeV with the BESIII detector, corresponding to an 

integrated luminosity of 2.93 fb−1. The branching fractions of the first three decay modes are measured 
to be B(D0 → φπ0) = (1.168 ± 0.028 ± 0.028) × 10−3, B(D0 → φη) = (1.81 ± 0.46 ± 0.06) × 10−4, and 
B(D+ → φπ+) = (5.70 ± 0.05 ± 0.13) × 10−3, respectively, where the first uncertainties are statistical 
and the second are systematic. In addition, the upper limit of the branching fraction for D+ → φK +
is given to be 2.1 × 10−5 at the 90% confidence level. The ratio of B(D0 → φπ0) to B(D+ → φπ+) is 
calculated to be (20.49 ± 0.50 ± 0.45)%, which is consistent with the theoretical prediction based on 
isospin symmetry between these two decay modes.
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Fig. 1. Feynman diagrams

Table 1
Current result of the ratio of B(D0 → φπ0) to B(D+ → φπ+).

The ratio Experiment result (%) Prediction (%)

B(D0→φπ0)

B(D+→φπ+)
24.6 ± 1.8 [5,6] 19.7 ± 0.2 [11]

1. Introduction

Comprehensive and precise measurements of hadronic D me-
son decays provide important inputs for the experimental stud-
ies of both charm and beauty decays [1]. One category of decay 
modes D → φP (P represents a pseudoscalar particle) has simple 
Feynman diagrams as depicted in Fig. 1. This facilitates theoretical 
predictions and their comparisons [2,3] to experimental measure-
ments. However, the experimental measurements of D → φP are 
still limited [4] due to the relative low branching fractions (BF) 
which are suppressed by phase space due to the φ meson mass. 
The singly Cabibbo-suppressed (SCS) decays of D+ → φπ+ [5], 
D0 → φπ0 [6], and D0 → φη [7] have been studied by CLEO, BaBar 
and Belle, respectively. The BF of the doubly Cabibbo-suppressed 
(DCS) decay D+ → φK + is derived out according to two measure-
ments of the total BF for D+ → K −K +K + and the intermediate 
fraction of φK + at LHCb [8,9].

According to isospin symmetry between u and d quarks, the 
BFs for D0 → φπ0 and D+ → φπ+ are connected [2,3] as follows:

B(D0 → φπ0)

B(D+ → φπ+)
= 1

2

�D+

�D0
= 1

2

τD0

τD+
. (1)

However, the current experimental result for the BF ratio deviates 
from prediction value of Eq. (1) by 2.7σ as shown in Table 1. 
Therefore, improved measurement is necessary to further test it 
and help to understand the strong interaction in D meson hadronic 
decays.

In this analysis, we study four two-body decay modes of D →
φP , which are D+ → φK + , D+ → φπ+ , D0 → φπ0, and D0 → φη, 
based on a data set of 2.93 fb−1 [10] taken at 

√
s = 3.773 GeV with 

the BESIII detector. Due to energy conservation, the D and D̄
mesons from e+e− → ψ(3770) → D D̄ are always produced in a 

9 Also at Government College Women University, Sialkot - 51310, Punjab, Pak-
istan.
10 Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and 

Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic 
of China.
11 Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA.
12 Also at State Key Laboratory of Nuclear Physics and Technology, Peking Univer-

sity, Beijing 100871, People’s Republic of China.
ur D → φP decay modes.

pair without any other accompanying hadrons. Throughout this pa-
per, charge-conjugate modes are implied.

2. BESIII detector and Monte Carlo simulation

The BESIII detector is a magnetic spectrometer [12] located at 
the Beijing Electron Positron Collider (BEPCII) [13]. The cylindrical 
core of the BESIII detector consists of a helium-based multilayer 
drift chamber (MDC), a plastic scintillator time-of-flight system 
(TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are 
all enclosed in a superconducting solenoidal magnet providing a 
1.0 T magnetic field. The solenoid is supported by an octagonal 
flux-return yoke with resistive plate counter muon identifier mod-
ules interleaved with steel. The acceptance of charged particles and 
photons is 93% of the 4π solid angle. The charged-particle momen-
tum resolution at 1 GeV/c is 0.5%, and the specific energy loss 
(dE/dx) resolution is 6% for electrons from Bhabha scattering. The 
EMC measures photon energies with a resolution of 2.5% (5%) at 
1 GeV in the barrel (end cap) region. The time resolution of the 
TOF barrel section is 68 ps, while that of the end cap is 110 ps.

Simulated samples produced with the geant4-based [14] Monte 
Carlo (MC) package, which includes the geometric description [15,
16] of the BESIII detector and the detector response, are used 
to determine the detection efficiency and to estimate the back-
grounds. The simulation includes the beam energy spread and ini-
tial state radiation (ISR) in the e+e− annihilations modelled with 
the generator kkmc [17]. The inclusive MC samples consist of the 
production of D D̄ pairs, the non-D D̄ decays of the ψ(3770), the 
ISR production of the J/ψ and ψ(3686) states, and the continuum 
processes incorporated in kkmc [17]. The equivalent luminosity 
of the inclusive MC samples is about 10 times that of the data. 
The known decay modes are modelled with evtgen [18] using 
branching fractions taken from the Particle Data Group [4], and 
the remaining unknown decays from the charmonium states with
lundcharm [19]. The final state radiations (FSR) from charged fi-
nal state particles are incorporated with the photos (version 2.02) 
package [20,21]. The signal processes are generated separately tak-
ing the spin-matrix elements into account in evtgen. For each 
signal channel, 200 000 events are simulated.

3. Event selection

Candidates of the decay modes D → φP are reconstructed by 
combining the final states of K ± , π± , π0, and η particles with 
BESIII offline software system [1,22], where φ mesons are detected 
via decays to K +K − . Candidates for π0 and η are identified from 
π0 → γ γ and η → γ γ , respectively.
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Table 2
For each signal mode, the requirement on 
E , signal yields Ni

sig , MC-determined detection efficiency εi , branching fraction Bi in this work, and the corresponding world 
results Bext .

Decay mode 
E (GeV) Ni
sig εi (%) Bi (×10−4) Bext (×10−4)

D+ → φπ+ [−0.020,0.019] 17527 ± 152 37.7 ± 0.1 57.0 ± 0.5 ± 1.3 53.7 ± 2.3 [4]

D+ → φK + [−0.019,0.018] 12+28
−12 23.7 ± 0.1

0.062+0.144
−0.062 ± 0.002

0.085 ± 0.011 [4,8,9]
< 0.21 at 90% CL

D0 → φπ0 [−0.077,0.035] 3333 ± 76 27.7 ± 0.1 11.68 ± 0.28 ± 0.28 13.2 ± 0.8 [4]
D0 → φη [−0.040,0.038] 102 ± 26 13.7 ± 0.1 1.81 ± 0.46 ± 0.06 1.4 ± 0.5 [4]

Fig. 2. Two-dimensional distributions of MBC and MKK in data for the four signal modes.
Selected charged tracks must satisfy | cos θ | < 0.93, where θ is 
the polar angle with respect to the beam axis. The distance of clos-
est approach of the track to the interaction point is required to 
be less than 10 cm in the beam direction and less than 1 cm 
in the plane perpendicular to the beam. Separation of charged 
kaons from charged pions is implemented by combining the en-
ergy loss (dE/dx) in the MDC and the time-of-flight information 
from the TOF. We calculate the probabilities P (K ) and P (π) with 
the hypothesis of K or π , and require that K candidates have 
P (K ) > P (π), while π candidates have P (π) > P (K ).

Photon candidates are selected from neutral showers deposited 
in the EMC crystals, with energies larger than 25 MeV in the barrel 
(| cos θ | < 0.8) and 50 MeV in the end cap (0.86 < | cos θ | < 0.92). 
To reduce fake photons due to beam background or electronic 
noise, the shower clusters are required to be within [0, 700] ns 
from the event start time. Furthermore, the photon candidates are 
required to be at least 10◦ away from any charged tracks to remove 
fake photons caused by the interactions of hadrons in the EMC.

The π0 (η) candidates are formed with pairs of photon candi-
dates, whose invariant mass, Mγ γ , is required to be within [0.115, 
0.150] ([0.500, 0.560]) GeV/c2. To improve momentum resolution, 
a 1C kinematic fit constraining the reconstructed π0(η) mass to 
the nominal mass [4] is performed and the fitted four-momentum 
of the π0(η) is used in further analysis.

4. Data analysis

In the rest frame of the initial e+e− system, the total colli-
sion energy is shared equally by the D D̄ pair. Hence, in this frame 
two variables, the energy difference 
E and the beam constrained 
mass MBC related to energy and momentum conservation, respec-
tively, are defined as


E ≡ E D − √
s/2,

MBC ≡
√

s/4c4 − |�pD|2/c2,

where �pD is the momentum of the D candidate.
Signals for the four φP decay modes are expected to peak 

around zero in 
E distributions and the D nominal mass in MBC
distributions. To suppress combinatorial background, the 
E of the 
D candidates are required to be within the regions listed in Table 2
for the different signal modes, which correspond to about 3σ cov-
erage. The asymmetric boundaries of the 
E region for the φπ0

and φη modes are due to energy leakage in the EMC when recon-
structing the photon energy. If there is more than one D candidate 
left for one signal decay mode in an event, the candidate with 
the smallest |
E| is chosen for further analysis. More than 60%
of events have multiple candidates for D0 decay modes and 20%
for D+ decay modes. According to the studies on MC samples, the 
probability to select the correct candidate by choosing the mini-
mum |
E| is more than 90%. In addition, the credibility of this 
method is verified and proven to be robust by studying the high-
statistics inclusive MC samples.

As shown in Fig. 2 and Fig. 3, clear peaks are seen in the MBC

and MKK distributions for the four signal modes, which correspond 
to the D → K +K − P signals and φ → K +K − signals, respectively. 
According to the studies based on the inclusive MC samples, three 
types of background events will pass through above selection cri-
teria. The first one is a true D meson decaying to K +K − P final 
states without a φ meson involved (D → K +K − P ), the second one 
is a true φ meson not from the corresponding signal mode (Cont. 
φP X) and the third one is the combinatorial background from nei-
ther of the previous two sources (Comb. bkg).

Two-dimensional unbinned extended maximum likelihood fits 
to the obtained distributions of MBC and MKK are performed to 
extract yields of signals, as shown in Fig. 3. The MKK variable is 
employed here to discriminate the φ meson signal from the non-
resonant K +K − final state. The probability density functions of the 
D meson and φ meson signals are modeled by the MC-simulated 
signal shapes convoluted with Gaussian functions that describe the 
resolution differences between MC simulations and data. The com-
binatorial backgrounds in MBC (MKK) are described with (inverted) 
ARGUS [23] functions based on the studies on the inclusive MC 
sample. Since the correlation between MKK and MBC can be ne-
glected, these two variables are considered uncorrelated in the fit. 
The parameters of the (inverted) ARGUS and Gaussian functions in 
two-dimensional fits are fixed according to one-dimensional fits to 
the corresponding MBC and MKK distributions. The obtained signal 
yields are given in Table 2.



6 BESIII Collaboration / Physics Letters B 798 (2019) 135017
Fig. 3. Two-dimensional unbinned maximum likelihood fits to the distributions of MBC and MKK in data for the four signal modes. The points with error bars are data, the 
(red) thick curves are the total fits, the (blue) long dashed curves describe the signals, the (violet) dotted curves represent backgrounds of true φ mesons not from D → φP
decay modes, the (black) dashed curves describe backgrounds from D → K + K − P without a φ meson, and the shaded area show the combinatorial backgrounds.
5. Branching fraction

The branching fractions for the D → φP decays can be calcu-
lated by

Bi = Ni
sig

2 · ND D̄ · εi · Bi
sub

, (2)

where i denotes a signal mode of D → φP , Ni
sig is the signal yield 

extracted in data, ND D̄ is the number of D D̄ event in data, which 
is (8296 ± 31 ± 64) × 103 for D+D− and (10597 ± 28 ± 89) × 103

for D0 D̄0 [24] in the data set we analyzed, εi is the reconstruc-
tion efficiency determined from MC simulation of the signal mode, 
and Bi

sub are the branching fractions of the intermediate decay 
processes φ → K +K − and π0/η → γ γ , quoted from PDG [4]. 
The branching fraction for each decay mode is calculated in Ta-
ble 2.

The statistical significance of the D0 → φη signal is evaluated, 

taken as 
√

−2 ln(Lstat
0 /Lstat

max) where Lstat
max and Lstat

0 are the max-

imum likelihood values with and without signal, respectively, to 
be 4.2σ . Since the significance of the observed D+ → φK + sig-
nal is 0.8σ , the upper limit of B(D+ → φK +) is estimated by a 
likelihood scan method, which takes into account the systematic 
uncertainties as follows

Li(Bi) =
1∫

−1

Lstat[(1 + 
)Bi]exp

(
− 
2

2σ 2
i,syst

)
d
. (3)

Here, 
 is the relative deviation of the estimated branching frac-
tion from the nominal value and σi,syst is the total systematic 
uncertainty given in Table 3.

The likelihood curve calculated according to Eq. (3) is shown in 
Fig. 4. The upper limit on B(D+ → φK +) at the 90% confidence 
level (CL) is estimated to be 2.1 × 10−5 by integrating the likeli-
hood curve in the physical region, Bi > 0.
Fig. 4. Likelihood curve as the function of assumed B(D+ → φK +). The arrow 
points to the position of upper limit at the 90% CL.

6. Systematic uncertainties

The following sources of systematic uncertainties, as given in 
Table 3, are considered. The total systematic uncertainty is deter-
mined by adding all contributions in quadrature.

The uncertainties of tracking and particle identification (PID) for 
charged kaon and pion mesons, as well as π0(η) reconstruction, 
have been studied in previous works by using control samples of 
D hadronic events [25]. The uncertainties are weighted according 
to the kinematics of the candidates. Furthermore, in order to es-
timate the systematic uncertainty caused by the selected π0(η)

signal regions, the requirements on Mγ γ are varied and the re-
sultant changes on the BFs are 0.7% (1.1%). This uncertainty is 
combined with that of π0(η) reconstruction, the quadrature sum 
of which is given as 1.2%(1.8%). Requirements on 
E are stud-
ied by smearing the corresponding 
E distribution in inclusive 
MC samples with Gaussian functions and re-calculating detection 
efficiencies. The changes of the efficiencies are assigned as the cor-
responding uncertainties.

Systematic uncertainty related to the two-dimensional fit in-
cludes parameters of Gaussian and ARGUS functions, fit range and 
background models. For the fixed parameters in the Gaussian and 
ARGUS functions, their values are varied by ±1σ from the one-



BESIII Collaboration / Physics Letters B 798 (2019) 135017 7
Table 3
Summary of systematic uncertainties in percentage.

Source D+ → φπ+ D+ → φK + D0 → φπ0 D0 → φη B(D0→φπ0)

B(D+→φπ+)

Tracking 1.0 1.1 0.8 1.0 0.3

PID 1.2 1.0 0.6 0.6 0.4

π0 reconstruction − − 1.2 − 1.2

η reconstruction − − − 1.8 −

E requirement 0.2 0.2 0.2 0.2 0.3

2D fit 0.4 2.5 0.4 2.0 0.6

ND D uncertainty 0.9 0.9 0.9 0.9 1.3

B(φ → K + K −) 1.0 1.0 1.0 1.0 −
B(π0, η → γ γ ) − − 0.1 0.5 0.1

QC effect − − 1.0 1.0 1.0

Total 2.2 3.3 2.4 3.5 2.2
dimensional fit results and the largest resultant change is assigned 
as the systematic uncertainty. The uncertainty due to the fit range 
is estimated by repeating the fits with a series of varied ranges and 
the corresponding changes are found to be negligible. For the back-
ground models, potential background of D → f0(980)P is included 
in the fit and the change on the number of signal events is as-
signed as uncertainty. This uncertainty is larger for B(D+ → φK +)

and B(D0 → φη) due to the smaller signal yields.
The uncertainties of the quoted ND D̄ from Ref. [24], B(φ →

K +K −) and B(π0/η → γ γ ) from PDG [4] are taken into account 
for the relevant signal modes. Since D0 and D

0
are coherently 

produced in the process e+e− → ψ(3770) → D0 D
0

, quantum co-
herence (QC) [26] should be considered according to the equa-
tion


Nobs
C P = yC P · Nobs

C P .

The uncertainty depends on the D0 − D
0

mixing parameter yC P , 
and is taken to be 1.0% [27] conservatively.

For the systematic uncertainties of B(D0→φπ0)

B(D+→φπ+)
, the effects re-

lated to K ± tracking and PID are mostly cancelled, owing to their 
same kinematic phase space. The remaining systematic uncertain-
ties in Table 3 are considered independently and summed up in 
quadrature.

7. Summary

The decays of D+ → φπ+ , D0 → φπ0, D0 → φη, and D+ →
φK + are studied by analyzing 2.93 fb−1 data taken at 

√
s =

3.773 GeV with the BESIII detector. The obtained BFs are consis-
tent with previous results, as listed in Table 2, while the precisions 
of the BFs for the first three modes are improved. In addition, 
the upper limit on B(D+ → φK +) of 2.1 × 10−5 at 90% CL is re-
ported.

Our results of B(D → φπ) and B(D0 → φη) are consistent with 
the previous measurements. Furthermore, the ratio of B(D0 →
φπ0) to B(D+ → φπ+) is calculated to be (20.49 ± 0.50 ± 0.45)%, 
which is smaller than the previous result (24.6 ±1.8)% [5,6]. Mean-
while, the deviation from the predicted value of (19.7 ± 0.2)% in 
Eq. (1) is reduced from 2.7σ to 1.2σ , which shows better agree-
ment than the previous measurement. Hence, our results sup-
port the isospin symmetry between these two D meson decay 
modes.
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