Proceedings of the Eleventh Congress
of the European Society for Research
in Mathematics Education

Editors: Uffe Thomas Jankvist, Marja van den Heuvel-Panhuizen, Michiel Veldhuis
Organised by: Freudenthal Group & Freudenthal Institute, Utrecht University
Year: 2019
Editors
Uffe Thomas Jankvist, Danish School of Education, Aarhus University, Denmark.
Marja van den Heuvel-Panhuizen, Freudenthal Group & Freudenthal Institute, Utrecht University, Netherlands; Nord University, Norway.
Michiel Veldhuis, Freudenthal Group, Utrecht University, Netherlands; iPabo University of Applied Sciences, Amsterdam, Netherlands.

Editorial Board
Mario Sánchez Aguilar; Paul Andrews; Pedro Arteaga; Fatma Aslan-Tutak; Michal Ayalon; Jonas Bergman Årlebäck; Anna Baccaglini-Frank; Annette Bagger; Arthur Bakker; Berta Barquero; Johannes Beck; Aline Bernardes; Angelika Bikner-Ahsbahs; Irene Biza; Laura Black; Laurinda Brown; Orly Buchbinder; Ângela Buñom; Susana Carreira; Renata Carvalho; Patrick Capraro; Esther Chan; Maria Chimonis; Renaud Chorlay; Anna Chronaki; Alison Clark-Wilson; Jason Cooper; Jenny Cramer; Seán Delaney; Javier Díez-Palomar; Ana Donevska-Todorova; Beatrix Vargas Dorneles; Ove Gunnar Drageset; Viviane Durand-Guerrier; Andreas Eckert; Kirstin Erath; Ingvild Erjord; Nataly Essonnier; Eleonora Faggiano; Marie Therese Farrugia; Fiona Faulkner; Janne Fauskanger; Carla Finesilver; Marita Friesen; Daniel Frischeimer; Eirini Geraniou; Imène Ghedamsi; Inés M. Gómez-Chacón; Orlando Rafael González; Alejandro S. González-Martín; Koen Gravemeijer; Ghislaine Gueudet; Tanja Hamann; Çiğdem Haser; Dave Hewitt; Jeremy Hodgen; Kees Hoogland; Jenni Ingram; Paola Iannone; Eva Jablonka; Britta Jessen; Heather Johnson; Keith Jones; Sibel Kazak; Beth Kelly; Jeta Kingji; Iveta Kohanová; David Kollosche; Evelyn H. Krosbergen; Sebastian Kuntze; Ana Kuzle; Aisling Leavy; Esther Levenson; Peter Liljedahl; Božena Maj-Tatsis; Francesca Martignone; Michela Maschietto; Maria Mellone; Christian Merct; Vilma Mesa; Siún Nic Mhuiirí; Morten Misfeldt; Joris Mithalal; Miguel Montes; Hana Moraová; Francesca Morselli; Reidar Mosvold; Andreas Moutsios-Rentzos; Reinhard Oldenburg; Samet Okumus; Antonio M. Oller-Marcén; Chrysi Papadaki; Birgit Pepin; Alon Pinto; Núria Planas; Joao Pedro da Ponte; Caterina Primi; Elisabeth Rathgeb-Schnierer; Miguel Ribeiro; Ornella Robutti; Helena Roos; Kirsti Rø; Charalampos Sakonidis; Libuse Samkova; Judy Sayers; Petra Scherer; Stanisław Schukajlow; Priska Schöner; Marcus Schütte; Nathalie Sinclair; Karen Skilling; Michelle Stephan; Hauke Strachler-Pohl; Heidi Strømskag; Andreas Stylianides; Gabriel J. Stylianides; Osama Swidan; Michal Tabach; Rukiye Didem Taylan; Melih Turgut; Marianna Tzekaki; Behiye Ubüz; Anita Valenta; Olov Viirman; Hanna Viitula; Katrin Vorhölter; Geoff Wake; Hans-Georg Weigand; Kjersti Wæge; Constantinos Xenofontos; Stefan Zehetmeier.

Publisher
Freudenthal Group & Freudenthal Institute, Utrecht University, Netherlands and ERME
ISBN 978-90-73346-75-8
© Copyright 2019 left to the authors

Recommended citation for the proceedings

Recommended citation for single entries in the proceedings
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Preface: CERME 11 in lovely Utrecht historic sites</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Prediger, Ivy Kidron</td>
<td></td>
</tr>
</tbody>
</table>

Introduction

<table>
<thead>
<tr>
<th>Introduction to the Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uffe Thomas Jankvist, Marja van den Heuvel-Panhuizen, Michiel Veldhuis</td>
<td></td>
</tr>
</tbody>
</table>

Plenary lectures

<table>
<thead>
<tr>
<th>Embodied instrumentation: combining different views on using digital technology in mathematics education</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul Drijvers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>History and pedagogy of mathematics in mathematics education: History of the field, the potential of current examples, and directions for the future</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathleen M. Clark</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extensions of number systems: continuities and discontinuities revisited</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebastian Rezat</td>
<td></td>
</tr>
</tbody>
</table>

Plenary panel

<table>
<thead>
<tr>
<th>ERME anniversary panel on the occasion of the 20th birthday of the European Society for Research in Mathematics Education</th>
<th>82</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konrad Krainer, Hanna Palmér, Barbara Jaworski, Susanne Prediger, Paolo Boero, Simon Modeste, Tommy Dreyfus, and Jana Žalská</td>
<td></td>
</tr>
</tbody>
</table>
TWG01: Argumentation and proof

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to the papers of TWG01: Argumentation and Proof</td>
<td>99</td>
</tr>
<tr>
<td>Gabriel J. Stylianides, Orly Buchbinder, Jenny Cramer, Viviane Durand-Guerrier, Andreas Moutsios-Rentzos, and Anita Valenta</td>
<td></td>
</tr>
<tr>
<td>Understanding geometric proofs: scaffolding pre-service mathematics teacher students through dynamic geometry system (dgs) and flowchart proof</td>
<td>100</td>
</tr>
<tr>
<td>Lathiful Anwar and Martin Goedhart</td>
<td></td>
</tr>
<tr>
<td>Initial participation in a reasoning-and-proving discourse in elementary school teacher education</td>
<td>104</td>
</tr>
<tr>
<td>Kristin Krogh Arnesen, Ole Enge, Kirsti Rø and Anita Valenta</td>
<td></td>
</tr>
<tr>
<td>Epistemological obstacles in the evolution of the concept of proof in the path of ancient Greek tradition</td>
<td>112</td>
</tr>
<tr>
<td>Miglena Asenova</td>
<td></td>
</tr>
<tr>
<td>Teachers’ perspectives on mathematical argumentation, reasoning and justifying in calculus classrooms</td>
<td>120</td>
</tr>
<tr>
<td>Sabrina Bersch</td>
<td></td>
</tr>
<tr>
<td>Integrating Euclidean rationality of proving with a dynamic approach to validation of statements: The role of continuity of transformations</td>
<td>128</td>
</tr>
<tr>
<td>Paolo Boero and Fiorenza Turiano</td>
<td></td>
</tr>
<tr>
<td>The role of the teacher in the development of structure-based argumentations</td>
<td>136</td>
</tr>
<tr>
<td>Fiene Bredow</td>
<td></td>
</tr>
<tr>
<td>Prospective teachers enacting proof tasks in secondary mathematics classrooms</td>
<td>145</td>
</tr>
<tr>
<td>Orly Buchbinder and Sharon McCrone</td>
<td></td>
</tr>
<tr>
<td>Developing Pre-service Mathematics Teachers’ Pedagogical Content Knowledge of Proof Schemes: An Intervention Study</td>
<td>147</td>
</tr>
<tr>
<td>Fikret Cihan and Hatice Akkoç</td>
<td></td>
</tr>
<tr>
<td>Games as a means of motivating more students to participate in argumentation</td>
<td>155</td>
</tr>
<tr>
<td>Jenny Cramer</td>
<td></td>
</tr>
<tr>
<td>Towards an interactional perspective on argumentation in school mathematics</td>
<td>171</td>
</tr>
<tr>
<td>Markos Dallas</td>
<td></td>
</tr>
<tr>
<td>A pilot study on elementary pupils conditional reasoning skills and alternatives generation skills in mathematics</td>
<td>179</td>
</tr>
<tr>
<td>Anastasia Datsogianni, Stefan Ufer and Beate Sodian</td>
<td></td>
</tr>
<tr>
<td>What do prospective mathematics teachers mean by definitions can be proved?</td>
<td>181</td>
</tr>
<tr>
<td>Merve Dilberoğlu, Çiğdem Haser and Erdinç Çakiroğlu</td>
<td></td>
</tr>
<tr>
<td>The justification of conjectures in the study of the congruence of triangles by 5th grade students</td>
<td>189</td>
</tr>
<tr>
<td>Marisa Gregório and Hélia Oliveira</td>
<td></td>
</tr>
<tr>
<td>Fundamental task to generate the idea of proving by contradiction</td>
<td>191</td>
</tr>
<tr>
<td>Hiroaki Hamanaka and Koji Otaki</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Student teachers’ argumentation in primary school mathematics classrooms</td>
<td>199</td>
</tr>
<tr>
<td>Helene Hauge</td>
<td></td>
</tr>
<tr>
<td>The interplay of logical relations and their linguistic forms in proofs written in natural language</td>
<td>201</td>
</tr>
<tr>
<td>Kerstin Hein</td>
<td></td>
</tr>
<tr>
<td>Mathematical Arguments in the Context of Mathematical Giftedness Analysis of Oral Argumentations with Toulmin</td>
<td>209</td>
</tr>
<tr>
<td>Simone Jablonski and Matthias Ludwig</td>
<td></td>
</tr>
<tr>
<td>“Using geometry, justify (…)”. Readiness of 14-year-old students to show formal operational thinking</td>
<td>217</td>
</tr>
<tr>
<td>Edyta Juskowiak</td>
<td></td>
</tr>
<tr>
<td>On the effect of using different phrasings in proving tasks</td>
<td>225</td>
</tr>
<tr>
<td>Leander Kempen, Petra Carina Tebaartz and Miriam Krieger</td>
<td></td>
</tr>
<tr>
<td>Task design for developing students’ recognition of the roles of assumptions in mathematical activity</td>
<td>233</td>
</tr>
<tr>
<td>Kotaro Komatsu, Gabriel J. Stylianides and Andreas J. Stylianides</td>
<td></td>
</tr>
<tr>
<td>Primary students reasoning and argumentation based on statistical data</td>
<td>241</td>
</tr>
<tr>
<td>Jens Krummenauer and Sebastian Kuntze</td>
<td></td>
</tr>
<tr>
<td>Questions and answers & but no reasoning!</td>
<td>249</td>
</tr>
<tr>
<td>Dorte Moeskær Larsen and Camilla Hellsten Østergaard</td>
<td></td>
</tr>
<tr>
<td>Factors influencing teachers’ decision making on reasoning-and proving in Hong Kong</td>
<td>257</td>
</tr>
<tr>
<td>Chun Yeung Lee</td>
<td></td>
</tr>
<tr>
<td>On teachers’ experiences with argumentation and proving activities in lower secondary mathematics classrooms</td>
<td>265</td>
</tr>
<tr>
<td>Silke Lekaus</td>
<td></td>
</tr>
<tr>
<td>An epistemological study of recursion and mathematical induction in mathematics and computer science</td>
<td>274</td>
</tr>
<tr>
<td>Nicolás León</td>
<td></td>
</tr>
<tr>
<td>Explanatoriness as a value in mathematics and mathematics teaching</td>
<td>276</td>
</tr>
<tr>
<td>Eva Müller-Hill</td>
<td></td>
</tr>
<tr>
<td>Proof, reasoning and logic at the interface between Mathematics and Computer Science: toward a framework for analyzing problem solving</td>
<td>284</td>
</tr>
<tr>
<td>Simon Modeste, Sylvain Beauvoir, Jonathan Chappelon, Viviane Durand-Guerrier, Nicolás León and Antoine Meyer</td>
<td></td>
</tr>
<tr>
<td>A systemic investigation of students’ views about proof in high school geometry: the official and shadow education systems in a school unit</td>
<td>292</td>
</tr>
<tr>
<td>Andreas Moutsios-Rentzos and Eleni Plyta</td>
<td></td>
</tr>
<tr>
<td>Meta-knowledge about definition: The case of special quadrilaterals</td>
<td>300</td>
</tr>
<tr>
<td>Shogo Murata</td>
<td></td>
</tr>
<tr>
<td>Proof comprehension of undergraduate students and the relation to individual characteristics</td>
<td>302</td>
</tr>
<tr>
<td>Silke Neuhaus and Stefanie Rach</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abduction in argumentation: Two representations that reveal its different functions</td>
<td>310</td>
</tr>
<tr>
<td>Chrysi Papadaki, David Reid and Christine Knipping</td>
<td></td>
</tr>
<tr>
<td>Some linguistic issues on the teaching of mathematical proof</td>
<td>318</td>
</tr>
<tr>
<td>Yusuke Shinno, Takeshi Miyakawa, Tatsuya Mizoguchi, Hiroaki Hamanaka and Susumu Kunimune</td>
<td></td>
</tr>
<tr>
<td>Planning for mathematical reasoning Surprising challenges in a design process</td>
<td>326</td>
</tr>
<tr>
<td>Helén Sterner</td>
<td></td>
</tr>
<tr>
<td>Metacognitive activities of pre-service teachers in proving processes</td>
<td>328</td>
</tr>
<tr>
<td>Nele Stubbemann and Christine Knipping</td>
<td></td>
</tr>
<tr>
<td>Features of mathematics teacher argumentation in classroom</td>
<td>336</td>
</tr>
<tr>
<td>Jorge A. Toro and Walter F. Castro</td>
<td></td>
</tr>
<tr>
<td>Beyond direct proof in the approach to the culture of theorems: a case study on 10th grade students’ difficulties and potential</td>
<td>338</td>
</tr>
<tr>
<td>Fiorenza Turiano and Paolo Boero</td>
<td></td>
</tr>
<tr>
<td>Identifying key ideas in proof: the case of the irrationality of √k</td>
<td>346</td>
</tr>
<tr>
<td>Xiaoheng (Kitty) Yan and Gila Hanna</td>
<td></td>
</tr>
<tr>
<td>TWG02: Arithmetic and number systems</td>
<td>354</td>
</tr>
<tr>
<td>Introduction to the work of TWG 2: Arithmetic and number systems</td>
<td>355</td>
</tr>
<tr>
<td>Elisabeth Rathgeb-Schnierer, Renata Carvalho, Beatriz Vargas Dorneles and Judy Sayers</td>
<td></td>
</tr>
<tr>
<td>Use of conceptual metaphors in the development of number sense in the first years of mathematical learning</td>
<td>359</td>
</tr>
<tr>
<td>Natividad Adamuz-Povedano, Elvira Fernández-Ahumada, Teresa Garcia-Pérez and Rafael Bracho-López</td>
<td></td>
</tr>
<tr>
<td>Development of an intervention program in counting principles for first-grade students - Pilot study</td>
<td>367</td>
</tr>
<tr>
<td>Évelin Assis and Luciana Vellinho Corso</td>
<td></td>
</tr>
<tr>
<td>Intervention in counting principles with first-grade students</td>
<td>369</td>
</tr>
<tr>
<td>Évelin Assis and Luciana Vellinho Corso</td>
<td></td>
</tr>
<tr>
<td>Design of a board game around the notion of fractions</td>
<td>377</td>
</tr>
<tr>
<td>Alix Boissière</td>
<td></td>
</tr>
<tr>
<td>Exploring students adaptive use of domain specific knowledge</td>
<td>379</td>
</tr>
<tr>
<td>Joana Brocardo, Catarina Delgado, Fátima Mendes, Jean Marie Kraemer</td>
<td></td>
</tr>
<tr>
<td>Mental computation: An opportunity to develop students’ strategies in rational number division</td>
<td>387</td>
</tr>
<tr>
<td>Renata Carvalho and João Pedro da Ponte</td>
<td></td>
</tr>
<tr>
<td>Intervention in counting principles: teachers’ perceptions on students learning profile</td>
<td>395</td>
</tr>
<tr>
<td>Luciana Vellinho Corso and Évelin Assis</td>
<td></td>
</tr>
<tr>
<td>Teaching and learning decimal numbers: the role of numeration units</td>
<td>403</td>
</tr>
<tr>
<td>Lalina Coulange and Grégory Train</td>
<td></td>
</tr>
</tbody>
</table>
The offer of tasks to work on multiplication in grades 2 and 3
 Sandra Gleißberg and Klaus-Peter Eichler

Considerations on developmental stage models, learning trajectories and maybe
to guide early arithmetic instruction
 Michael Gaidoschik

Rational number operations: What understandings do children demonstrate?
 Sofia Graça, João Pedro da Ponte and António Guerreiro

Pairing numbers: An unconventional way of evaluating arithmetic expressions
 Robert Gunnarsson and Ioannis Papadopoulos

Interactions between pupils’ actions and manipulative characteristics when solving an
arithmetical task
 Doris Jeannotte and Claudia Corriveau

An analysis of understanding the algebraic structure in school mathematics: focusing
on the extension of number sets
 Kazuhiro Kurihara

Strategy choices and formal algorithms: A mixed methods study
 Ems Lord and Andreas J. Stylianides

Number line estimation and quantitative reasoning: two important skills for
mathematical achievement
 Camila Peres Nogues and Beatriz Vargas Dorneles

Mental calculations with rational numbers across educational levels
 Ioannis Papadopoulos, Styliani Panagiotopoulou and Michail Karakostas

Students ability to compare fractions related to proficiency in the four operations
 Pernille Ladegaard Pedersen and Peter Sunde

Flexible mental calculation skills of freshmen and graduates
 Charlotte Rechtsteiner

A tool to evaluate students’ performance in solving fraction word problems
 Maria T. Sanz Garcia, Olímpia Figueras, and Bernardo Gómez

Development and variance components in single-digit addition strategies in year one
 Pernille B. Sunde, and Peter Sunde

Learning fractions using a teaching model designed with applets and the number line:
The cases of Alvaro and Fernanda
 Carlos Valenzuela Garcia, and Olímpia Figueras

Reflecting on a series of studies on conceptual and procedural knowledge of fractions:
Theoretical, methodological and educational considerations
 Xenia Vamvakoussi, Maria Bempeni, Stavroulia Poulopoulou and Ioanna Tsiplaki

Metacognition in non-routine problem solving process of year 6 children
 Aikaterini Vissariou and Despina Desli

TWG03: Algebraic Thinking

Algebraic Thinking
 Maria Chimoni, Dave Hewitt, Reinhard Oldenburg, and Heidi Strømskag
Teachers Conceptions of Algebra and Knowledge of Task Purposes
Burcu Alapala and Isil Isler-Baykal

Strategies exhibited by good and average solvers of geometric pattern problems as source of traits of mathematical giftedness in grades 4-6
Eva Arbona, María José Beltrán-Meneu and Ángel Gutiérrez

Investigating early algebraic thinking abilities: a path model
Maria Chimoni, Demetra Pitta-Pantazi and Constantinos Christou

Students expected engagement with algebra based on an analysis of exams in Norway from 1995 till 2018
James Gray, Bodil Kleve and Helga Kufaas Tellefsen

Never carry out any arithmetic: the importance of structure in developing algebraic thinking
Dave Hewitt

Algebraic thinking in the shadow of programming
Cecilia Kilhamn and Kajsa Bråting

Linear figural patterns as a teaching tool for preservice elementary teachers the role of symbolic expressions
Iveta Kohanová and Trygve Solstad

Graphing formulas to give meaning to algebraic formulas
Peter Kop, Fred Janssen, Paul Drijvers and Jan van Driel

Relational thinking and operating on unknown quantities. A study with 5 to 10 years old children
Denise Lenz

Enhancing students’ generalizations: a case of abductive reasoning
Joana Mata-Pereira1 and João Pedro da Ponte2

Body Motion and Early Algebra
Ricardo Nemirovsky, Natividad Adamuz-Povedano, Francesca Ferrara, and Giulia Ferrari

Color-coding as a means to support flexibility in pattern generalization tasks
Per Nilsson and Andreas Eckert

A classification scheme for variables
Reinhard Oldenburg

Transforming equations equivalently? theoretical considerations of equivalent transformations of equations
Norbert Oleksik

How students in 5th and 8th grade in Norway understand the equal sign
Hilde Opsal

Fifth-grade students solving linear equations supported by physical experiences
Mara Otten, Marja van den Heuvel-Panhuizen, Michiel Veldhuis and Aiso Heinze
Representational variation among elementary school students. A study within a functional approach to early algebra

Eder Pinto, Bárbara M. Brizuela, and María C. Cañadas

Unpacking 9th grade students algebraic thinking

Marios Pittalis and Ioannis Zacharias

Portuguese and Spanish prospective teachers functional thinking on geometric patterns

Irene Polo-Blanco, Hélia Oliveira and Ana Henriques

When a number moves across, it changes its sign Investigating Teachers’ Conceptual Understanding of Algebra

Mark Prendergast, Aoibhinn Ní Shúilleabháin, Paul Grimes and Niamh O’Meara

Dealing with quantitative difference: A study with second graders

Margarida Rodrigues and Lurdes Serrazina

Short note on algebraic notations: First encounter with letter variables in primary school

Anna Susanne Steinweg

Structures identified by second graders in a teaching experiment in a functional approach to early algebra

Maria D. Torres, María C. Cañadas and Antonio Moreno

Comparing the structure of algorithms: The case of long division and log division

Christof Weber

Relationships between procedural fluency and conceptual understanding in algebra for postsecondary students

Claire Wladis, Jay Verkuilen, Sydne McCluskey, Kathleen Offenholley, Dale Dawes, Susan Licwinko and Jae Ki Lee

Forming basic conceptions in dealing with quadratic equations

Alexander Wolff

Provoking students to solve equations in a content-oriented fashion and not using routines by solving slightly modified standard tasks

Simon Zell

TWG04: Geometry Teaching and Learning

Introduction to the papers of TWG04: Geometry Teaching and Learning

Keith Jones, Michela Maschietto, Joris Mithalal-Le Doze and Chrysi Papadaki

A computer-based environment for argumenting and proving in geometry

Giovannina Albano, Umberto Dello Iacono and Maria Alessandra Mariotti

The evolution of 9-year-old students’ understanding of the relationships among geometrical shapes

Melania Bernabeu, Salvador Llinares and Mar Moreno

Measuring area on the geoboard focusing on using flexible strategies

Øyvind Jacobsen Bjørkås and Marja van den Heuvel-Panhuizen

Justifying geometrical generalizations in elementary school preservice teacher education

Lina Brunheira and João Pedro da Ponte
Professional actions of novice teachers in the context of teaching and learning geometry
Caroline Bulf

A model of the instrumentation process in dynamic geometry
Madona Chartouny, Iman Osta and Nawal Abou Raad

Spatial structuring in early years
Joana Conceição and Margarida Rodrigues

The development of geometrical knowledge starting from arts education
Catarina Delgado, Fátima Mendes and Filipe Fialho

“Going straight”: discussions and experience at primary school
Maria Elena Favilla, Maria Luppi and Michela Maschietto

Mathematical creativity and geometry: The influence of geometrical figure apprehension on the production of multiple solutions
Panagiotis Gridos, Athanasios Gagatsis, Iliada Elia and Eleni Deliyianni

In-service teachers’ conceptions of parallelogram definitions
Aehsan Haj Yahya, Wajeeh Daher and Osama Swidan

Children’s use of spatial skills in solving two map-reading tasks in real space
Cathleen Heil

A step in the development of an evidence based learning progression for geometric reasoning: focus on shape and angle
Marj Horne and Rebecca Seah

Task design with DGEs: The case of students’ counterexamples
Keith Jones and Kotaro Komatsu

The connection between angle measure and the understanding of sine
Valentin Katter

To figure out more than a solution to a geometric problem: What do prospective teachers?
Fátima Mendes, Ana Maria Boavida, Joana Brocardo and Catarina Delgado

Personal geometrical work of pre-service teachers: a case study based on the theory of Mathematical Working Spaces
Alain Kuzniak and Assia Nechache

Students’ reasons for introducing auxiliary lines in proving situations
Alik Palatnik and Tommy Dreyfus

Construction of triangles: some misconceptions and difficulties
Paula Vieira da Silva and Leonor Santos

Grade 3/4 students’ understanding of geometrical objects: Australian case studies on (mis)conceptions of cubes
Ann Downton, Sharyn Livy and Simone Reinhold
TWG05: Probability and Statistics Education

Introduction to the work of TWG5: Probability and Statistics Education

Formalizing students informal statistical reasoning on real data: Using Gapminder to follow the cycle of inquiry and visual analyses

Martin Andre, Zsolt Lavicza and Theodosia Prodromou

Design of statistics learning environments

Dani Ben-Zvi, Koeno Gravemeijer and Janet Ainley

Informal statistical inference and permutation tests

Øyvind Jacobsen Bjørkås, Kjetil B. Halvorsen and Dag Oskar Madsen

Unravelling teachers’ strategies when interpreting histograms: an eyetracking study

Lonneke Boels, Arthur Bakker and Paul Drijvers

The importance of high-level tasks in the access of statistical errors: A study with future teachers of the first years

Ana Caseiro, Ricardo Machado and Tiago Tempera

Design principles for short informal statistical inferences activities for primary education

Arjen de Vetten, Aisling Leavy and Ronald Keijzer

Chilean primary school difficulties in building bar graphs

Danilo Díaz-Levicoy and Pedro Arteaga

How Realistic Mathematics Education approach influences 6th grade students’ statistical thinking

Bedriye Doluzengin and Sibel Kazak

Repurpose and extend: making a model statistical

Michal Dvir and Dani Ben-Zvi

The role of decision-making in the legitimation of probability and statistics in Chilean upper secondary school curriculum

Raimundo Elicer

The challenge of constructing statistically worthwhile questions

Daniel Frischemeier and Aisling M. Leavy

Investigating teachers’ pedagogical content knowledge for statistical reasoning via the real life problem scenario

Rukiye Gökce and Sibel Kazak

It’s a good score! Just looks low: Using data-driven argumentation to engage students in reasoning about and modelling variability

Orlando González and Somchai Chitmun

Prospective teachers’ interdisciplinary learning scenario to promote students’ statistical reasoning

Ana Henriques, Hélia Oliveira and Mónica Baptista

The development of a domain map in probability for teacher education

Judith Huget
Testing the negative recency effect among teacher students trying to generate random sequences
Olav Gravir Imenes

Statistical Graphs Semiotic Complexity, Purpose and Contexts in Costa Rica
Primary Education Textbooks
Maynor Jiménez-Castro, Pedro Arteaga and Carmen Batanero

Building up students’ data analytics skills to solve real world problems
Sibel Kazak, Taro Fujita and Manoli Pifarre Turmo

Interweaving probability games and other mathematical areas in Tamás Varga’s spirit in Hungary
Anna Kiss

Pitfalls and surprises in probability: The battle against counterintuition
Signe Holm Knudtzon

Why does statistical inference remain difficult? A textbook analysis for the phases of inference
Rüya Gökhan Koçer and Fulya Kula

Young children’s informal statistical inference experiences through constructing a pictograph
Gamze Kurt Birel

What is taught and learnt on confidence interval? A case study
Kyeong-Hwa, Lee, Chang-Geun, Song and Yeong Ok, Chong

Prospective high school teachers’ interpretation of hypothesis tests and confidence intervals
Mª del Mar López-Martín, Carmen Batanero and María M. Gea

Covariational reasoning patterns exhibited by high school students during the implementation of a hypothetical learning trajectory
Miguel Medina, Ernesto Sánchez and Eleazar Silvestre

A Case Study of Teacher Professional Development on Game-Enhanced Statistics Learning in the Early Years of Schooling
Maria Meletiou-Mavrotheris, Efi Paparistodemou, Loucas Tsouccas

The influence of the context of conditional probability problems on probabilistic thinking: A case study with teacher candidates
Beyza Olgun and Mine Isiksal-Bostan

In-service teachers’ design, teaching and reflection on probability
Efi Paparistodemou and Maria Meletiou-Mavrotheris

Connecting context, statistics and software for understanding a randomization test: a case study
Susanne Podworny

Measuring probabilistic reasoning: the development of a brief version of the Probabilistic Reasoning Scale (PRS-B)
Caterina Primi, Maria Anna Donati, Sara Massino
An alternative method to compute confidence intervals for proportion
Antonio Francisco Roldán López de Hierro, María del Mar López-Martín and Carmen Batanero

Primary school students reasoning about and with the median when comparing distributions
Susanne Schnell and Daniel Frischemeier

A case study on design and application of creative tasks for teaching percentage bars and pie charts
Balgeum Song, Kyeong-Hwa Lee and Yeong Ok Chong

Algorithms as a discovery process in frequentist approach to prediction interval
Jannick Trunkenwald and Dominique Laval

The investigative cycle: Developing a model to interpret written statistical reports of pre-service primary school teachers
Francisca Ubilla, Nuria Gorgorió and Montserrat Prat

Introduction of inferential statistics in high school in Hungary
Ódón Vancsó, Peter Fejes-Tóth, and Zsuzsanna Jávnári

TWG06: Applications and modelling

Introduction to the papers of TWG6: Applications and modelling
Berta Barquero, Susana Carreira, Jonas Bergman Årlebäck, Britta Jessen, Katrin Vorhölter, Geoff Wake

The configuration of mathematical modelling activities: a reflection on perspective alignment
Lourdes Almeida and Susana Carreira

Enhancing future teachers’ situation-specific modelling competencies by using staged videos
Alina Alwast and Katrin Vorhölter

An extension of the MAD framework and its possible implication for research
Jonas Bergman Årlebäck and Lluís Albarracin

Simulations and prototypes in mathematical modelling tasks
Ana Margarida Baiao and Susana Carreira

Modelling praxeologies in teacher education: the cake box
Berta Barquero, Marianna Bosch, Floriane Wozniak

Analysis of textbook modelling tasks, in light of a modelling cycle
Ingeborg Katrin Lid Berget

Assessing Teaching Competencies for Mathematical Modelling
Rita Borromeo Ferri

On the positive influence of product-orientation in mathematical modeling: A research proposal
Wolfgang Bock, Martin Bracke, Patrick Capraro and Jean-Marie Lantau
Features of modelling processes of group with visual and analytic mathematical thinking styles
Juhaina Awawdeh Shahbari and Rania Salameh

Professional competencies for teaching mathematical modelling supporting the modelling-specific task competency of prospective teachers in the teaching laboratory
Raphael Wess and Gilbert Greefrath

Horizontal mathematization: a potential lever to overcome obstacles to the teaching of modelling
Sonia Yvain-Prébiski and Aurélie Chesnais

TWG07: Adult Mathematics Education

Introduction to TWG07 Adult Mathematics Education
Kees Hoogland, Beth Kelly and Javier Díez-Palomar

Doing the time in the mathematics class
Catherine Byrne, Brian Bowe and Michael Carr

Numeracy in adult education: discussing related concepts to enrich the Numeracy Assessment Framework
Javier Díez-Palomar, Kees Hoogland and Vincent Geiger

Mathematics and Physics Dialogic Gatherings: Fostering Critical Thinking Among Adult Learners
Javier Díez-Palomar and Evgenia Anagnostopoulou

Using dialogue scenes with adult mathematics learners: Research questions and methods
Graham Griffiths

Reproducing social difference in the concept of numeracy skills
Lisanne Heilmann

Numeracy and mathematics education in vocational education: a literature review, preliminary results
Kees Hoogland, Karen Heinsman and Paul Drijvers

Initiating a Common European Numeracy Framework
Kees Hoogland, Marlies Auer, Javier Díez-Palomar, Niamh O’Meara and Mieke van Groenestijn

What motivates adults to learn mathematics through trade unions in the workplace: social factors and personal feelings
Beth Kelly

Adult learners know more about maths than they think: helping learners to embrace their knowing
John J. Keogh, Theresa Maguire and John O’Donoghue

Numeracy practices in older age
Alina Redmer and Anke Grotlüschen
How theories of language-responsive mathematics can inform teaching designs for vocational mathematics
Lena Wessel

TWG08: Affect and the teaching and learning of mathematics
Introduction to the work of TWG 8: Affect and the teaching and learning of mathematics
Stanislaw Schukajlow, Inés Ma Gómez-Chacón, Çiğdem Haser, Peter Liljedahl, Karen Skilling and Hanna Viitala

Verbal expression of emotions as entry points to examine failure experiences in secondary mathematics: A preliminary study
Lucy Alcântara, Nélia Amado and Susana Carreira

Learning geometry in self-made tutorials: the impact of producing mathematical videos on emotions, motivation and achievement in mathematical learning
Daniel Barton

Adolescents’ Endorsement of Narratives Regarding the Importance of Mathematics: A Dialogic Perspective
Naama Ben-Dor and Einat Heyd-Metzuyanim

Learning styles in mathematics - the strength of the motivational factors at 10th grade Portuguese students
Miguel Figueiredo and Henrique Manuel Guimarães

Undergraduate students’ mindsets in a computer programming mathematical learning environment
Wendy Ann Forbes, Joyce Mgombelo, Sarah Gannon and Chantal Buteau

Situation Specific-Skills Working Backward Reasoning: The Student’s Perceptions and Affect Dimension
Inés M. Gómez-Chacón, Marta Barbero

Teacher-student eye contacts during whole-class instructions and small-group scaffolding: A case study with multiple mobile gaze trackers
Eeva Haataja, Visajaani Salonen, Anu Laine, Miika Toivanen and Markku S. Hannula

Collaborative processes when reasoning creatively about functions
Ellen Kristine Solbørekke Hansen

What can metaphor tasks offer for exploring preservice mathematics teachers beliefs?
Çiğdem Haser

“I don’t like Maths as a subject but I like doing it”: A methodology for understanding mathematical identity
Fionnán Howard, Siún Nic Mhuiri and Maurice O’Reilly

Students’ Engagement in Inquiry-based Learning: Cognition, Behavior and Affect
Styliani K. Kourti

Investigating emotional intensity in mathematics classrooms: an enhanced methodology or affective gimmickry?
Elizabeth Lake
Pupils’ perception of their understanding in mathematics and its connection to private supplementary tutoring

Gabriela Novotná

Reflections on the development and application of an instrument to access mathematical identity

Patricia Eaton, Christine Horn, Elizabeth Oldham and Maurice OReilly

Upper Secondary Mathematics Teachers’ epistemological beliefs concerning the nature of mathematics

Marilena Pantziara, Alexandra Petridou and Marianna Karamanou

Engagement in mathematics through digital interactive storytelling

Giovannina Albano, Anna Pierri and Maria Polo

Self-concept in university mathematics courses

Stefanie Rach, Stefan Ufer and Timo Kosiol

First-person vicarious experiences as a mechanism for belief change

Annette Rouleau, Natalia Ruiz, Cristián Reyes and Peter Liljedahl

I am scared to make a drawing. Students’ anxiety and its relation to the use of drawings, modelling, and gender

Stanislaw Schukajlow, Judith Blomberg, Johanna Rellensmann

Distinguishing engagement from achievement: understanding influential factors for engaged and disengaged low achieving mathematics students

Karen Skilling

Do students perceive mathematics and the mathematical subdomain of functions differently with regard to their self-concept and interest?

Ute Sproesser, Markus Vogel, Tobias Doerfler and Andreas Eichler

How can teachers influence their students’ (mathematical) mindset?

Marloes van Hoeve, Michiel Doorman and Michiel Veldhuis

Low achiever’s mathematical thinking: The case study of Maya

Hanna Viitala

The impact of a mathematics game programming project on student motivation in grade 8

Eline Westerhout, Paul Drijvers and Arthur Bakker

“I want a high-educated job that pays well and is fun”: Secondary students’ relevance beliefs for taking advanced mathematics

Anders Wiik and Pauline Vos

TWG09: Mathematics and Language

Introduction to TWG09: Transforming language-sensitive mathematics education research into papers and posters

Núria Planas, Marie Therese Farrugia, Jenni Ingram and Marcus Schütte

Taking advantage of the different types of mathematical languages to promote students’ meaningful learning

Helen Alfaro Viquez
Adopting a discursive lens to examine functions learning and language use by bilingual undergraduate students
Máire Ní Riordáin and Eílis Flanagan

1722

Specialized language support in mathematics education through the use of radio resources
Franziska Peters

1730

Classroom communication: Defining and characterizing perpendicular lines in high school algebra
Valentina Postelnicu

1738

Disentangling students’ personal repertoires for meaning-making: The case of newly arrived emergent multilingual students
Susanne Prediger, Ángela Uribe, and Taha Kuzu

1746

Preservice teachers’ reflections on language diversity
Toril Eskeland Rangnes and Andrea Synnøve Blomsø Eikset

1754

Sense and reference of signifiers for elements of polygons
Frode Rønning and Heidi Strømskag

1762

Abstract thinking and bilingualism: Impact on learning mathematics
Leila Salekhova and Nail Tuktamishov

1770

Teaching mathematics in an international class: Designing a path towards productive disposition
Marc Sauerwein

1778

Which factors coincide with mathematical learning gains in bilingual classrooms? German language proficiency and mixed language use
Alexander Schüler-Meyer, Susanne Prediger, and Henrike Weinert

1786

Publishing as an English non dominant language author. First results from a survey of support offered by mathematics education journals
Rudolf Sträßer

1794

Variations in students’ reading process when working on mathematics tasks with high demand of reading ability
Frithjof Theens

1802

Generalizing distributive structures in primary school
Annika Umierski and Kerstin Tiedemann

1810

TWG10: Diversity and Mathematics Education: Social, Cultural and Political Challenges

1818

Introduction to the work of TWG10: Diversity and Mathematics Education: Social, Cultural and Political Challenges
Hauke Straehler-Pohl, Anette Bagger, Laura Black, Anna Chronaki and David Kollosche

1819

Construction of Critical Thinking Skills by the infusion approach in Probability and Statistics in Daily Life
Einav Aizikovitsh-Udi
The politics of early assessment in mathematics education
Anette, Helena Vennberg and Lisa Björklund Boistrup

Critical uses of knowledge and identity: Embedded mathematics as a site for/of class struggle in educational praxis
Laura Black, Julian Williams, David Swanson, Sophina Choudry and Emilia Howker

Mathematics education’s solidarity assimilation methodology
Tânia Cabral, Alexandre Pais and Roberto Baldino

Assessing students’ perceptions of democratic practices in the mathematics classroom
Wajeeh Daher

Diversity, inclusion and the question of mathematics teacher education
- How do student teachers reflect a potential-related view?
Timo Dexel, Ralf Benölken and Marcel Veber

A farewell to mathematics: A personal choice or social exclusion?
Oğuzhan Doğan

A call for nuancing the debate on gender, education and mathematics in Norway
Trine Foy

The relevance of mathematics and students’ identities
Andualem Tamiru Gebremichael

Social inequalities in mathematics from a socialization theoretical point of view
- Analysis of problem-solving processes of students
Belgüzar Kara, Bärbel Barzel

Towards guidelines for the analysis of teaching materials in linguistically and culturally diverse mathematics classrooms
David Kollosche

How do we teach mathematics to refugee students? A qualitative study of the teaching and learning of mathematics in International Preparatory Classes
Maike Lüssenhop and Gabriele Kaiser

Using photo-elicitation in early years mathematics research
Dorota Lembrér

Referring and proffering: An unusual take on what school mathematics is about
Jean-François Maheux, Jérôme Proulx, Rox-Anne L’Italien-Bruneau and Marie-Line Lavallée-Lamarche

The contextual power dynamics in defining and utilising problem solving tasks:
A case study at an Egyptian private school
Mariam Makramalla and Andreas J. Stylianides

Discourse of otherness in a Universally Designed undergraduate mathematics course
Juuso Henrik Nieminen

Lávvu and mathematics
Siv Ingrid Nordkild and Ole Einar Hætta
Interdisciplinarity, culturally sustaining pedagogies, and the problem of pandisability as culture: Co-creating diverse mathematics learning contexts
Alexis Padilla and Paulo Tan
1946

The teaching of higher education mathematics by pre-service mathematics teacher educators: How might this contribute to social justice? A consideration of a possible approach
Hilary Povey
1954

The student’s perspective on school mathematics - a case study
Ann-Sofi Röj-Lindberg and Kirsti Hemmi
1962

Agency and identity of female Arab students entering a technological university
Soryna Sabbah and Einat Heyd-Metzuyanim
1970

Students’ experiences of learner autonomy in mathematics classes
Shipra Sachdeva
1978

Locally disrupting institutional racism by enacting mathematics in a U. S. laboratory classroom
Sabrina Bobsin Salazar
1986

Visible pedagogy and challenging inequity in school mathematics
Pete Wright
1994

Real-life mathematics: Politicization of natural life and rethinking the sovereign
Ayşe Yolcu
2002

TWG11: Comparative studies in mathematics education
2010

Thematic working group 11: Comparative studies in mathematics education
Paul Andrews, Eva Jablonka, and Constantinos Xenofontos
2011

Order of factors in multiplying decimal numbers and gender differences: a comparison of tasks
Cascella Clelia and Giberti Chiara
2014

The centrality of the unit of analysis in comparative research in mathematics education: comparing analytical accounts of student collaborative activity in different social groups
David Clarke and Man Ching Esther Chan
2022

Impact of access requirements on the mathematical knowledge of students admitted to Primary Teaching programs: a microcomparative study
Núria Gorgorió, Lluís Albarracin, and Anu
2031

Introduction to early algebra in Estonia, Finland and Sweden some distinctive features identified in textbooks for Grades 1-3
Kirsti Hemmi, Madis Lepik, Lars Madej, Kajsa Bråting and Joakim Smedlund
2039

A preliminary comparison of Chinese and German state mandated curricula for mathematics education (years 1 to 6)
Eva Jablonka
2047

Reform on a shaky ground? A comparison of algebra tasks from TIMSS and Swedish textbooks
Kristina Palm Kaplan
2055
Time series analysis: Moving averages as an approach to analysing textbooks
Jöran Petersson, Judy Sayers and Paul Andrews

A cross-cultural study of curriculum systems: mathematics curriculum reform in the U.S., Finland, Sweden, and Flanders
Hendrik Van Steenbrugge, Heidi Krzywacki, Janine Remillard, Tuula Koljonen, Rowan Machalow and Kirsti Hemmi

The use of problem in upper-primary and lower-secondary textbooks of the Republic of Cyprus
Constantinos Xenofontos

A cross-cultural comparative study into teachers questioning patterns in lower secondary mathematics lessons in the UK and China
Wenping Zhang and David Wray

TWG12: History in Mathematics Education

Introduction to the papers of TWG12: History in Mathematics Education
Renaud Chorlay, Aline Bernardes, Tanja Hamann and Antonio Oler-Marcén

Generalizing a 16th century arithmetic problem with prospective Secondary education teachers
Álvaro Barreras and Antonio M. Oller-Marcén

On the didactical function of some items from the history of calculus
Stephan Berendonk

Justifying a calculation technique in years 3 and 6
Renaud Chorlay

New Math at primary schools in West Germany a theoretical framework for the description of educational reforms
Tanja Hamann

Relevance of mathematics journals for Dutch teachers in the 18th and 19th century
Jeneneke Krüger

Semiotic potential of a tractional machine: a first analysis
Michela Maschietto, Pietro Milici and Dominique Tournès

On the historical development of algorithms - hidden in technical devices?
Regina Möller and Peter Collignon

Historical tasks to foster problematization
Bruna Moustapha-Corrêa Aline Bernardes and Victor Giraldo

The development of Thales theorem throughout history
Slim MRABET

Original sources, ICT and mathemacy
Marianne Thomsen and Inge Marie Olsen

Rizanesander’s Recknekonsten or “The art of arithmetic” - the oldest known textbook of mathematics in Swedish
Reza Russell Hatami and Johanna Pejlare
I Spy with my Little Eye – Teachers’ linkages about historical snippets in textbooks
Sebastian Schorcht

Exams in calculations/mathematics in Norway 1946 2017 content and form
Bjørn Smestad and Aina Fossum

History of mathematics in Dutch teacher training
Desiree van den Bogaart-Agterberg

History of mathematics and current developments in education
Ysette Weiss and Rainer Kaenders

Lucas Bunt and the rise of statistics education in the Netherlands
Bert Zwaneveld and Dirk De Bock

TWG13: Early Years Mathematics

Early Years Mathematics: Introduction to TWG 13
Ingvald Erfjord, Bozena Maj-Tatsis, Esther Levenson, Priska Sprenger and Marianna Tzekaki

Pips (times) Pods: Dancing towards multiplicative thinking
Sandy Bakos and Nathalie Sinclair

Framework for analysing children s ways of experiencing numbers
Camilla Björklund and Ulla Runesson Kempe

Pre-schoolers ability to synchronise multiple representations of numerosity in embodiment of a counting-on-strategy
Morten Bjørnebye

Development of strategies for a combinatorial task by a 5 year old child
Kerstin Bräuning

Kindergarten teachers’ orchestration of mathematical learning activities: the balance between freedom and structure
Svanhild Breive

Creative processes of one primary school child working on an open-ended task
Svenja Bruhn

Characterising the mathematical discourse in a kindergarten
Ingvald Erfjord, Martin Carlsen, and Per Sigurd Hundeland

Paper plate patterns: teachers developing patterning in pre-school
Sue Gifford and Helen Thouless

Investigating mediation strategies used by early years mathematics teachers in Malawi
Fraser Gobede

Developing mathematical literacy in an inquiry-based setting working with play-coins in a second-grade classroom
Benedikte Grimeland and Svein Arne Sikko

Student teachers’ definitions of the concept teaching mathematics in preschool
Maria Johansson, Timo Tossavainen, Ewa-Charlotte Faarinen, and Anne Tossavainen
Using finger patterns - the case of communicating age
 Miriam M. Lüken

Evidence of relational thinking at kindergarten level
 Andrea Maffia and Simona Mancarella

Task characteristics that promote mathematical reasoning among young students:
 An exploratory case study
 Bozena Maj-Tatsis and Konstantinos Tatsis

Exploring how primary teacher education prepares pre-service teachers to teach early years Mathematics
 Justina Longwe Mandala

Preschool children’s understanding of length and area measurement in Japan
 Nanae Matsuo and Nagisa Nakawa

The use of structure as a matter of language
 Lara Müller and Kerstin Tiedemann

Children’s use of mathematical language
 Beate Nergård

Fostering children’s repeating pattern competencies by physical activity
 Kathrin Nordemann and Thomas Rottmann

Toddlers exploring structural elements in play
 Hanna Palmér and Camilla Björklund

What can five-, six- and seven-year-olds tell us about the transition from mathematics in kindergarten to that in school in Norway?
 Geir Olaf Pettersen and Monica Volden

Inquiry-based implementation of a mathematical activity in a kindergarten classroom
 Chrysanthi Skoumpourdi

Perceiving and using structures in sets the contribution of eye-tracking in a three-level evaluation process
 Priska Sprenger and Christiane Benz

Construction of scientific basis for pre-school teacher education
 Christina Svensson

Shedding light on preschool teachers’ self-efficacy for teaching patterning
 Pessia Tsamir, Dina Tirosk, Esther Levenson, Ruthi Barkai

Generalization in early arithmetic
 Marianna Tzekaki and Evaggelia Papadopoulou

Characterisation of the learning trajectory of children aged six to eight years old when acquiring the notion of length measurement
 Yuly Vanegas, Montserrat Prat and Alba Rubio

Chances and obstacles of ‘indirect’ learning processes in situations with preschool teachers
 Anna-Marietha Vogler
Developing a social training of spatial perception and spatial cognition
Martina Wernicke, Jasmin Kizilirmak, Barbara Schmidt-Thieme and
Kristian Folta-Schoofs

TWG14: University Mathematics Education

Introduction to the papers of TWG14: University Mathematics Education
Alejandro S. González-Martín, Irene Biza, Jason Cooper, Imène Ghedamsi,
Ghislaine Gueudet, Vilma Mesa, Alon Pinto and Olov Viirman

How Lisa’s mathematical reasoning evolved at undergraduate level on the role of
metacognition and mathematical foundation
Aaltje Berendina Aaten, Gerrit Roorda, Johan Deprez and Martin Goedhart

Students’ conceptions of the definite integral in the first year of studying
science at university
Inen Akrouti

The transition from high school to university mathematics: the effect of
institutional issues on students’ initiation into a new practice of studying mathematics
Amalia-Christina Bampili, Theodossios Zachariades and Charalampos Sakonidis

Students’ understanding of the interplay between geometry and algebra
in multidimensional analysis: representations of curves and surfaces
Matija Bašić and Željka Milin Šipuš

Understanding the secondary-tertiary transition in mathematics education:
contribution of theories to interpreting empirical data
Christer Bergsten and Eva Jablonka

External Didactic Transposition in Undergraduate Mathematics
Marianna Bosch, Thomas Hausberger, Reinhard Hochmuth and Carl Winsløw

Students’ difficulties to learn derivatives in the Tunisian context
Rahma Bouguerra

The integration of digital resources into teaching and learning practices of the
derivative concept
Danilo Christo and Sonia Igliori

Restoried narratives on the agency and disputes of mathematicians and mathematics
educators in the education of mathematics teachers
Cleber Dias da Costa Neto, Victor Giraldo and Elena Nardi

Evaluation of a connecting teaching format in teacher education
Andreas Datzmann and Matthias Brandl

Students difficulties at the secondary-tertiary transition: the case of random variables
Camille Doukhan and Ghislaine Gueudet

Participation of female students in undergraduate Mathematics at the
University of Malawi
Levis Eneya, Lisnet Mwadzaangati and Mercy Kazima

Supporting the use of study skills in large mathematics service courses to
enhance students’ success - one example
Frank Feudel and Hans M. Dietz
Digital learning materials in traditional lectures and their evaluation at the example of a voluntary pre-university bridging course

Yael Fleischmann, Tobias Mai, Rolf Biehler and Alexander Gold

Study and research paths at university level: managing, analysing and institutionalizing knowledge

Ignasi Florensa, Berta Barquero, Marianna Bosch and Josep Gascón

Two situations for working key properties of R

Macarena Flores González, Alain Kuzniak, Elizabeth Montoya Delgadillo and Laurent Vivier

To whom do we speak when we teach proofs?

Mika Gabel and Tommy Dreyfus

Towards an interplay between TDS and ATD in a Design-Based Research project at the entrance to the university

Imène Ghedamsi and Thomas Lecorre

The graph of a function and its antiderivative: a praxeological analysis in the context of Mechanics of Solids for engineering

Alejandro S. González-Martín and Gisela Hernandes-Gomes

Calculus students’ difficulties with logical reasoning

Gabriel Herrera Alva, Antonio Rivera Figueroa and Kinhia Aguirre-De la Luz

The VEMINT-Test: Underlying Design Principles and Empirical Validation

Reinhard Hochmuth, Marcel Schaub, Andreas Seifert, Regina Bruder and Rolf Biehler

An exploration of the relationship between continuous assessment and resource use in a service mathematics module

Emma Howard, Maria Meehan and Andrew Parnell

How to assess students learning in mathematics literacy education: An attempt to use students’ comments for assessment

Mitsuru Kawazoe

On tasks that lead to praxeologies formation: a case in vector calculus

Margo Kondratieva

What can be ‘annoying’ about mathematical conventions? Analysing post-exchanges of mathematically competent discursants

Igor’ Kontorovich

Beliefs about learning attributed to recognized college mathematics instructors

Valentin A. B. Küchle and Shiv S. Karunakaran

Features of innovative lectures that distinguish them from traditional lectures and their evaluation by attending students

Christiane Kuklinski, Michael Liebendörfer, Reinhard Hochmuth, Rolf Biehler, Niclas Schaper, Elisa Lankeit, Elena Leis and Mirko Schürrmann

Students’ work with a task about logical relations between various concepts of multidimensional differentiability

Elisa Lankeit and Rolf Biehler
Teaching of discontinuous functions of one or two variables: A didactic experience using problem posing and levels of cognitive demand

Uldarico Malaspina and Carlos Torres

Identifying sense-making in algebra instruction at U.S. post-secondary colleges

Angeliki Mali, Anne Cowley, Irene Duranczyk, Vilma Mesa, April Ström and Laura Watkins

From university mathematics students to postsecondary teachers

Sarah Mathieu-Soucy, Claudia Corriveau and Nadia Hardy

The structure of EQIPM, a video coding protocol to assess the quality of community college algebra instruction

Vilma Mesa, Irene Duranczyk, Laura Watkins and the AI@CC Research group

University Student Use of Dynamic Textbooks: An Exploratory Analysis

Vilma Mesa, Angeliki Mali and Elena Castro-Rodriguez

An exploratory study of calculus students’ understanding of multivariable optimization problems

Thembinkosi P. Mkhatshwa

Towards a better understanding of engineering students use and orchestration of resources: Actual Student Study Paths

Birgit Pepin and Zeger-Jan Kock

Conceptualising knowledge of mathematical concepts or procedures for diagnostic and supporting measures at university entry level

Guido Pinkernell

Formative assessment of proof comprehension in undergraduate mathematics: Affordances of iterative lecturer feedback

Alon Pinto and Jason Cooper

Relations between academic knowledge and knowledge taught in secondary education: Klein’s second discontinuity in the case of the integral

Gaëtan Planchon

Theorizing coordination and the role of course coordinators

Chris Rasmussen, Jessica E. Hagman and Naneh Apkarian

OPTES+ A Mathematical Bridging Course for Engineers

Anna-Katharina Roos, Gerhard Götz, Hans-Georg Weigand and Jan Franz Wörler

The connectivity in resources for student-engineers: the case of resources for teaching sequences

Hussein Sabra

TWG15: Teaching Mathematics with Technology and Other Resources

Introduction to the papers of TWG15: Teaching Mathematics with Technology and Other Resources

Alison Clark-Wilson, Ornella Robutti, Melih Turgut and Iveta Kohanová

Teachers’ strategic choices when implementing technology

Henrik P. Bang, Niels Grønbæk and Claus R. Larsen
Turning dilate from point tool into part of an instrument: an example of a preservice mathematics teacher working on a dynamic geometry system

Gulay Bozkurt, Candas Uygan and Melih Turgut

Towards linking teaching, technology and textbooks

Maike Braukmüller, Angelika Bikner-Ahsbahs and Dirk F. Wenderoth

Project in preparation - Connected classroom technology (CCT) to enhance formative assessment in mathematics education

Mats Brunström and Maria Fahlgren

Key Factors for Successfully Embedding a Programming Approach to the Primary Maths Curriculum at Scale

Alison Clark-Wilson, Richard Noss, Celia Hoyles, Piers Saunders and Laura Benton

The co-design of a c-book by students and teachers as a process of meaning generation: The case of co-variation

Dimitris Diamantidis, Chronis Kynigos, Ioannis Papadopoulos

Addressing the problem of digital tools with digital methods

Jonas Dreyøe

The forgotten technology. Teachers use of mini white-boards to engage students

Thomas F. Eidissen, Karen Bjerkeli, and Ove Gunnar Drageset

Investigating similar triangles using student-produced videos

Anders Støle Fidje and Ingvald Erfjord

Silent video tasks: Towards a definition

Bjarnheiður (Bea) Kristinsdóttir, Freyja Hreinsdóttir and Zsolt Lavicza

A new era of manipulatives: making your own resources with 3D printing and other technologies

Diego Lieban, Eva Ulbrich, Marina Menna Barreto and Zsolt Lavicza

Surveying teachers’ conception of programming as a mathematics topic following the implementation of a new mathematics curriculum

Morten Misfeldt, Attila Szabo and Ola Helenius

Designing an problem for learning mathematics with programming

Morten Munthe

Developing MAP for integrating mathematical applets in teaching sequence

Gal Nakash-Stern and Anat Cohen

The impact of technology on the teachers’ use of different representations

Helena Rocha

An overview of gamification and gamified educational platforms for mathematics teaching

Cecilia Russo and Zsolt Lavicza

Professional development through a web-based portal: The progress of mathematics teachers teaching algebra based on hypothetical learning trajectories

Dilek Tanışlı, Nilüfer Köse and Melih Turgut
Self-efficacy the final obstacle on our way to teaching mathematics with technology?
Daniel Thurm and Bärbel Barzel

How to distinguish simulations? Development of a classification scheme for digital simulations for teaching and learning mathematics
Jan Franz Wörler

Mathematical practices of teachers in technology-enhanced classrooms: A case of teaching slope concept
Seçil Yemen Karpuzcu and Mine İskısal Bostan

TWG16: Learning Mathematics with Technology and Other Resources

Introduction to the papers of TWG16: Learning Mathematics
Hans-Georg Weigand, Nathalie Sinclair, Ana Donevska-Todorova, Eleonora Faggiano, Eirini Geraniou, Osama Swidan

Desirable difficulties while learning mathematics: Interleaved practice based on e-learning
Maria Afrooz and Rita Borromeo Ferri

Types of graphic interface design and their role in learning via mathematical applets at the elementary school
Eitan Ben-Haim, Anat Cohen and Michal Tabach

Meanings in Mathematics: using Internet Memes and Augmented Reality to promote mathematical discourse
Giulia Bini, Ornella Robutti

Students Process and Strategies as They Program for Mathematical Investigations and Applications
Chantal Buteau, Eric Muller, Kirstin Dreise, Joyce Mgombelo, and Ana Isabel Sacristán

Big events in Mathematics using math trails
Amélia Caldeira, Ana Moura and Christian Mercat

Multiplicative reasoning through two-handed gestures
Sean Chorney, Canan Gunes and Nathalie Sinclair

Physical and virtual classroom in the learning of mathematics: analysis of two episodes
Agnese Del Zozzo and George Santi

Design of a multi-dimensional instrument for reviewing the quality of apps for elementary geometry
Ana Donevska-Todorova and Katja Eilerts

Student engagement in mobile learning activities: breakdowns and breakthroughs
Khrisitin Fabian

A picture is worth a thousand words: visualizing collaboration through gaze synchrony graphs
Enrique Garcia Moreno-Esteva, Jessica F. A. Salminen-Saari, Miika Toivanen & Markku S. Hannula
University students’ engagement with an asynchronous online course on digital technologies for mathematical learning
Eirini Geraniou and Cosette Crisan

Dynamic vs. static! Different visualisations to conceptualize parameters of quadratic functions
Lisa Göbel and Bärbel Barzel

The effect of digital tools on visual attention during problem solving: Variance of gaze fixations when working with GeoGebra or on paper
Markku S. Hannula and Miika Toivanen

An Exploration of the effect of Bray’s Activity Design Heuristics on Students’ Learning of Transformation Geometry
Aoife Harrison, Aibhín Bray and Brendan Tangney

Didactical resource purposes as an aspect of students’ decision making regarding resources used to learn mathematics
Eivind Hillesund

Guidelines for design of didactic sequences utilizing dynamic geometry affordances related to mathematical reasoning competency
Ingi Heinesen Højsted

Issues in modelling terms involving subtraction in a manipulative environment for linear equations and a possible solution
Thomas Janßen, David Reid & Angelika Bikner-Ahsbahs

Exploring with digital media to understand trigonometric functions through periodicity
Myrto Karavakou, Chronis Kynigos

Moving fingers and the density of rational numbers: An inclusive materialist approach to digital technology in the classroom
Doyen Kim and Oh Nam Kwon

Investigating students use of dynamic materials addressing conceptions related to functional thinking
Edith Lindenbauer

A virtual environment dedicated to spatial geometry to help students to see better in space
Xavier Nicolas and Jana Trgalova

Students perceptions in a situation regarding eigenvalues and eigenvectors
José Orozco-Santiago, Carlos-Armando Cuevas and Luc Trouche

Why digital tools may (not) help by learning about graphs in dynamics events?
Sonia Palha

Learning environments applying digital learning tools to support argumentation skills in primary school: first insights into the project
Melanie Platz

Digital media support functional thinking: How a digital self-assessment tool can help learners to grasp the concept of function
Hana Ruchniewicz and Bärbel Barzel
Exploring pre-calculus with augmented reality. A design-based-research approach
Florian Schacht and Osama Swidan
2925

Exploring critical aspects of students’ mathematics learning in technology-enhanced and student-led flipped learning environments
Stefanie Schallert and Robert Weinhandl
2933

Practicing place value: How children interpret and use virtual representations and features
Axel Schulz and Daniel Walter
2941

Exploring non-prototypical configurations of equivalent areas through inquiring-game activities within DGE
Carlotta Soldano and Cristina Sabena
2949

The graphing calculator as an instrument of semiotic mediation in the construction of the function concept
Manuela Subtil and António Domingos
2957

Drawing topology using Ariadne
Moritz L. Sümmermann
2959

Semiotic analysis of modelling activities in a rich-digital environment
Osama Swidan and Eleonora Faggiano
2961

Automated feedback on the structure of hypothesis tests
Sietske Tacoma, Bastiaan Heeren, Johan Jeuring and Paul Drijvers
2969

Problem-solving techniques in the context of an educational video game: the Mudwall puzzle in Zoombinis
Georgios Thoma and Irene Biza
2977

Repeated sampling in a digital environment: A remix of data and chance
Marianne van Dijke-Droogers, Paul Drijvers and Arthur Bakker
2985

Reflections on item characteristics of non-routine items in diagnostic digital assessment
Irene van Stiphout and Madelon Groenheiden
2993

Role of tablets in teaching and learning mathematics
Fabrice Vandebrouck and Barbara Jaworski
3001

The long-term effects of MathCityMap on the performance of German 15 year old students concerning cylindric tasks
Joerg Zender and Matthias Ludwig
3003

Exploring the role of context in students meaning making for algebraic generalization
Angela Zoupa and Giorgos Psycharis
3011

TWG17: Theoretical Perspectives and Approaches in Mathematics Education Research
3019

Introduction to the Thematic Working Group 17 on Theoretical Perspectives and Approaches in Mathematics Education Research of CERME11
Angelika Bikner-Ahsbahs, Arthur Bakker, Heather Lynn Johnson, Man Ching Esther Chan
3020
Comparing a priori analyses

Ivy Kidron

Rethinking the connection between theory and methodology: a question of mutual affordances

Man Ching Esther Chan, David Clarke

Boundary crossing by design(ing): a design principle for linking mathematics and mathematics education in preservice teacher training

Erik Hanke, Angelika Bikner-Ahsbahs

How concepts turn into objects: an investigation of the process of objectification in early numerical discourse

Felix Lensing

On the epistemology of the Theory of Objectification

Luis Radford

An epistemological and philosophical perspective on the question of mathematical work in the Mathematical Working Space theory

Alain Kuzniak, Laurent Vivier

A phenomenological methodology based on Husserl’s work in the service of mathematics education research

Andonis Zagorianakos

Creating art laboratory settings and experiencing mathematical thinking: towards a philosophical dimension in mathematics education research

Cláudia Regina Flores

Networking theories in design research: an embodied instrumentation case study in trigonometry

Rosa Alberto, Arthur Bakker, Oia Walker-van Aalst, Peter Boon, Paul Drijvers

Generativity in design research: the case of developing a genre of action-based mathematics learning activities

Arthur Bakker, Anna Shvarts, Dor Abrahamson

Theory, methodology and design as an insightful bundle: a case of dual eye-tracking student-tutor collaboration on an embodied mathematical task

Anna Shvarts

Assembling mathematical concepts through trans-individual coordinated movements: the role of affect and sympathy

Elizabeth de Freitas, Francesca Ferrara, Giulia Ferrari

Locally integrating theories to investigate students’ transfer of mathematical reasoning

Heather Lynn Johnson, Evan McClintock, Amber Gardner

Epistemological and methodological foundations of creating a learning trajectory of children’s mathematics

Nicole L. Fonger, Amy Ellis, Muhammed F. Dogan
Conceiving teaching trajectories in the form of series of problems: a step for the theoretical reconstruction of the Hungarian Guided Discovery approach

Katalin Gosztonyi

Students’ learning paths about ratio and proportion in geometry: an analysis using Peirce’s theory of signs

Georgia Bampatsikou, Triandafillos A. Triandafillidis, Stefanos Asimopoulos, Kostas Hatzikiakou

Connected Working Spaces: the case of computer programming in mathematics education

Jean-baptiste Lagrange, Dominique Laval

Multi-theoretical approach when researching mathematics teachers’ professional development in selforganized online groups

Yvonne Liljekvist, Jorryt van Bommel, Ann-Christin Randahl, Christina Olin-Scheller

Extending Yackel and Cobb’s socio-mathematical norms to ill-structured problems in an inquiry-based classroom

Katie Makar, Jill Fielding-Wells

Understanding powers – individual concepts and common misconceptions

Christos Itsios, Bärbel Barzel

Questioning the paradidactic ecology: internationally shared constraints on lesson study?

Koji Otaki, Yukiko Asami-Johansson, Jacob Bahn

TWG18: Mathematics teacher education and professional development

International perspectives on mathematics teacher professional development

Stefan Zehetmeier, João Pedro da Ponte, Laurinda Brown, Àngela Buform, Janne Fauskanger, Marita Friesen, Maria Mellone, Libuse Samkova

Working with example sets: A productive focus in Lesson Study

Jill Adler and Jehad Alshwaikh

Reflections upon a research project seen as a means for teachers’ professional development

Mette Andresen

Portfolios as a way of documenting and reflecting learning processes in a mathematics teachers professional development program

Jennifer Bertram

The story of Maia: I will try to survive!

Annette Hessen Bjerke

Connecting mathematical knowledge with engagement in mathematics teaching practices

Timothy Boerst and Meghan Shaughnessy

High school teacher training challenges in the Italian interdisciplinary project

Liceo Matematico

Laura Branchetti, Roberto Capone, Francesco Saverio Tortoriello
Researching as a mathematics teacher educator: analysing mathematics teachers’ detailed descriptions of first lessons

Laurinda Brown

3221

Using mixed-assessments to evaluate opportunities to learn in mathematics teacher education

Nils Buchholtz, Katrin Vorhölter, Anna Orschulik and Nadine Krosanke

3229

Mathematical knowledge for teaching of a prospective teacher having a progressive incorporation perspective (PIP)

Esla Bukova Güzel, Gülseren Karagöz Akar, Aytuğ Özaltun Çelik, Semiha Kula Ünver, Nurdan Turan

3231

Teachers’ Collaboration in a Mathematics Lesson Study

João Pedro da Ponte and Marisa Quaresma

3239

How to visualize classroom norms through social interaction - A pilot study of two frameworks

Jonas Dahl, Christina Svensson and Richard Wester

3247

Understanding student teachers’ professional development by looking beyond mathematics teacher education

Andreas Ebbelind

3249

Retrospective reflections on ‘Missions’ as pedagogies of practice

Elisabeta Eriksen, Annette Hessen Bjerke, Camilla Rodal and Ida Heiberg Solem

3257

Learning to represent students’ mathematical ideas through teacher time-outs in rehearsals

Janne Fauskanger and Kjersti Wæge

3265

How does the professional vocabulary change when pre-service teachers learn to analyse classroom situations?

Marita Friesen, Carmel Mesiti and Sebastian Kuntze

3273

Prospective mathematics teachers’ interpretative knowledge: focus on the provided feedback

Jeannette Galleguillos and Miguel Ribeiro

3281

Using participant generated influence maps to gain insights into the influences on early career primary teachers’ teaching of mathematics

Alison Godfrey

3289

A zone theory analysis of identity formation in mathematics teacher educators

Merrilyn Goos and Anne Bennison

3297

Analyzing attitude towards learning and teaching mathematics in members of professional learning communities: A case study

Birgit Griese

3305

Math MOOC UniTo & MathCityMap - Exploring the potentials of a review system in a MOOC environment

Iwan Gurjanow, Eugenia Taranto, Matthias Ludwig, Virginia Alberti, Roberta Ferro

3313

Cross-linking maths: Using keynotes to structure a curriculum for future teachers

Tanja Hamann and Barbara Schmidt-Thieme

3321
Teacher education: Developing the individual within the collaborative

Fiona Haniak-Cockerham

3323

Teacher Professional Development and Collegial Learning: A literature review through the lens of Activity System

Frida Harvey and Anna Teledahl

3331

Between natural language and mathematical symbols (<, >, =): the comprehension of pre-service and preschool teachers’ perspective of Numbers and Quantity

Dina Hassidov and Bat-Sheva Ilany

3339

Similarities and differences in problem solving: case of “exhibition grounds”

Radka Havlíčková, David Janda, Derek Pilous and Veronika Tůmová

3347

Formulating our formulations: the emergence of conviction as becoming mathematics teacher educators

Tracy Helliwell and Julian Brown

3349

Tasks Designed for Training Secondary Mathematics Teachers Using Technology

Alexánder Hernández, Josefa Perdomo-Díaz and Matías Camacho-Machín

3357

Opportunities for Adopting a Discourse of Explorations in a Professional Development Setting

Einat Heyd-Metzuyanim and Talli Nachlieli

3362

On the efficiency of a professional development program for mathematics teachers in upper-secondary schools in Iceland

Freyja Hreinsdóttir

3373

Algebraic solutions of German out-of-field elementary school teachers

Lara Huethorst

3375

Mathematics teacher educators’ critical collegueship

Suela Kacerja and Rune Herheim

3384

Prospective Secondary Mathematics Teachers Development of Core-Practices During Methods Courses: Affordances of Quantitative Reasoning

Gülseren Karagöz Akar, Esra Bukova Güzel, Serkan Özel

3392

From judgmental evaluations to productive conversations: Mathematics teachers’ shifts in communication within a video club

Ronnie Karsenty, Yochai Peretz and Einat Heyd-Metzuyanim

3400

Construction of teachers’ roles in collegial discussions

Odd Tore Kaufmann and Andreas Ryve

3408

From instrumental to relational Malawi mathematics teacher educators’ research lessons

Mercy Kazima, Janne Fauskanger and Arne Jakobsen

3416

How can we help teachers using guided discovery method, who have not used it before

Eszter Kovács-Kószó, Katalin Gosztonyi and József Kosztolányi

3424

Diagnostic competence of future primary school teachers hypothesizing about causes of students’ errors

Macarena Larrain

3426
Thinking about Mathematics classroom culture through spontaneous videos
Cristina Loureiro, Cristina Morais and Helena Gil Guerreiro

Preservice teachers learning about critical mathematics education
Camilla Meidell, Diana Paola Piedra Moreno and Georgia Kasari

Retrospective competence assessment in a PD course on teaching statistics
with digital tools in upper secondary schools
Ralf Nieszporek and Rolf Biehler

Learning through/about Culturally Relevant Pedagogy in Mathematics
Teacher Education
Kathleen Nolan and Lindsay Keazer

Using teachers’ research to elicit professional development among pre- and
in-service mathematics teachers: a qualitative meta-analysis of mathematics
education in graduate programs
Tikva Ovadiya

A quasi-experimental impact study of a professional development course for
secondary mathematics teachers in South Africa
Craig Pournara and Patrick Barmby

Orchestrating collective mathematical discussions: practices and challenges
Ana Maria Roque Boavida, Ana Paula Silvestre and Cátia Prata

Pre-service mathematics teachers interpret observed teachers’ responses to
students’ statements
Sigal Rotem, Michal Ayalon and Shula Weissman

Using Concept Cartoons in future primary school teacher training: the case of
problem posing and open approach
Libuše Samková

Generation and generation tasks in mathematics didactics
Marianne Schäfer and Rita Borromeo Ferri

Interweaving Mathematical-News-Snapshots as a facilitator for the development
of Mathematical Knowledge for Teaching
Ruti Segal, Atara Shriki, Nitsa Movshovitz-Hadar and Boaz Silverman

Examining pedagogical and classroom discourse through the lens of figured worlds:
The case of an elementary school teacher
Galit Shabtay and Esther Levenson

Impacts of a mathematical mistake on preservice teachers’ eliciting of
student thinking
Meghan Shaughnessy, Rosalie DeFino, Erin Pfaff, Merrie Blunk and Timothy Boerst

Beliefs and expectations at the beginning of the bachelor teacher training program
in mathematics
Evelyn Süss-Stepancik and Stefan Götz

Pre-service teachers’ geometrical discourses when leading classroom discussions
about defining and classifying quadrilaterals
Gry Anette Tuset
Developing professional development programmes with gamification for mathematics teachers in Uruguay
Fabián Vitabar, Zsolt Lavicza and Markus Hohenwarter

Action research as a potent methodology for improving teaching and learning in mathematics
Eda Vula

TWG19: Mathematics Teaching and Teacher Practice(s)

Introduction to the papers of TWG19: Mathematics Teaching and Teacher Practice(s)
Charalampos Sakonidis, Reidar Mosvold, Ove Gunnar Drageset, Siún Nic Mhuiri, Rukiye Didem Taylan

Comparison of students and researchers’ choice of significant events of math lessons
Christoph Ableitinger, Astrid Anger and Christian Dorner

Between-desk-teaching as a deliberate act of making content available: The case of Bernie teaching ratio
Nick Andrews

Teachers’ learning goals for a mathematics lesson
Kristin Krogh Arnesen and Yvonne Grimeland

A math teacher’s participation in a classroom design research: teaching of ratio and proportion
Rukiye Ayan, Mine Isiksal-Bostan and Michelle Stephan

A comparison of the treatment of mathematical errors arising from teacher-initiated and student-initiated interactions
Fay Baldry

Teacher responses to public apparent student error: A critical confluence of mathematics and equitable teaching practice
Hyman Bass and Reidar Mosvold

Conceptual learning opportunities in teachers’ differentiated task designs for inclusive mathematics education
Christian Büschner

Effects of a Scaffolding Model for small groups in mathematics
Sharon Calor, Rijkje Dekker, Jannet van Drie, Bonne Zijlstra and Monique Volman

How to improve teacher students’ awareness of critical aspects in a lesson plan
Jonas Dahl, Anna Wernberg and Cecilia Winström

How teachers use interactions to craft different types of student participation during whole-class mathematical work
Ove Gunnar Drageset

Beyond the immediate - illuminating the complexity of planning in mathematics teaching
Helena Grundén

The work of equitable mathematics teaching: Leading a discussion of student solutions
Mark Hoover and Imani Goffney
Learning from Lessons: A study on structure and construction of mathematics teacher knowledge - First results of case study
Judith Huget and Andrea Peter-Koop

Balancing the live use of resources towards the introduction of the Iterative Numerical method
Lina Kayali and Irene Biza

The King’s birthday, potentials for developing mathematics teaching
Bodil Kleve, Ida Heiberg Solem and Gerd Ånestad

Learning trajectories and fractions: primary teachers meaning attributions
Anna Klothou, Charalampos Sakonidis and Vagia Arsenidou

Good mathematics teaching at lower primary school level
Marianne Maugesten

Analysis of differences between teachers’ activity during their regular and constructivist lessons
Janka Medová, Kristina Bulková and Soňa Čeretková

Noticing mathematical potential - A proposal for guiding teachers
Elisabet Mellroth and Jesper Boesen

The work of positioning students and content in mathematics teaching
Reidar Mosvold and Raymond Bjuland

Evolving discourse of practices for quality teaching in secondary school mathematics
Talli Nachlieli, Yishay Mor, Einat Gil and Yael Kashtan

A lens on two classrooms: Implications for research on teaching
Siún Nic Mhuirí

Assessing how teachers promote students’ metacognition when teaching mathematical concepts and methods
Edyta Nowińska

Teachers probing questions in mathematical classrooms connected to their practice of encouraging students to explain their thinking
Anna Östman

Linking the micro and macro context: A sociocultural perspective
Maria Pericleous

Teachers attempts to address both mathematical challenge and differentiation in whole class discussion
Giorgos Psycharis, Despina Potari, Chrissavgi Triantafillou and Theodossios Zachariades

Investigating the relation between teachers’ actions and students’ meaning making of mathematics
Karin Rudsberg, Marcus Sundhäll and Per Nilsson

Mathematics teaching and teachers’ practice: tracing shifts in meaning and identifying potential theoretical lenses
Charalampos Sakonidis

xxxvi
Pre-service teachers’ experiences in selecting and proposing challenging tasks in secondary classrooms
Leonor Santos, Hélia Oliveira, João Pedro da Ponte, Ana Henriques

Teachers actions in classroom and the development of quantitative reasoning
Lurdes Serrazina, Margarida Rodrigues and Ana Caseiro

Contradictions in prospective mathematics teachers’ initial classroom teaching as sources for professional learning
Konstantinos Stouraitis and Despina Potari

Analyzing a novice teacher’s instructional actions in response to unexpected moments in teaching
Rukiye Didem Taylan and Merve Esmer

Feedback for creative reasoning
Anna Teledahl and Jan Olsson

Revisiting teacher decision making in the mathematics classroom: a multidisciplinary approach
Steven Watson

TWG20: Mathematics teacher knowledge, beliefs, and identity

Introduction to the papers of TWG20: mathematics teacher knowledge, beliefs, and identity
Miguel Ribeiro, Francesca Martignone, Fatma Aslan-Tutak, Kirsti Rø, Miguel Montes, Sebastian Kuntze

Mathematical and didactical knowledge about patterns and regularities mobilized by teachers in a professional learning task
Marcia Aguiar, Alessandro Jacques Ribeiro and João Pedro da Ponte

Mathematics Teachers Specialized Knowledge Model as a Metacognitive Tool for Initial Teacher Education
Álvaro Aguilar-González and Luis J. Rodríguez-Muñiz

Knowledge of a mathematician to teach divisibility to prospective secondary school teachers
Marieli Vanessa Rediske de Almeida, Miguel Ribeiro, Dario Fiorentini

Emergent model for teachers’ conceptions of argumentation for mathematics teaching
Michal Ayalon & Samaher Naama

A student teacher’s responses to contingent moment and task development process
Emine Aytekin and Mine Işıksal Bostan

Using the Knowledge Quartet to analyse interviews with teachers manipulating dynamic geometry software
Nicola Bretscher

An analysis of the nature of the knowledge disseminated by a mathematics teacher training policy: The PROFMAT case
Marlova Estela Caldatto and Miguel Ribeiro
Prospective primary teachers’ knowledge about the mathematical practice of defining
Myriam Codes, Nuria Climent and Isabel Oliveros

Empowering teachers conceptually and pedagogically through supporting them in seeing connections between school mathematics and relevant advanced mathematics knowledge
Cosette Crisan

Teacher educators understanding of mathematical knowledge for teaching
Matthew Dahlgren, Reidar Mosvold and Mark Hoover

Exemplifying mathematics teacher’s specialised knowledge in university teaching practices
Rosa Delgado-_Rebolledo and Diana Zakaryan

The probability subjective view: developing teachers’ knowledge to give sense to students’ productions
Rosa Di Bernardo, Maria Mellone, Ciro Minichini and Miguel Ribeiro

“Sometimes it goes wrong!” Teachers’ beliefs concerning experiments in mathematics
Sebastian Geisler and Sarah Beumann

Chinese and Dutch mathematics teachers’ beliefs about inquiry-based learning
Luhuan Huang, Michiel Doorman and Wouter van Joolingen

Preservice teachers’ mathematical knowledge for teaching combinatorial thinking
Veronika Hubeňáková and Ingrid Semanišinová

Malawian preservice teachers’ perceptions of knowledge at the mathematical horizon
Everton Lacerda Jacinto and Arne Jakobsen

Applying the Knowledge Quartet to student teachers lesson plans: An intervention
Lena Karlsson

Preservice teachers noticing of mathematical opportunities
Hulya Kilic, Oguzhan Dogan, Nil Arabaci and Sena Simay Tun

Design of repertory grids for research on mathematics teacher conceptions of process-related mathematical thinking
Peter M. Klöpping and Ana Kuzle

Constructing tasks for primary teacher education from the perspective of Mathematics Teachers Specialised Knowledge
Montes, Miguel, Climent, Nuria, Carrillo, José, Contreras, Luis Carlos

A Look into Turkish Preservice Teachers Translation Skills: Case for Model Representations
Zeynep Pehlivan and Fatma Aslan-Tutak

Prospective primary teachers’ knowledge of problem solving process
Juan Luis Piñeiro, Elena Castro-Rodríguez and Enrique Castro

Conceptualising tasks for teacher education: from a research methodology to teachers’ knowledge development
Milena Policastro, Maria Mellone, Miguel Ribeiro and Dario Fiorentini
Kindergarten teachers’ knowledge in and for interpreting students’ productions on measurement
Milena Policastro, Miguel Ribeiro and Alessandra Rodrigues de Almeida 3986

Developing an identity as a secondary school mathematics teacher: Identification and negotiability in communities of practice
Kirsti Rø 3988

Students abilities on the relationship between beliefs and practices
Safrudiannur, and Benjamin Rott 3996

Secondary school preservice teachers’ references to the promotion of creativity in their master’s degree final projects
Alicia Sánchez, Vicenç Font and Adriana Breda 4004

The problem of 0.999 &: Teachers school-related content knowledge and their reactions to misconceptions
Verena Spratte, Laura Euhus and Judith Kalinowski 4012

“In school you notice the performance gap and how different it is between the students” - Student teachers’ collective orientations about the learners’ heterogeneity in mathematics
Ann-Kristin Tewes, Elisa Bitterlich, Judith Jung 4020

Teachers noticing of language in mathematics classrooms
Carina Zindel 4028

TWG21: Assessment in mathematics education 4036

Introduction to the papers of TWG21: Assessment in mathematics education
Paola Iannone, Michal Ayalon, Johannes Beck, Jeremy Hodgen and Francesca Morselli 4037

Strategies of formative assessment enacted through automatic assessment in blended modality
Alice Barana and Marina Marchisio 4041

National standardized tests database implemented as a research methodology in mathematics education. The case of algebraic powers.
Giorgio Bolondi, Federica Ferretti, George Santi 4049

Students' attitudes and responses to pair-work testing in mathematics
Eszter Bóra and Péter Juhász 4057

Classroom assessment tasks and learning trajectories
Eleni Demosthenous, Constantinos Christou and Demetra Pitta-Pantazi 4059

Diagnosis of basic mathematical competencies in years 8 and 9
Christina Drüke-Noe and Hans-Stefan Siller 4067

Assessment and argumentation: an analysis of mathematics standardized items
Rossella Garuti and Francesca Martignone 4075

Evaluating students' self-assessment in large classes
Jokke Häsä, Johanna Rämö and Viivi Virtanen 4083
Large scale analysis of teachers' assessment practices in mathematics
Julie Horoks, Julia Pilet, Sylvie Coppé, Marina De Simone and Brigitte Gruegn-Allys

Preservice Middle School Mathematics Teachers Development in Formative Assessment
Gözde Kaplan Can and Çiğdem Haser

An assessment of non-standardized tests of mathematical competence for Norwegian secondary school using Rasch analysis
Morten Riise Klegseth, Eivind Kaspersen and Trygve Solstad

Mathematics described proficiency levels: connecting psychometric and teaching analyses
Cristina Lasorsa, Rossella Garuti, Marta Desimoni, Donatella Papa, Antonella Costanzo and Rosalba Ceravolo

Teachers’ Perceptions of Using Incentives in State Examinations to Increase the uptake of Higher Level Mathematics
Mark Prendergast, Páraic Treacy and Niamh O’Meara

Teachers use of Descriptive Assessment methods in primary school mathematics education in Iran
Ali Akbar Sangari, Marja van den Heuvel-Panhuizen, Michiel Veldhuis and Zahra Gooya

Developing and evaluating an online linear algebra examination for university mathematics
Christopher Sangwin

The role of formative assessment in fostering individualized teaching at university level
Annalisa Cusi and Agnese Ilaria Telloni

Teaching, learning and assessing in grade 10: an experimental pathway to the culture of theorems
Fiorenza Turiano, Paolo Boero and Francesca Morselli

Using student and instructor characteristics to predict student success in Algebra courses
Laura Watkins, Rik Lamm, Nidhi Kohli, Patrick Kimani, and the AI@CC Research group

TWG22: Curriculum resources and task design in mathematics education

Introduction to the papers of TWG22: Curriculum resources and task design in mathematics education
Birgit Pepin, Sean Delaney, Andreas Eckert, Nataly Essonnier, and Andreas J. Stylianides

Exploring teachers’ assignment of mathematical competencies to planned lessons using Epistemic Network Analysis
Benjamin Brink Allsopp, Jonas Dreyøe, Andreas Lindenskov Tamborg, Brendan Eagan, Sara Tabatabai, David Williamson Shaffer and Morten Misfeldt
Supporting the reinvention of the slope of a curve in a point: A smooth slope to slide is a smooth slide to slope
 Rogier Bos, Michiel Doorman, Kristijan Cafuta, Selena Praprotnik, Sanja Antoliš, Matija Bašić

Conjecturing tasks for undergraduate calculus students
 Sinéad Breen, Caitríona Ní Shé, and Ann O’Shea

Developing the task progressions framework
 Scott A. Courtney and Dubravka Glasnović Gracin

Combining Differentiation and Challenge in Mathematics Instruction: A Case from Practice
 Seán Delaney and Ann Marie Gurhy

Designing tasks with self-explanation prompts
 Anneli Dyrvold & Ida Bergvall

Designing for digitally enriched Math Talks The case of pattern generalization
 Andreas Eckert and Per Nilsson

Social creativity in the collaborative design of a digital resource embedding mathematics into a story
 Nataly Essonnier, Chronis Kynigos and Jana Trgalova

Building bridges between school mathematics and workplace mathematics
 Rune Herheim and Suela Kacerja

Task design with a focus on conceptual and creative challenges
 Jonas Jäder

The Influence of Teacher Guides on Teachers Practice: A Longitudinal Case Study
 Ljerka Jukić Matić and Dubravka Glasnović Gracin

Community documentation targeting the integration of inquiry-based learning and workplace into mathematics teaching
 Elissavet Kalogeria and Giorgos Psycharis

The use of variation theory in a problem-based task design study
 Berie Getie Kassa and Liping Ding

Web of problem threads (WPT) a theoretical frame and task design tool for inquiry-based learning mathematics
 Dániel Katona

Secondary school mathematics teachers’ selection and use of resources
 Zeger-Jan Kock and Birgit Pepin

Multiplicative reasoning task design with student teachers in Scottish schools: valuing diversity, developing flexibility and making connections
 Helen Martin

Comparison of Japanese and Turkish textbooks: Giving opportunities for creative reasoning in terms of proportion
 Yasin Memiş
Making Mathematics fun: The Fear Room game

Christina Misailidou and Ronald Keijzer

Examination of mathematical opportunities afforded to learners in grade 1 Malawian primary mathematics textbooks

Lisnet Mwadzaangati

Two primary school teachers pedagogical design capacity of using mathematics textbooks in Delhi, India

Meghna Nag Chowdhuri

Ability maps in the context of curriculum research

Lisbeth Liv Nøhr, Mia Onsvig Gregersen

Task design fostering construction of limit confirming examples as means of argumentation

Annalisa Cusi and Shai Olsher

Towards improving teaching and learning of algorithmics by means of resources design: a case of primary school education in France

Rafalska Maryna

Length measurement in the textbooks of German and Taiwanese primary students

Silke Ruwisch and Hsin-Mei E. Huang

A Hypothetical Learning Trajectory for the learning of the rules for manipulating integers

Jan Schumacher and Sebastian Rezat

“First you have to know it exists.” Cultivating teachers’ thinking about resource options

Helen Siedel

Alignment of mathematics curriculum to standards at high schools in Colombia

Silvia Solano, Pedro Gómez and María José González

The concept of function in secondary school textbooks over time: An analysis made with the Theory of Conceptual Fields

Patricia Sureda and Laura Rossi

The potential of Problem Graphs as a representational tool with focus on the Hungarian Mathematics Education tradition

Eszter Varga

From teacher s naming system of resources to teacher’s resource system: Contrasting a Chinese and a Mexican case

Chongyang Wang, Ulises Salinas-Hernández and Luc Trouche

TWG 23: Implementation of research findings in mathematics education

Introduction to the papers of TWG23: Implementation of research findings in mathematics education

Mario Sánchez Aguilar, Ana Kuzle, Kjersti Wæge and Morten Misfeldt

Identification and diagnosis of students’ mathematical misconceptions in a dynamic online environment

Morten Elkjær
Implementation research in primary education: Design and evaluation of a problem-solving innovation

Inga Gebel and Ana Kuzle

Operationalizing implementation theory in mathematics education research - identifying enablers and barriers in the Swedish “Boost for Mathematics”

Rikke Maagaard Gregersen, Sine Duedahl Lauridsen and Uffe Thomas Jankvist

A learning path for rational numbers through different representations

Helena Gil Guerreiro, Cristina Morais, Lurdes Serrazina and João Pedro da Ponte

Coherence through inquiry based mathematics education

Per Øystein Haavold and Morten Blomhøj

Competencies and curricula: Danish experiences with a two-dimensional approach

Tomas Højgaard and Jan Sølberg

Adapting implementation research frameworks for mathematics education

Uffe Thomas Jankvist, Mario Sánchez Aguilar, Jonas Dreyøe and Morten Misfeldt

Implementation through participation: Theoretical considerations and an illustrative case

Boris Koichu and Alon Pinto

Designing inquiry-based teaching at scale: Central factors for implementation

Dorte Moeskær Larsen, Mette Hjelmborg, Bent Lindhart, Jonas Dreyøe, Claus Michelsen and Morten Misfeldt

Towards a common understanding of implementation research in mathematics education research

Andreas Lindenskov Tamborg

Capturing Problem Posing landscape in a grade-4 classroom: A pilot study

Ioannis Papadopoulos and Nafsika Patsiala

Models of school governance and research implementation. A comparative study of two Swedish cases, 1960-2018

Johan Prytz

Implementing alternative models for introducing multiplication

Anna Ida Säfström, Ola Helenius and Linda Marie Ahl

Implementing theories for preschool teaching with play-based pedagogies

Nina Ullsten Granlund

TWG24: Representations in mathematics teaching and learning

Introduction to the work of TWG24: Representations in mathematics teaching and learning

Anna Baccaglini-Frank, Carla Finesilver, Samet Okumus and Michal Tabach

From concrete to abstract and back: Metaphor and Representation

Pierre Arnoux and Jorge Soto-Andrade

“He’s so fast at drawing” – Children’s use of drawings as a tool to solve word problems in multiplication and division

Heidi Dahl
Functional representations produced and used by students during their introduction to the concept of derivative: a window on their understanding processes
Sarah Dufour

Moving towards understanding graphical representations of motion
Carolien Duijzer, Marja Van den Heuvel-Panhuizen, Michiel Veldhuis, and Michiel Doorman

A training in visualizing statistical data with a unit square
Andreas Eichler, Carolin Gehrke, Katharina Böcherer-Linder and Markus Vogel

Learning to ‘deal’: A microgenetic case study of a struggling student’s representational strategies for partitive division
Carla Finesilver

Utilizing dynamic representations to foster functional thinking
Stephan Michael Günster

Connecting the everyday with the formal: the role of bar models in developing low attainers’ mathematical understanding
Sue Hough, Steve Gough and Yvette Solomon

Visualization of fractions - a challenge for pre-service teachers?
Ellen Konstanse Hovik and Camilla Markhus Rodal

Leveraging difference to promote students’ conceptions of graphs as representing relationships between quantities
Heather Lynn Johnson, Evan McClintock, and Amber Gardner

Diagrammatic representations for mathematical problem solving
Vinay Kathotia and Elizabeth Kimber

Capturing ‘time’: characteristics of students’ written discourse on dynagraphs
Giulia Lisarelli, Samuele Antonini and Anna Baccaglini-Frank

Effective choices of representations in problem solving
Jasmina Milinkovic, Aleksandra Mihajlovic and Mirko Dejic

Geometric prediction: proposing a theoretical construct to analyze students’ thinking in geometrical problem-solving
Elisa Miragliotta

Fibre mathematics: exploring topological forms through material practices
Kate O’Brien and Elizabeth de Freitas

Prospective mathematics teachers extrapolative reasoning about misleading bar graphs
Samet Okumus and Ercan Dede

The role of students' drawings in understanding the situation when solving an area word problem
Manuel Ponce de León Palacios and Jose Antonio Juárez López

Exploring Strategies Used to Solve a Non-Routine Problem by Chilean Students; an Example of “Sharing Chocolates”
Farzaneh Saadati and Mayra Cerda
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who is right? Theoretical analysis of representational activities</td>
<td>4593</td>
</tr>
<tr>
<td>Michal Tabach and Boris Koichu</td>
<td></td>
</tr>
<tr>
<td>Teaching practice regarding grade 3 pupils use of representations</td>
<td>4601</td>
</tr>
<tr>
<td>Isabel Velez, João Pedro da Ponte and Lurdes Serrazina</td>
<td></td>
</tr>
<tr>
<td>Explaining geometrical concepts in sign language and in spoken language</td>
<td>4609</td>
</tr>
<tr>
<td>a comparison</td>
<td></td>
</tr>
<tr>
<td>Annika M. Wille and Christof Schreiber</td>
<td></td>
</tr>
<tr>
<td>Characterizing fraction addition competence of preservice teachers using Rasch analysis</td>
<td>4617</td>
</tr>
<tr>
<td>Marius Lie Winger, Julie Gausen, Eivind Kaspersen and Trygve Solstad</td>
<td></td>
</tr>
<tr>
<td>TWG25: Inclusive Mathematics Education – challenges for students with special needs</td>
<td>4619</td>
</tr>
<tr>
<td>Introduction to the work of TWG25: Inclusive Mathematics Education challenges for students with special needs</td>
<td>4620</td>
</tr>
<tr>
<td>Petra Scherer, Evelyn Kroesbergen, Hana Moraová, Helena Roos</td>
<td></td>
</tr>
<tr>
<td>Strategies that promote the mathematical activity of students with language disorders: an analysis of language interactions</td>
<td>4628</td>
</tr>
<tr>
<td>Raquel Isabel Barrera-Curin, Laurie Bergeron and Audrey Perreault</td>
<td></td>
</tr>
<tr>
<td>Low entrance or reaching the goals? Mathematics teachers’ categories for differentiating with open-ended tasks in inclusive classrooms</td>
<td>4636</td>
</tr>
<tr>
<td>Sarah Buró and Susanne Prediger</td>
<td></td>
</tr>
<tr>
<td>Teaching mathematics to students with intellectual disability: What support do teachers need?</td>
<td>4644</td>
</tr>
<tr>
<td>Chun-ip Fung and Dichen Wang</td>
<td></td>
</tr>
<tr>
<td>K-12 Namibian teachers’ beliefs on learning difficulties in mathematics: Reflections on teachers’ practice</td>
<td>4652</td>
</tr>
<tr>
<td>Shemunyenge Taleiko Hamukwaya</td>
<td></td>
</tr>
<tr>
<td>An in-service training to support teachers of different professions in the implementation of inclusive education in the mathematics classroom</td>
<td>4660</td>
</tr>
<tr>
<td>Laura Korten, Marcus Nührenbörger, Christoph Selter, Franz Wember and Tobias Wollenweber</td>
<td></td>
</tr>
<tr>
<td>Designing mathematical computer games for migrant students</td>
<td>4662</td>
</tr>
<tr>
<td>Janka Medová, Kristína Bulková and Soňa Čeretková</td>
<td></td>
</tr>
<tr>
<td>Diagnosis tools of dyscalculia contribution of didactics of mathematics to numerical cognition</td>
<td>4664</td>
</tr>
<tr>
<td>Florence Peteers and Cécile Ouvrier-Buffet</td>
<td></td>
</tr>
<tr>
<td>I just don’t like math, or I think it is interesting, but difficult... Mathematics classroom setting influencing inclusion</td>
<td>4672</td>
</tr>
<tr>
<td>Helena Roos</td>
<td></td>
</tr>
<tr>
<td>The potential of substantial learning environments for inclusive mathematics student teachers’ explorations with special needs students</td>
<td>4680</td>
</tr>
<tr>
<td>Petra Scherer</td>
<td></td>
</tr>
</tbody>
</table>
Mathematical discourses of a teacher and a visually impaired pupil on number sequences: Divergence, convergence or both?
Angeliki Stylianidou and Elena Nardi

Do hearing-impaired students learn mathematics in a different way than their hearing peers? A review
Kinga Szűcs

Supporting braille readers in reading and comprehending mathematical expressions and equations
Annemiek van Leendert, Michiel Doorman, Paul Drijvers, Johan Pel and Johannes van der Steen

TWG26: Mathematics in the context of STEM education

Introduction to TWG26: Mathematics in the context of STEM education
Behiye Ubu, Koeno Gravemeijer, Michelle Stephan and Patrick Capraro

Enhancing mathematics and science learning through the use of a Human Orrery
Maha Abboud, Philippe Hoppenot and Emmanuel Rollinde

Integrating the methods of mathematical modelling and engineering design in projects
Imad Abou-Hayt, Bettina Dahl, and Camilla Østerberg Rump

Mathematics and art in primary education textbooks
Teresa F. Blanco, Valeria González-Roel and Jose Manuel Diego-Mantecón

Mathematical modeling of musical fountains and light organs - Where is the M in interdisciplinary STEM projects?
Wolfgang Bock, Martin Bracke and Patrick Capraro

STEM analysis of a module on Artificial Intelligence for high school students designed within the I SEE Erasmus+ Project
Laura Branchetti, Olivia Levrini, Eleonora Barelli, Michael Lodi, Giovanni Ravaioli, Laura Rigotti, Sara Satanassi and Giulia Tasquier

Promoting mathematics teaching in the framework of STEM integration
Maria Cristina Costa and António Domingos

Reflecting on the value of mathematics in an interdisciplinary STEM course
Nelleke den Braber, Jenneke Krüger, Marco Mazereeuw and Wilmad Kuiper

Complex modeling: Does climate change really exist? Perspectives of a project day with high school students
Maren Hattebuhr and Martin Frank

Inter TeTra Interdisciplinary teacher training with mathematics and physics
Eduard Krause, Nguyen Van Bien, Tran Ngoc Chat, Nguyen Phuong Chi, Frederik Dilling, Jochen Geppert, Kathrin Holten, Tuan Anh Le, Simon Kraus and Chu Cam Tho

Student mathematical preparedness for learning science and engineering at university
Ciara Lane and Gráinne Walshe

Pre-service teachers’ perspectives on the role of statistics in a learning scenario for promoting STEM integration
Hélia Oliveira, Ana Henrques and Mónica Baptista
Student conception of angles and parallel lines in engineering context

Premkumar Pugalenthi, Michelle Stephan and David Pugalee

Opportunities to engage in STEM practices: Technology and design course

Behiye Ubu

Gamification with Moodle in higher education

Ana Júlia Viamonte and Isabel Perdigão Figueiredo

Complex Modeling: Insights into our body through computer tomography perspectives of a project day on inverse problems

Kirsten Wohak and Martin Frank
Strategies of formative assessment enacted through automatic assessment in blended modality

Alice Barana¹ and Marina Marchisio²

¹Department of Mathematics of the University of Turin; Turin; Italy; alice.barana@unito.it
²Department of Mathematics of the University of Turin; Turin; Italy; marina.marchisio@unito.it

This paper intends to contribute to the research on formative assessment in Mathematics providing a model of automatic assessment aimed at enhancing learning and self-regulation. The model was developed at the Department of Mathematics of the University of Turin (Italy). The main features of the model are: availability, algorithmic questions, open answers, immediate feedback, interactive feedback, and real-life contextualization. The effectiveness of the model to enact formative strategies is discussed though the results of a didactic experimentation involving 299 students of 8th grade, where automatically assessed assignments have been used both during Mathematics classes and as online homework.

Keywords: Automatic assessment, computer assisted instruction, feedback, formative assessment.

Introduction

It is widely acknowledged that assessment has a great influence on learning, impacting on when and how students work and learn. In particular, formative assessment practices help develop understanding and motivation, encouraging positive attitudes toward learning. Being responsive to the users’ actions, digital technologies can make new room for formative assessment: with their capabilities of computing grades and offering feedback in real time, they can return information to students and teachers that is relevant to support and enhance learning processes. Web-based digital materials with automatic assessment can be used in face-to-face, blended or online courses; according to the modality adopted, they can facilitate personalized approaches as well as foster peer discussion.

This paper intends to contribute to the research on computer aided assessment in Mathematics, by proposing a model of automatic formative assessment and interactive feedback developed by the Department of Mathematics of the University of Turin (Italy). After a brief review of the literature on formative assessment, feedback and automatic assessment, the paper shows a model of automatic formative assessment using a system based on an Advanced Computing Environment, particularly effective for Mathematics. The model is discussed through some results of a didactic experimentation which involves 8th grade students.

Theoretical framework

Formative assessment

The term “formative evaluation” was coined by Michael Scriven in 1966 in opposition to “summative evaluation”, to describe a practice aimed to collect information during a course in order to develop the curriculum (Scriven, 1966). Benjamin Bloom borrowed the term to indicate a strategy for mastery learning, namely a set of diagnostic-progress tests which should assess the achievement of the small units in which the program is divided (Bloom, 1968). Bloom’s studies evidenced the effectiveness of
this strategy to motivate students to forge ahead with the learning path. In 1989 D. Royce Sadler highlighted the role of feedback as a key distinction between formative and summative assessment. Sadler conceptualized formative assessment as the way learners use information from judgments about their work to improve their competence (Sadler, 1989).

More recently, Paul Black and Dylan Wiliam contributed to the development of a theoretical framework for the formative assessment, with particular reference to Mathematics Education. They spoke about formative practice, giving the well-known definition:

practice in a classroom is formative to the extent that evidence about student achievement is elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next steps in instruction that are likely to be better, or better founded, than the decisions they would have taken in the absence of the evidence that was elicited. (Black & Wiliam, 2009)

They individuated five key strategies through which formative practices can be enacted, involving students, peers and teachers: clarifying and sharing learning intentions and criteria for success; engineering effective classroom discussions and other learning tasks that elicit evidence of student understanding; providing feedback that moves learners forward; activating students as instructional resources; and activating students as the owners of their own learning.

Feedback

The provision of feedback is the most distinctive feature of formative assessment. The power of feedback emerges in Hattie’s metanalysis where it is considered one of the most effective strategies for learning (Hattie, 2009). John Hattie and Helen Timperley expanded upon the model of good feedback, conceptualizing it as “information provided by an agent (e.g., teacher, peer, book, parent, self, experience) regarding aspects of one’s performance or understanding” (Hattie & Timperley, 2007). Effective feedback, whose purpose is to reduce the discrepancy between current and desired understanding, indicates what the learning goals are, what progress is being made toward the goal and what activities need to be undertaken in order to make better progress. Feedback can work at four levels: the task level, giving information about how well the task has been accomplished; the process level, showing the main process needed to perform the task; the self-regulation level, activating metacognitive process; the self-level, adding personal evaluations about the learner.

Sadler emphasizes the focus on the learner’s processing of feedback, noticing that if the information is not elaborated by the learner to alter the gap between current and reference performance, it will not have any effect on learning (Sadler, 1989). In order for feedback to be effective, students have to possess a concept of the standard being aimed for, compare the actual level of performance with the standard and engage in appropriate action, which leads to some closure of the gap.

Besides improving understanding, feedback can also be effective to enhance self-regulation, a process whereby learners set goals for their learning and monitor and regulate their cognition, motivation and behavior through internal feedback (Pintrich & Zusho, 2007). The process of generation of internal feedback can be facilitated by well-designed feedback which, according to Nicol and Macfarlane-Dick (2006), should clarify what good performance is; facilitate the development of self-assessment; deliver high quality information to students about their learning; encourage teacher and peer dialogue.
around learning; encourage positive attitudes, motivation and self-esteem; provide opportunities to close the gap between current and desired performance; and provide information to teachers that can be used to help shape the teaching.

Automatic assessment

Automatic assessment is one particular form of Computer Aided Assessment, characterized by the automated elaboration of students’ answers and provision of feedback. Multiple choice is the most common question format; it is supported by the majority of online platforms, even though it considerably limits the cognitive processes involved in answering, especially in Mathematics (Bennett, 2012). To overcome this limitation, research centers and universities started to develop systems that are able to process open-ended answers from a mathematical point of view and to establish if they are equivalent to the correct solutions. Examples of similar Automatic Assessment Systems (AAS) are STACK, relying on the Computer Algebra System (CAS) Maxima (Sangwin, 2015) and Maple T.A., running on the engine of the Advanced Computing Environment (ACE) Maple (Barana, Marchisio, & Rabellino, 2015). By exploiting programming languages or mathematical packages, these AASs allow to build interactive worksheets based on algorithms where answers, feedback and values are calculated over random parameters and can be shown in different representational registers. Thus, new solutions for computer-based items can be conceived, including dynamic explorations, animations, symbolic manipulation that offer students experiences of mathematical construction and conceptual understanding (Stacey & Wiliam, 2013).

A model of formative automatic assessment for Mathematics

The Department of Mathematics of the University of Turin has designed a model for creating questions conceived for the formative assessment of Mathematics, using Moebius Assessment. (formerly known as Maple T.A.). This AAS was chosen for its powerful grading capabilities, for the robust mathematical engine running behind the system and for the possibility of integration within the Virtual Learning Environment (VLE) Moodle (Barana & Marchisio, 2016).

Aiming at enhancing learning and self-regulation, automatically assessed assignments should have the following features (Barana, Conte, Fioravera, Marchisio, & Rabellino, 2018):

- availability: students can attempt the assignments, integrated in a VLE, at their own pace, without limitation in data, time and number of attempts;
- algorithm-based questions and answers: random values, parameters or formulas make questions, and their answers, randomly change at every attempt. Though variables based on algorithms, random parameters, mathematical formulas, graphics and even animated plots can be shown in questions and feedback;
- open-ended answers: the multiple-choice modality is avoided whenever possible; open answers, given in different representational registers (words, numbers, symbols, tables, graphics) are graded through algorithms which verify if the student’s answer matches the correct one, independently of the form;
- immediate feedback: results are computed in a very brief time and they are shown to the students while they are still focused on the task. Brief assignments are advised, in order to increase the immediacy of feedback;
• interactive feedback: just after giving an incorrect answer, the system can go through a step-by-step guided resolution that interactively shows a possible process for solving the task, which recalls previous knowledge and engage students in simpler tasks. They can gradually acquire the background and the process that enables them to answer the initial problem. They earn partial credits for the correctness of their answer in the step-by-step process;
• real-life contextualization: whenever possible, questions refer to real-world issues, which contributes to the creation of meanings and to a deeper understanding, as students can associate abstract concepts to real-life or concrete objects.

The feedback provided through this model acts not only at the task level, giving information about the correctness, but also at the process level, showing the steps toward the solution. Moreover, it can also act at the metacognitive level, providing opportunities for self-assessment, engaging less motivated students in active drills and offering partial credits for correct answers. This feedback satisfies the conditions individuated by Nicol and Macfarlane-Dick (2006) for the development of self-regulation. This model is particularly relevant in making students elaborate the feedback, as it is displayed interactively while they are still engaged with the task. Feedback can be effective according to Sadler’s model: in fact, the interactive feedback offers a concept of standard that students can actively possess; immediate feedback helps them compare the actual level of performance with the standard; when trying the assignment again, students find similar tasks with different values, so that they are engaged in an activity that makes them repeat the process until mastered.

Research questions

The focus of this paper is to show how automatic assessment, implemented in a blended modality through classroom activities and online work, allows the enactment of formative strategies in order to enhance learning and self-regulation. In particular, the paper investigates whether the interactive feedback can be effective according to Sadler’s model and whether the blended use of the automatic assessment can support formative assessment’s strategies.

Didactic experimentation and data collection

A set of materials designed according to the model illustrated above has been proposed to 13 8th grade classes of 6 different lower secondary schools in the town of Turin, for a total of 299 students, during the school year 2017/2018. Interactive materials with automatic assessment, organized in 10 different units, were created by university experts and inserted in a dedicated VLE. The tasks were mainly designed using items from the INVALSI surveys, the national standardized tests that take place annually in Italy, in collaboration with an INVALSI expert, expanded and adapted to the automatic assessment. Mathematics teachers, working in close connection with the researchers, could use the materials in two modalities:

• in the classroom, with the support of the Interactive Whiteboard (IWB), where tasks were displayed. Students, in small groups of 3 or 4, were asked to solve one task. All the answers were collected by the teacher, one was collectively selected to be checked using the AAS. After verifying whether it was correct, all the groups, in turn, had to show their solving process to the others. The interactive worksheets displayed at the IWB supported the collective discussion and gave prompts for deeper reflection.
for homework, using the online assessment and the interactive feedback to check understanding. Students could autonomously navigate within the platform and make one or more attempts to the assignments.

One example of question is shown in Figure 1. It asks students to solve a problem about linear models, open to different approaches. Students who give the incorrect answer to the main task are engaged with the exploration of the situation through a table to complete and a graphic to draw interactively. This question has been used online with some classes and in the classroom with others. On the platform, students were guided through the solving process and could repeat the problem with different data; in classroom, only the main task was displayed initially and the different solutions made by the groups of students were shared and discussed, with the support of the automatic assessment. During the experimentation, a PhD student participated to the lessons regarding the module on functions and modeling, the target topic of the experimentation. Lessons were videotaped and all data from platform usage were extracted in order to study the use of the assignments. The appreciation of the activities was measured though a questionnaire distributed at the end of the school year.

Results and discussion

In order to evaluate whether the interactive feedback was effective according to Sadler’s model, the usage and results of online assignments were analyzed. For each student the average number of attempts per assignment has been computed: it ranges from 1 to 12, with an average value of 1.70, which expresses students’ tendency to repeat the questions. Then, the average grade each student earned in their first assignment attempt was compared with the average grade they earned in their last attempt through a pairwise Student t-test: the mean of initial grades resulted to be 51.55/100 (standard deviation: 19.63), while the mean of final grades was 59.02/100 (standard deviation: 19.87); the
increase is statistically significant (p <0.0005). These results show that students used the information provided in the feedback to improve their results in subsequent activities.

Answers to the final questionnaire show students’ perceived effectiveness of the automatic assessment. Table 2 reports the percentage of students’ answers, given in a Likert scale from 1 (completely disagree) to 5 (completely agree). In particular, it emerges that students appreciated the usefulness of the group work in the classroom, supported by the use of the platform, and the online tests with immediate feedback. The low percentages of negative answers show that the feedback obtained through automatic assessment and peer work was useful to develop conceptual knowledge, since students could better understand the topics; it was also effective at a process level, to understand how to solve the problems; and at a metacognitive level, developing awareness of one’s preparation.

<table>
<thead>
<tr>
<th>Questions</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working in group was useful.</td>
<td>1.4%</td>
<td>6.3%</td>
<td>23.1%</td>
<td>38.5%</td>
<td>30.8%</td>
</tr>
<tr>
<td>Class activities were useful to better understand some Mathematical topics.</td>
<td>1.4%</td>
<td>4.5%</td>
<td>29.1%</td>
<td>45.9%</td>
<td>19.1%</td>
</tr>
<tr>
<td>Using the platform during classroom lessons was useful.</td>
<td>0.5%</td>
<td>3.6%</td>
<td>32.1%</td>
<td>47.1%</td>
<td>16.7%</td>
</tr>
<tr>
<td>I appreciated the possibility to revise the material used in class through the platform.</td>
<td>0.0%</td>
<td>8.2%</td>
<td>35.3%</td>
<td>36.4%</td>
<td>20.0%</td>
</tr>
<tr>
<td>The online exercises were useful to better understand the topics.</td>
<td>2.5%</td>
<td>5.6%</td>
<td>20.5%</td>
<td>46.0%</td>
<td>25.5%</td>
</tr>
<tr>
<td>The online exercises helped me make clear if I understood the topics.</td>
<td>2.5%</td>
<td>14.3%</td>
<td>26.7%</td>
<td>37.3%</td>
<td>19.3%</td>
</tr>
<tr>
<td>It is useful to have the correct answer displayed immediately after answering.</td>
<td>1.2%</td>
<td>3.7%</td>
<td>13.0%</td>
<td>36.0%</td>
<td>46.0%</td>
</tr>
<tr>
<td>The immediate assessment helped me understand how to answer the questions.</td>
<td>1.2%</td>
<td>5.0%</td>
<td>19.9%</td>
<td>32.3%</td>
<td>41.6%</td>
</tr>
<tr>
<td>Problems with step-by-step guided resolution helped me understand how to solve the exercises.</td>
<td>1.2%</td>
<td>8.7%</td>
<td>26.7%</td>
<td>34.2%</td>
<td>29.7%</td>
</tr>
<tr>
<td>Online exercises helped me to be aware of my preparation.</td>
<td>3.7%</td>
<td>8.1%</td>
<td>28.6%</td>
<td>40.4%</td>
<td>19.3%</td>
</tr>
</tbody>
</table>

Table 2: Student’s answers to the final questionnaire, given in Likert scale 1 to 5

The open answers to the questions “what did you appreciate the most?” and “what were the online assessments useful for?”, evidenced how the use of automatic assessment both in classroom and online supported the enactment of the strategies of formative assessment. Comments such as: “in my opinion, online exercises are useful to better understand the process to build a formula”, “the platform was very useful to better understand both the current topic and the resolution of problems” and “I think that the online tests were useful, because they showed me the many possibilities to solve one
problem” show how online assignments could clarify and share criteria for success. Tasks in the online tests were effective to elicit evidence of students’ understanding, as other students report: “online tests were useful because only by doing them I was able to acknowledge whether I had understood a topic or not”, “online tests were useful to individuate the points where I should improve”. Other comments prove that automatic and interactive feedback supported learning improvements: “I could have immediate access to the result to understand where I made a mistake and I had the chance to make another attempt with different data to drill”, “with the book you can do the assignments but you can’t acknowledge if your resolution is correct, while the platform always shows you both the correct answers and the solving processes”, “if you don’t understand a topic, with guided exercises you can gradually learn how to solve them autonomously”, “in classroom it often happens that I think I have understood a topic, but the next day I can’t understand it anymore, while with the platform I can work whenever I need to”. The assignments were also effective to activate students as owners of their own learning, as they themselves report: “technology encourages youngsters to work hard with homework, therefore they can better understand Mathematics”, “during classwork or homework I often felt willing and happy to solve the exercises, and they were useful to understand the lesson”, “I appreciated the online tests because they made me reason and work hard; sometimes I also had fun when doing Mathematics”. Groupwork was very appreciated and it allowed students to be activated as learning resources one for another, as their comments show: “classroom lessons were useful because, besides solving problems, we had to interact with each other and this allowed us to better understand the tasks”, “I appreciated reasoning together on the things that we were not able to do”, “I appreciated sharing ideas with classmates and helping each other”.

Conclusions

The results of the experimentation reported above show that the blended use of the online assessment made it possible to activate all the agents of the formative assessment (students, peers and teacher) and all the 5 key strategies individuated by Black and Wiliam: in the classroom, students received feedback from discussion and sharing ideas with peers, while on the platform the interactive feedback offered a guided support for understanding concepts and processes. This conception of automatic assessment provides enhancements with respect to paper-and-pen work and traditional book exercises: students can individuate their mistakes and make more attempts to improve their understanding, they can be actively engaged in Mathematical work and even have fun, although items are not game based. The results of this experimentation gave prompts for the activation of other research projects, aimed at studying the impact of these methodologies on students of different levels and backgrounds, as well as for the application of this model of formative automatic assessment to the learning of other subjects, even outside the STEM area, thus starting interdisciplinary collaborations.

Acknowledgments

We would like to thank Stefano Boffo, Francesco Gagliardi (CNR) and Rodolfo Zich (Fondazione Torino Wireless) for promoting the project and for participating to its realization. We are also grateful to Rossella Garuti (INVALSI) who collaborated to the development of the didactic materials.
References

