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Local analytic sector subtraction for final state radiation at NNLO

1. Introduction

The Large Hadron Collider (LHC) is entering its high-precision phase, and theoretical predictions

need to achieve similar degree of accuracy, in order to have the Standard Model background under

control and be able to disentangle possible signals of new physics. As the LHC is a hadron machine,

basically all processes are essentially QCD-based, and precise theoretical predictions must take

into account higher-order effects in QCD perturbation theory. To this end, many ingredients are

necessary: an accurate determination of parton distribution functions, a proper description of final-

state hadronic jets, as well as resummations to all orders of large fixed-order contributions. But of

course the main ingredient to have accurate predictions is the computation of QCD corrections to

the relevant partonic processes, at a sufficiently high order, which actually means at next-to-next-

to-leading order (NNLO) for the most common processes. Furthermore, because of the variety

and complexity of scattering processes, it would be desirable that these NNLO QCD computations

could be automated, at the same level presently achieved at next-to-leading order (NLO). To reach

this ambitious goal, one needs not only automated computations of two-loop corrections, but also

a universal framework to deal with the cancellation of soft and collinear singularities, arising both

in virtual corrections and in the phase space integration of unresolved real radiation of massless

particles.

The most precise way to treat these cancellation is by means of a subtraction procedure, which

basically consists in subtracting from the real squared matrix elements one or more simple local

counterterms, mimicking its singular behaviour in the entire phase space, and adding them back,

integrated in the extra radiations, in order to cancel the singularities of the virtual matrix element.

There is a lot of freedom in defining these counterterms and in the way the integration of the radi-

ated phase space is performed, giving raise to many possible subtraction procedures. At NLO, the

most successful general algorithms are the Frixione-Kunzst-Signer (FKS) [1], the Catani-Seymour

(CS) [2] and the Nagy-Soper [3] subtraction methods. At NNLO, the overlapping of singular re-

gions increases the complexity of the problem, and several different methods, not always based on

a subtraction procedure, have been developed, however, so far, without reaching the desired degree

of generality and automation. The first subtraction procedure to be developed at NNLO was the

Antenna subtraction [4], which is essentially a generalisation of the NLO CS subtraction. A dif-

ferent framework, based on the known singular limits of the squared matrix elements with double

real radiation, is the CoLoRFulNNLO subtraction [5]. A complete numerical approach, extending

the FKS subtraction at NNLO, is the Sector-improved residue subtraction [6], which basically gen-

eralises the subtraction procedures based on the sector decomposition technique [7, 8], and was

the first method to be successfully applied to a hadronic scattering process (top pair production)

at NNLO. A recent analytical development of this approach is the Nested Soft-Collinear subtrac-

tion [9]. Successful methods not based on a local subtraction procedure are the qT slicing [10]

and N-Jettiness slicing [11]. Finally, new methods, or refinements of existing ones, are also being

introduced [12, 13, 14].

Recently, we presented a new approach [15], which we called local analytic sector subtraction: it

attempts to take maximal advantage of the available freedom in the definition of the local infrared

counterterms, essentially combining ideas that have been successfully implemented at NLO. The

first crucial element is the partition of phase space in sectors, as done in the FKS subtraction [1],
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by means of sector functions obeying a set of sum rules which allow to simplify the analytic inte-

gration of counterterms when sectors are appropriately recombined. A second key ingredient is the

remapping of momenta to Born kinematics, following CS factorisation of the radiative phase space,

which is particularly suitable for a straightforward integration of counterterms at NLO. Finally, we

use the known expressions for the 2-unresolved singular limits [16] and take maximal advantage of

the simple structure of multiple limits, which follows from the factorisation properties of scattering

amplitudes [17].

2. Local analytic sector subtraction for final state radiation at NLO

At NLO the differential cross sections dσNLO/dX with respect to any infrared-safe observable X

can schematically be written as

dσNLO −dσLO

dX
=

∫

dΦnV δn(X)+

∫

dΦn+1 Rδn+1(X) . (2.1)

where R and V denote the real and virtual squared matrix elements respectively, the latter renor-

malised in the MS scheme. We have also introduced δi(X) ≡ δ (X −Xi), with Xi representing the

observable X computed with i-body kinematics. In dimensional regularisation, with d = 4− 2ε

space-time dimensions, the virtual contribution features poles in ε , while the real contribution is

characterised by singularities in the radiation phase space, which are of soft and collinear nature.

When computed in d dimensions, the phase space integration in dΦn+1 results in explicit ε poles,

which cancel those of virtual origin [18, 19].

Any local subtraction procedure at NLO consists in adding and subtracting a counterterm K to

Eq. (2.1), and exploiting the factorisation of the (n+1) phase space dΦn+1 = dΦn dΦ1, getting

dσNLO −dσLO

dX
=
∫

dΦn

[

V + I
]

δn(X)+
∫

dΦn+1

[

Rδn+1(X)−K δn(X)
]

, I =
∫

dΦ1 K . (2.2)

The counterterm K must reproduce all the singular limits of the real-radiation contribution R, so that

the combination R−K does not present any phase space singularities. Its integral I in the radiative

phase space dΦ1 features poles in ε , which exactly cancel those of the virtual squared matrix

element V . The choice of the counterterm K and of the phase space factorisation dΦn+1 = dΦn dΦ1

defines the subtraction scheme.

In our local analytic sector subtraction scheme for final state radiation, we first introduce the FKS

sector functions Wi j, forcing the projection RWi j to approach a singular configuration only if the

final-state particle i becomes soft, or particles i and j become collinear. Requiring for the sector

functions the sum rule

∑
i, j 6=i

Wi j = 1 , (2.3)

we can construct the counterterm K as

K = ∑
i, j 6=i

[(

Si RWi j

)

+
(

Ci j RWi j

)

−
(

SiCi j RWi j

)]

, (2.4)
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where we have introduced the operators Si and Ci j, which act on all objects to their right in the

following way: Si and Ci j extract the leading behaviour for particle i becoming soft and for particles

i and j becoming collinear, respectively; when acting on matrix elements, they also define implicitly

a remapping of momenta (to be specified), such that the resolved particles of all matrix elements

are on the mass-shell and satisfy four-momentum conservation. Concretely

Si R = −N1 ∑
c6=i

d 6=i,c

scd

sicsid

Bcd

(

{k̄}(icd)
)

, SiCi j R = 2N1C f j

s jr

si jsir

B
(

{k̄}(i jr)
)

,

Ci j R =
N1

si j

[

Pi j B
(

{k̄}(i jr)
)

+Q
µν
i j Bµν

(

{k̄}(i jr)
)]

, (2.5)

where sab = 2ka ·kb, N1 = 8παS(µ
2eγE/(4π))ε , Bcd is the colour-connected Born-level squared ma-

trix element, and Bµν is the spin-connected Born-level squared matrix element. The spin-averaged

Altarelli-Parisi kernels Pi j and the azimuthal kernels Q
µν
i j are functions of xi = sir/(sir + s jr) and

x j = s jr/(sir + s jr), defined by

Pi j = δ figδ f jg 2CA

(

xi

x j

+
x j

xi

+ xix j

)

+δ{ fi f j}{qq̄}TR

(

1−
2xix j

1− ε

)

+δ fi{q,q̄}δ f jgCF

(

1+ x2
i

x j

− εx j

)

+δ figδ f j{q,q̄}CF

(

1+ x2
j

xi

− εxi

)

,

Q
µν
i j =

[

−δ fig δ f jg 2CA xix j +δ{ fi f j}{qq̄}TR

2xix j

1− ε

][

−gµν +(d−2)
k̃

µ
i k̃ν

i

k̃2
i

]

. (2.6)

The next important step is the choice of the remappings {k̄}(i jr) and {k̄}(icd) that, in our approach,

are not referred to the specific sector, as in FKS, but depend on the IR kernels of Eq. (2.5). We

decided to use CS remappings, which are particularly suited for an easy analytic integration of the

counterterms, defined by

k̄
(abc)
b = ka + kb −

sab

sac + sbc

kc , k̄
(abc)
c =

sabc

sac + sbc

kc , k̄
(abc)
i = ki, if i 6= a,b,c , (2.7)

where sabc = sab + sac+ sbc. Under these remappings, the (n+1)-particle phase space factorises as

dΦn+1 = dΦn

(

{k̄}(abc)
)

dΦ1

(

s̄
(abc)
bc ;y,z,φ

)

∫

dΦ1 (s;y,z,φ) ≡ N1 s1−ε
∫ π

0
dφ sin−2εφ

∫ 1

0
dy

∫ 1

0
dz
[

y(1− y)2 z(1− z)
]−ε

(1− y) ,

where the invariants are given by

sab = y s̄
(abc)
bc , sac = z(1− y) s̄

(abc)
bc , sbc = (1− z)(1− y) s̄

(abc)
bc , s̄

(abc)
bc = 2k̄

(abc)
b · k̄

(abc)
c , (2.8)

and N1 = (4π)ε−2π−1/2/Γ(1/2− ε). The integral I of the counterterm K in the dΦ1 phase space

can then be computed analytically, after having summed away the sector functions, obtaining

I =
αS

2π

[

∑
c,d 6=c

Jcd
s Bcd +∑

p

J
pr
hc B

]

, (2.9)

where

Jcd
s = −

1

ε2
−

2

ε
−6+

7

2
ζ2 + ln

s̄cd

µ2

(

1

ε
+2−

1

2
ln

s̄cd

µ2

)

+O(ε) ,

J
pr
hc = −δ fpg

CA +4TR N f

6

(

1

ε
+

8

3
− ln

s̄pr

µ2

)

−δ fp{q,q̄}
CF

2

(

1

ε
+2− ln

s̄pr

µ2

)

+O(ε) . (2.10)
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3. Local analytic sector subtraction for final state radiation at NNLO

At NNLO the structure of the differential cross section contains three contributions,

dσNNLO −dσNLO

dX
=
∫

dΦnVV δn(X)+
∫

dΦn+1 RV δn+1(X)+
∫

dΦn+2 RRδn+2(X) . (3.1)

where RR, RV and VV denote the double-real, real-virtual and double-virtual squared matrix ele-

ments respectively, the latter two renormalised in the MS scheme. The double-virtual contribution

has only poles in ε , while the real-virtual contribution features both poles in ε and phase space

singularities, and the double-real term is characterised only by singularities in the radiation phase

space. When computed in d dimensions, the phase space integrations in dΦn+1 and dΦn+2 result

in explicit poles in ε , which cancel those arising from virtual corrections [18, 19].

In this case the structure of the counterterms is more involved than at NLO and we construct it step

by step. Following the same strategy described in the previous section, we first introduce new sector

functions Wi jkl for RR, while we use the NLO sector functions Wi j for RV . The singular behaviour

of RV for soft and/or collinear emission is similar to R at NLO, and we build the corresponding

counterterm in the same way, according to

K(RV) = ∑
i, j 6=i

[(

Si RV Wi j

)

+
(

Ci j RV Wi j

)

−
(

SiCi j RV Wi j

)]

, (3.2)

The soft and/or collinear singular behaviour of RV is known [20], and the explicit expressions for

SiRV , Ci jRV , and SiCi jRV is obtained by introducing proper remappings in the matrix elements,

analogous to those introduced at NLO.

The new sector functions Wi jkl for RR are defined to minimize the number of singular regions of

RRWi jkl , and must of course sum to 1, according to

∑
i, j 6=i

∑
k 6=i

l 6=i,k

Wi jkl = 1 . (3.3)

Notice that in the previous formula we allow the last two indices k and l to be equal to the second

index j. This is done to catch specific collinear limits of RR: in RRWi j jk and RRWi jk j (k 6= j),

the only singular double collinear limit is when the three particles i, j,k become simultaneously

collinear (which we represent by the operator Ci jk); on the other hand, in RRWi jkl (k, l 6= j) the

surviving singular double collinear limit is when the two pairs (i, j) and (k, l) become collinear

separately (which we represent by the operator Ci jkl). It is possible to define the sector functions

Wi jkl such that in the three mentioned topologies just the following singular limits survive:

Wi j jk RR : Si, Ci j, Si j, Ci jk, SCi jk, j 6= i, k 6= i, j;

Wi jk j RR : Si, Ci j, Sik, Ci jk, SCi jk, SCki j, j 6= i, k 6= i, j;

Wi jkl RR : Si, Ci j, Sik, Ci jkl , SCikl , SCki j, j 6= i, k 6= i, j, l 6= i, j,k. (3.4)

where, besides the operators for the single soft limit Si and for the single collinear limit Ci j, and

the already mentioned operators for the double collinear limits Ci jk and Ci jkl , we have defined the

double-soft operator for particles i and j, Si j, and the soft-collinear operator SCi jk, which extract

4
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the singular behaviour when particle i becomes soft and simultaneously particles j and k become

collinear. Of course this list of limits depends on the actual form of the sector functions.

Since all previous limits commute when acting on both RR and sector functions, we can easily

build expressions which, by construction have no phase space singularties. Indeed

(1−Si)(1−Ci j)(1−Si j)(1−Ci jk)(1−SCi jk)RR Wi j jk = finite , (3.5)

(1−Si)(1−Ci j)(1−Sik)(1−Ci jk)(1−SCi jk)(1−SCki j)RR Wi jk j = finite ,

(1−Si)(1−Ci j)(1−Sik)(1−Ci jkl)(1−SCikl)(1−SCki j)RR Wi jkl = finite (k, l 6= j) ,

where the bar denotes again an implicit remapping on matrix elements, to preserve mass-shell con-

ditions and momuntum conservation. The explicit expressions for SiRR and Ci jRR are analogous

to the ones at NLO, while Ci jklRR and SCi jkRR are essentially products of two single operators

and can be obtained again from the NLO case (see Ref. [15] for the explicit expressions). The only

non-trivial limits are Si jRR and Ci jkRR, which are given by

Si j RR =
N 2

1

2
∑

c6=i, j
d 6=i, j,c

[

∑
e6=i, j,c,d
f 6=i, j,c,d

I
(i)
cd I

( j)
e f Bcde f

(

{k̄}(icd, je f )
)

+4 ∑
e6=i, j,c,d

I
(i)
cd I

( j)
ed Bcded

(

{k̄}(icd, jed)
)

+2 I
(i)
cd I

( j)
cd Bcdcd

(

{k̄}(i jcd)
)

+

(

I
(i j)
cd −

1

2
I
(i j)
cc −

1

2
I
(i j)
dd

)

Bcd

(

{k̄}(i jcd)
)

]

Ci jk RR =
N 2

1

s2
i jk

[

Pi jk B
(

{k̄}(i jkr)
)

+Q
µν
i jk Bµν

(

{k̄}(i jkr)
)]

(3.6)

where I
(i)
cd = scd/(sicsid) is the NLO eikonal factor, while I

(i j)
cd , Pi jk, and Q

µν
i jk are pure NNLO soft

and collinear kernels, which have been computed explicitly in Ref. [16], and will be analysed in

more details in the next section. The remappings introduced implicitly in Eq. (3.6) are again chosen

to simplify the analytical integration procedure, and are basically double CS remappings, given by

k̄
(abcd)
c = ka + kb + kc −

sabc

sad + sbd + scd

kd , k̄
(abcd)
d =

sabcd

sad + sbd + scd

kd , (3.7)

while k̄
(abcd)
i = ki if i 6= a,b,c,d.

From the finite expressions of Eq. (3.5), we construct the counterterms which cancel the phase

space singularities of RR. To this end we introduce the 1- and 2-unresolved limits L
(1)
i j and L

(2)
i jkl , as

1−L
(1)
i j ≡ (1−Si)(1−Ci j) ,

1−L
(2)
i j jk ≡ (1−Si j)(1−Ci jk)(1−SCi jk)

1−L
(2)
i jk j ≡ (1−Sik)(1−Ci jk)(1−SCi jk)(1−SCki j) ,

1−L
(2)
i jkl ≡ (1−Sik)(1−Ci jkl)(1−SCikl)(1−SCki j) , for k, l 6= j . (3.8)

In this way we can rewrite the three equations (3.5) in one formula (for k 6= i, l 6= i,k)

(1−L
(1)
i j )(1−L

(2)
i jkl)RR Wi jkl =

[

RR−L
(1)
i j −L

(2)
i jkl +L

(1)
i j L

(2)
i jkl

]

Wi jkl = finite , (3.9)

5
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and define the three counterterms

K(1) = ∑
i, j 6=i

∑
k 6=i

l 6=i,k

L
(1)
i j RRWi jkl , K(2) = ∑

i, j 6=i

∑
k 6=i

l 6=i,k

L
(2)
i jkl RRWi jkl ,

K(12) = − ∑
i, j 6=i

∑
k 6=i

l 6=i,k

L
(1)
i j L

(2)
i jkl RRWi jkl . (3.10)

Finally, we can build our subtraction formula, which we write as

dσNNLO −dσNLO

dX
=

∫

dΦn

(

VV + I (2)+ I(RV)
)

δn(X)

+

∫

dΦn+1

[(

RV + I (1)
)

δn+1(X)−
(

K(RV)− I(12)
)

δn(X)
]

+

∫

dΦn+2

[

RRδn+2(X)−K (1)δn+1(X)−
(

K (2)+K(12)
)

δn(X)
]

. (3.11)

where I (1), I (2), I(12), and I(RV) are given by

I (1)=

∫

dΦ1 K (1), I(12) =

∫

dΦ1 K(12), I (2) =

∫

dΦ2 K (2), I(RV) =

∫

dΦ1 K(RV). (3.12)

The calculation of I (1) and I(12) needs the integrations in a single radiation phase space dΦ1, and

can be readily performed following the NLO case, obtaining

I (1) =
αS

2π ∑
k,l 6=k

[

∑
c,d 6=c

Jcd
s Rcd +∑

p

J
pr
hc R

]

Wkl ,

I(12) = −
αS

2π ∑
k,l 6=k

[

Sk +Ckl(1−Sk)
]

[

∑
c,d 6=c

Jcd
s Rcd +∑

p

J
pr
hc R

]

Wkl . (3.13)

As one can see, I(12) corresponds to the IR limit of I(1), with opposite sign. The second line

of Eq. (3.11) is therefore free from phase space singularities, exactly as the third one. Explicit

calculations show that I (1) cancels the ε poles of RV and I(12) cancels those of K(RV).

Of course, because of the KLN theorem [18, 19], I (2) and I(RV) cancel the ε poles of VV . Their

integration is the most difficult part of the calculation, but can be performed following the procedure

sketched in the next session.

3.1 Integration of I (2) and I(RV)

The integrals I (2) and I(RV) consist of many terms. A large fraction of these terms are convolutions

of integrals of the NLO type and their integration is trivial, but we refrain from showing them here

for the sake of brevity. We describe instead the method we used to integrate the most intricate parts

of these counterterms, namely those which depend also on the azimuthal angle of the unresolved

particle(s). To make the integration of such terms feasible, the choice of remappings and the fac-

torisation of phase space are crucial. Single and double CS remappings seem the best choice in

view of the analytical integration, because they involve only the invariants that are actually present

in the singular kernels and moreover generate a simple radiative phase space.

6
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For I(RV), involving at most 5 invariants sab, sac, sbc, scd , sad (where a is the unresolved particle),

the CS remappings of Eq. (2.7) give:

dΦn+1 = dΦn

(

{k̄}(abc)
)

dΦ1

(

s̄
(abc)
bc ;y,z,x

)

,

∫

dΦ1

(

s;y,z,x
)

=2−2ε N1 s1−ε
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz [x(1−x)]−ε− 1

2

[

y(1− y)2z(1− z)
]−ε

(1− y) ,

sab = y s̄
(abc)
bc , sac = z(1− y) s̄

(abc)
bc , sbc = (1− z)(1− y) s̄

(abc)
bc , sdc = (1− y) s̄

(abc)
cd ,

sad = y(1− z) s̄
(abc)
cd + z s̄

(abc)
bd −2(1−2x)

√

yz(1− z) s̄
(abc)
bd s̄

(abc)
cd . (3.14)

For I (2), involving at most 6 invariants sab, sac, sbc, scd , sad , sbd (where a and b are the unresolved

particles), the double CS remappings of Eq. (3.7) give

dΦn+2 = dΦn

(

{k̄}(abcd)
)

dΦ2

(

s̄
(abcd)
cd ;y′,z′,x′,y,z,φ

)

,

∫

dΦ2(s;y′,z′,x′,y,z,φ) = N2 s2−2ε
∫ 1

0
dx′
∫ 1

0
dy′
∫ 1

0
dz′
∫ π

0
dφ(sin φ)−2ε

∫ 1

0
dy

∫ 1

0
dz
[

x′(1− x′)
]−ε− 1

2

×
[

y′(1− y′)2 z′(1− z′)y2(1− y)2 z(1− z)
]−ε

(1− y′)y(1− y) ,

sab = y′ y s̄
(abcd)
cd , sac = z′(1− y′)y s̄

(abcd)
cd , sbc = (1− y′)(1− z′)y s̄

(abcd)
cd ,

sbd = (1− y)
[

y′z′(1− z)+ (1− z′)z+2(1−2x′)
√

y′z′(1− z′)z(1− z)
]

s̄
(abcd)
cd ,

scd = (1− y′)(1− y)(1− z) s̄
(abcd)
cd , sad = (y′+ z− y′z)(1− y) s̄

(abcd)
cd − sbd , (3.15)

with N2 = 2−2ε N2
1 .

In order to explain how the integration is performed, we restrict the analysis to the azimuth-

dependent terms of I (2), namely to the integration in dΦ2 of I
(i j)
cd and Pi jk of Eq. (3.6) (but note

that with the techniques shown here we were able to integrate I (2) and I(RV) completely).

The explicit expression of I
(i j)
cd is

I
(i j)
cd = δ{ fi f j}{qq̄}

TR

2
I
(qq̄)
i jcd −δ fig δ f jg

CA

2
I
(gg)
i jcd (3.16)

where δ{ fa fb}{qq̄} = δ faqδ fbq̄ +δ faq̄δ fbq, while I
(qq̄)
i jcd and I

(gg)
i jcd are taken from Ref. [16],

I
(qq̄)
i jcd = Icd(ki,k j) (eq. (96) of [16]) ,

I
(gg)
i jcd = Scd(ki,k j) (eq. (110) of [16]) .

On the other hand, for Pi jk we have

Pi jk = P
(qq′q̄′)
i jk δ{ fi f j}{qq̄} δ fk{q′q̄′}+P

(qq′q̄′)
jki δ{ f j fk}{qq̄} δ fi{q′ q̄′}+P

(qq′q̄′)
ki j δ{ fk fi}{qq̄} δ f j{q′q̄′}

+ P
(qqq̄)
i jk δ{ fi{ f j fk}}{qq̄}+P

(qqq̄)
jki δ{ f j{ fk fi}}{qq̄}+P

(qqq̄)
ki j δ{ fk{ fi f j}}{qq̄}

+ P
(gqq̄)
i jk δ{ fi f j}{qq̄} δ fkg +P

(gqq̄)
jki δ{ f j fk}{qq̄} δ fig +P

(gqq̄)
ki j δ{ fk fi}{qq̄} δ f jg

+ P
(ggq)
i jk δ fig δ f jg δ fk{q,q̄}+P

(ggq)
jki δ f jg δ fkg δ fi{q,q̄}+P

(ggq)
ki j δ fkg δ fig δ f j{q,q̄}

+P
(ggg)
i jk δ fig δ f jg δ fkg , (3.17)
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where q and q′ are quarks of equal or different flavours and

δ fa{qq̄} = δ faq +δ faq̄ , δ{ fa{ fb fc}}{qq̄} = δ faq δ fbq̄ δ fcq̄ +δ faq̄ δ fbq δ fcq . (3.18)

The expressions for P
(qq′q̄′)
i jk , P

(qqq̄)
i jk , P

(gqq̄)
i jk , P

(ggq)
i jk and P

(ggg)
i jk can again be found in [16]:

P
(qq′q̄′)
i jk = 〈P̂q̄iq jq

′
k
〉 (eq. (57) of [16]) ,

P
(qqq̄)
i jk = 〈P̂

(id)
q̄iq jqk

〉 (eq. (59) of [16]) ,

P
(gqq̄)
i jk = CF TR 〈P̂

(ab)
gkqiq̄ j

〉+CA TR 〈P̂
(nab)
gkqiq̄ j

〉 (eqs. (68) and (69) of [16]) ,

P
(ggq)
i jk = C2

F 〈P̂
(ab)
gig jqk

〉+CF CA 〈P̂
(nab)
gig jqk

〉 (eqs. (61) and (62) of [16]) ,

P
(ggg)
i jk = 〈P̂gig jgk

〉 (eq. (70) of [16]) .

From the expressions of I
(i j)
cd and Pi jk we see that they are symmetric under the permutation of

some of the involved momenta. However, when integrating in the two-body radiative phase space

dΦ2, we have a larger freedom of choosing the outgoing momenta ka, kb, kc, kd , depending on the

symmetries of their four-body phase space, which is invariant under

• any permutations of the four momenta ka, kb, kc, kd ;

• any of the following permutations of invariants: sab ↔ scd , sac ↔ sbd , and sad ↔ sbc.

These symmetries reflect in the factorisation of phase space: in fact, when reparametrising the four

body phase space from (ka,kb,kc,kd) to (k̄
(abcd)
c , k̄

(abcd)
d ,y,z,φ ,y′,z′,x′), we have the freedom of

performing any one of the permutations listed above. This is of crucial importance in simplifying

the analytical computation of the dΦ2 integration of I
(i j)
cd and Pi jk. Exploiting this freedom in a

systematic way, it is possible to rearrange I
(i j)
cd and Pi jk so that in the denominators of each term

only the following combinations of invariants appear:

sab, sac, sbc, sbd , scd , sac + sbc, sad + sbd, sab + sbc.

Among these denominators, only sbd depends on the azimuthal angle (parametrised by the variable

x′): therefore all terms without sbd in the denominator can be trivially integrated in dx′, and those

with 1/sbd can be integrated using the integral relation

Ib(A,B) ≡

∫ 1

0
dx′
[

x′(1− x′)
]

1
2
−b 1

A2 +B2 +2(1−2x′)AB
(3.19)

=
Γ2
(

3
2
−b
)

Γ(3−2b)

[

1

B2 2F1

(

1,b,2−b,
A2

B2

)

Θ(B2−A2)+
1

A2 2F1

(

1,b,2−b,
B2

A2

)

Θ(A2−B2)

]

.

In addition to the integration in x′, we could perform those in φ (there is no φ dependence in

the integrands) and y (giving just Beta functions). The z and z′ integrations are performed by using

known properties of the hypergeometric function 2F1, and by introducing integrals in a new variable

t (with no direct physical meaning). The remaining integrations are then of the following types:
∫ 1

0
dt

∫ 1

0
dy′ (1− t)µ tν (1− y′)ρ (y′)σ

2F1(n1,n2 − ε ,n3 −2ε ,1− ty′) , (3.20)

∫ 1

0
dt (1− t)µ tν

2F1(n1,n2 − ε ,n3 −2ε ,1− t) , n1,n2,n3 ∈ N, n1 ≥ 1, n3 ≥ n1 +1,n2 ,
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with µ ,ν ,ρ ,σ = n+mε (n,m ∈ Z, n ≥ −1). These integrals can of course be written in terms of

hypergemetric functions 2F1, 3F2, 4F3. Since however we are not interested in the full ε dependence,

we first expanded in ε and then integrated in t and y′, obtaining the following compact results
∫

dΦ2(s;y′,z′,x′,y,z,φ) I
(X)
i jcd = A(s)I

(X)
i jcd ,

∫

dΦ2(s;y′,z′,x′,y,z,φ)P
(X)
i jk = A(s)P

(X)
i jk , (3.21)

with A(s) = s−2ε e−2εγ
E /(4π)4−2ε and

I
(qq̄)

i jcd =
2

3

1

ε3
+

28

9

1

ε2
+

[

416

27
−

7

9
π2

]

1

ε
+

5260

81
−

104

27
π2 −

76

9
ζ (3) (c 6= d) , (3.22)

I
(qq̄)

i jcc = −
2

3

1

ε2
−

16

9

1

ε
−

212

27
+π2 ,

I
(gg)
i jcd =

2

ε4
+

35

3

1

ε3
+

[

481

9
−

8

3
π2

]

1

ε2
+

[

6218

27
−

269

18
π2 −

154

3
ζ (3)

]

1

ε
+

76912

81
−

3775

54
π2 −

2050

9
ζ (3)−

23

60
π4 (c 6= d) ,

I
(gg)
i jcc = −

2

3

1

ε2
−

10

9

1

ε
−

164

27
+π2 ,

P
(qq′ q̄′)
i jk = −

1

3

1

ε3
−

31

18

1

ε2
+

[

−
889

108
+

π2

2

]

1

ε
−

23941

648
+

31

12
π2 +

80

9
ζ (3) , (3.23)

P
(qqq̄)
i jk =

[

−
13

8
+

1

4
π2 −ζ (3)

]

1

ε
−

227

16
+π2 +

17

2
ζ (3)−

11

120
π4 ,

P
(gqq̄)
i jk = CATR

{

−
2

3

1

ε3
−

41

12

1

ε2
+

[

−
1675

108
+

17

18
π2

]

1

ε
−

5404

81
+

1063

216
π2 +

139

9
ζ (3)

}

+CF TR

{

−
2

3

1

ε3
−

31

9

1

ε2
+

[

−
889

54
+π2

]

1

ε
−

23833

324
+

31

6
π2 +

160

9
ζ (3)

}

,

P
(ggq)
i jk = CFCA

{

1

2

1

ε4
+

8

3

1

ε3
+

[

905

72
−

2

3
π2

]

1

ε2
+

[

11773

216
−

89

24
π2 −

65

6
ζ (3)

]

1

ε
+

295789

1296
−

845

48
π2 −

2191

36
ζ (3)+

19

240
π4

}

+C2
F

{

2

ε4
+

7

ε3
+

[

251

8
−3π2

]

1

ε2
+

[

2125

16
−

21

2
π2 −

154

3
ζ (3)

]

1

ε
+

17607

32
−

753

16
π2 −

548

3
ζ (3)+

13

20
π4

}

,

P
(ggg)
i jk =

5

2

1

ε4
+

21

2

1

ε3
+

[

853

18
−

11

3
π2

]

1

ε2
+

[

5450

27
−

275

18
π2 −

188

3
ζ (3)

]

1

ε
+

180739

216
−

1868

27
π2 −

1555

6
ζ (3)+

41

60
π4 .

As a cross check, all these integrals have been computed also numerically, using sector decompo-

sition and without using the symmetries of the phase space.

4. Summary

We have presented the latest developments of the local analytic sector subtraction. The method

takes advantage of the partition of phase space through sector functions. This, in turn, allows to

easily identify counterterms by using the known singular limits of the real matrix elements, and

by introducing proper remappings of the momenta, in order to preserve mass-shell conditions and

momentum conservation at each step of the calculation. We exploit the freedom in the choice of

remappings, and obtain a simple factorisation of phase space, that gives us the possibility to inte-

grate analytically all counterterms in the radiation phase space. We have shown the application of

the method to final state radiation, sketching the procedure developed for integrating the countert-

erms, and giving analytic results for the integrated double-soft and double-collinear kernels.
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