Adsorption Properties of Ce₅(BDC)₇.₅(DMF)₄ MOF

Cesare Atzori ¹, Jayashree Ethiraj ², Valentina Colombo ³, Francesca Bonino ¹,* and Silvia Bordiga ¹

¹ Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125 Torino, Italy; cesare.atzori@unito.it (C.A.); silvia.bordiga@unito.it (S.B.)
² National Centre for Catalysis Research and Department of Chemistry, Indian Institute of Technology Madras, Chennai 60036, India; jaijoy18@gmail.com
³ Department of Chemistry, Università degli Studi di Milano, Via C. Golgi 19, I-20133 Milano, Italy; valentina.colombo@unimi.it
* Correspondence: francesca.bonino@unito.it

Received: 7 November 2019; Accepted: 21 January 2020; Published: 26 January 2020

Abstract: In this article we report on the spectroscopic and adsorptive studies done on Ce(III)-based MOF possessing, upon desolvation, open metal sites, and a discrete surface area. The Ce-based MOF was synthesized from terephthalic acid linker (H₂BDC) and Ce³⁺ cations by the classical solvothermal method. Preliminary powder X-ray diffraction analysis showed that the obtained materials corresponded to the ones reported by other authors. Spectroscopic techniques, such as XAS and in situ FTIR with probe molecules were used. In situ FTIR spectroscopy confirmed the successful removal of DMF molecules within the pore system at temperatures above 250 °C. Moreover, the use of CO as a probe molecule evidenced the presence of a Ce³⁺ open metal sites. Detailed volumetric and calorimetric CO₂ adsorption studies are also reported.

Keywords: cerium; MOF; terephthalic acid; spectroscopic characterization; adsorption; calorimetry; carbon dioxide

1. Introduction

Cerium is the most abundant lanthanide element present in the earth crust [1,2] and the ores that are mined for the extraction of more rare and precious rare earth elements (REEs) are also rich in Ce; thus, its cost is relatively low. Its oxide, CeO₂, commonly named ceria, is particularly relevant for redox chemistry, being a catalyst for oxidation and reduction reactions [3], for example, combustion catalysis [4] and photocatalysis [3].

Ce-based MOFs have recently created interest in the scientific community. General features that can be drawn from looking at the current published literature are the following: (i) both Ce³⁺ and Ce⁴⁺ oxidation states can be used in the synthesis of MOFs [5–9]; (ii) synthetic conditions for Ce³⁺-containing MOFs tend to be harsher than Ce⁴⁺ [5,6,10]; (iii) usually, Ce⁴⁺ starting reagents may be reduced to Ce³⁺ during the synthesis [11,12]; (iv) Ce³⁺ materials more frequently have peculiar structures, while Ce⁴⁺ tends to give rise to MOFs with the same structure as other 4⁺ cations (e.g., Zr⁴⁺ or Hf⁴⁺) [5–7,13,14]. Their thermal stability is generally lower than their Zr⁴⁺ counterparts [7,8,14,15]. As a possible application of Ce MOFs as redox catalysts, Smolders et al. [8] reported the successful use of Ce⁴⁺-UiO-67 in the aerobic oxidation of benzylic alcohol to benzaldehyde mediated by TEMPO (2,2,6,6-Tetramethylpiperidinyloxyl). Furthermore, Ethiraj et al. [5] reported the use of a Ce³⁺-based MOF for the selective capture and storage of CO₂, obtaining high figures of merit of capacity and separation.

The present work reports on the synthesis, spectroscopic characterization, and adsorption properties of Ce³⁺-based MOFs with terephthalic acid (H₂BDC) as the linker. This material has been already...
introduced in the literature by D’Arras et al. [11], who discovered it and suggested its crystal structure in the as-synthesized form, together with the characterization of the thermal properties. However, the porosity of the material has not been studied, indeed, here we report on its adsorption properties, examined through spectroscopic techniques (XAS and in situ FTIR) and adsorption isotherms.

2. Results and Discussion

Ce₅(BDC)₇.₅(DMF)₄ MOF [16] optimized synthesis is reported in the Supplementary Materials. The Ce₅(BDC)₇.₅(DMF)₄ PXRD pattern was coincident with the one reported by D’Arras et al. [11]. The hypothesized structure was taken from Reference [11] and it is reported in Figure 1, for clarity. The asymmetric unit of crystalline structure shows chains of five independent cerium atoms arranged linearly and surrounded by BDC²⁻ and DMF molecules (see Figure 1a). The two terminal atoms of the group are coordinated by eight oxygen atoms in a distorted square antiprismatic shape: six oxygen atoms belong to BDC²⁻ and two oxygen atoms to DMF molecules, while the “central” three cerium atoms are coordinated with nine oxygens, all coming from the ligands, in an uncommon distorted shape. There are mono-dimensional or 1D channels formed in the structure parallel to the Ce chains along the crystallographic 110 direction. As depicted in Figure 1b, these micropores are mainly occupied by the coordinated DMF molecules, which protrude into the pores. The surface area and porosity of the material were clarified by the N₂ adsorption experiments (vide infra).

![Figure 1. Structure of Ce₅(BDC)₇.₅(DMF)₄. (a) Depiction of the asymmetric unit, containing five Ce atoms, 18 BDC²⁻, and four DMF molecules. Cerium, carbon, nitrogen, and oxygen atoms are pale yellow, black, blue, and red respectively; hydrogen atoms are omitted for the sake of clarity; (b) a view through the 110 direction. Meaningful distances are highlighted.](image-url)

The powder diffraction pattern of the as synthesized material, as shown in the synthesis development reported in the Supplementary Materials (Figures S1–S3), was compared to the calculated powder pattern obtained from the crystal structure reported by D’Arras et al. (Figure S3). SEM images of the synthesized powder are available in Figure S4.

A variable temperature powder X-ray diffraction (VTXRD) experiment in N₂ flow in the RT–600 °C temperature range (see Figure 2) showed that the material maintained the crystallinity until 475 °C, undergoing some changes in the XRD pattern, especially from 200 to 250 °C (highlighted in blue color), which could be due to the solvent removal, as strongly suggested by the TGA measurements reported in Figure S5.
The solution of the crystal structure of the desolvated material was out of the scope of the present work. At 500 °C the MOF started decomposing and at 525 °C the formation of broad diffraction peaks due to cerium dioxide was visible. The broadness of the peaks testifies that the particles were nanometric in size. Scherrer’s equation [3], corrected by instrumental broadening using a Si standard from NIST, suggested a size for the cerium dioxide particles of 5 ± 1 nm.

Figure 2. Variable temperature powder X-ray diffraction (VTXRD) recorded in the RT–600 °C range in N₂ flow.

The 3+ oxidation state of Ce in the as-synthesized state and activated at 350 °C material was confirmed by means of XAS spectroscopy, in the XANES region comparison with Ce³⁺ and Ce⁴⁺ standards. XANES spectra are reported in Figure 3. The 3+ oxidation state was also maintained after activation at 350 °C in the He stream directly in the measurement cell, in agreement with the results reported by the XPS experiments of D’Arras et al. [11].
Figure 3. Ce L$_3$ edge XANES spectra of Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ as synthesized and activated at 350 °C, compared with CeO$_2$ and Ce(NO$_3$)$_3$·6H$_2$O.

N$_2$ adsorption volumetric isotherms were measured on the material in order to point out the specific surface area and porosity of the MOF. Thermal treatments were performed in vacuo for 3 h (a longer time in comparison with those ones performed in case of IR or XRD because of the bigger amount of sample) and were made in a consecutive way. From the isotherms reported in Figure 4 it is clear that upon the solvent loss (occurring in the 200–250 °C range) N$_2$ adsorption grew dramatically, showing microporosity (as the isotherm is a Type I) and higher surface area (more than 200 m2/g) due to the accessible pores.

BET and Langmuir adsorption models for the surface area were applied; the results are summarized in Table 1. Generally, the reported value can be quite modest for MOF materials, compared with typical MOF surface areas (thousands of m2/g) [17].

Figure 4. N$_2$ Adsorption isotherms at $-196 \ ^\circ\text{C}$ measured on Ce$_5$(BDC)$_{7.5}$(DMF)$_4$, at different activation temperatures (150 °C, 200 °C, 250 °C, 350 °C, 450 °C).
Table 1. BET and Langmuir surface area for Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ different temperature treatments.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>BET Surface Area (m2/g)</th>
<th>C Value</th>
<th>Langmuir Surface Area (m2/g)</th>
<th>t-Plot Micropore Volume (cm3/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 °C-3 h</td>
<td>3.63 ± 0.09</td>
<td>13.6</td>
<td>6.0 ± 0.2</td>
<td>-</td>
</tr>
<tr>
<td>200 °C-3 h</td>
<td>11.57 ± 0.06</td>
<td>115.9</td>
<td>16.1 ± 0.2</td>
<td>-</td>
</tr>
<tr>
<td>250 °C-3 h</td>
<td>223 ± 2</td>
<td>7110</td>
<td>217.3 ± 0.2</td>
<td>0.072</td>
</tr>
<tr>
<td>350 °C-3 h</td>
<td>212 ± 2</td>
<td>6893</td>
<td>232.9 ± 0.5</td>
<td>0.073</td>
</tr>
<tr>
<td>450 °C-3 h</td>
<td>216 ± 1</td>
<td>26,545</td>
<td>232 ± 0.4</td>
<td>0.075</td>
</tr>
</tbody>
</table>

As synthesized Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ showed the typical mid-IR spectrum for a solvated MOF (see Figure 6). The typical vibrational fingerprints due to DMF solvent molecules mainly inside the pores and to H$_2$O molecules adsorbed from the atmosphere can be recognized: a broad band centered at 3400 cm$^{-1}$ due to the hydrogen-bonded H$_2$O molecules and sharp features at frequencies lower than 3000 cm$^{-1}$, in the range of the aliphatic C–H stretching mode, and a very intense band centered at 1670 cm$^{-1}$, in the range of the carbonyl stretching mode, due to DMF molecules. Upon progressive outgassing, also by increasing the temperatures, vibrational signals due to DMF and H$_2$O disappeared and the typical spectrum of a carboxylate-based MOF material was shown: very intense bands in the 1650–1250 cm$^{-1}$ range due to carboxylate stretching modes (both symmetrical and asymmetrical) and sharp features at frequencies higher than 3000 cm$^{-1}$, in the range of aromatic C–H stretching mode due to BDC2-.

These data support the VTXRD, TGA (see Figure S5), and SSA experiments and therefore we can affirm the material is not destroyed even if activated at 450 °C, maintaining crystallinity and surface area, even if its crystal structure undergoes a phase transition that has not been determined in this study.

Figure 5. FTIR spectra of Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ activated at different temperature in vacuo.

In situ CO adsorption FTIR spectra at −196 °C were recorded on a sample activated at 350 °C for 1 h (see Figure 6). A pressure of 5 mbar of CO was dosed (black spectrum). The lowest frequency peak, at 2131 cm$^{-1}$, was assigned to the physisorbed CO in the pores, as the first one to be desorbed. The other two bands at higher frequencies (2161 cm$^{-1}$ and 2152 cm$^{-1}$) required more time for complete desorption, and for this reason they can be assigned to CO adsorbed on Lewis acidic sites.

Upon outgassing, the initial activated MOF spectrum was obtained due to the total reversibility of CO adsorption. Because the CO vibrational mode on the MOF open metal sites is intermediate between metals in oxides and metals grafted in different systems [18,19], the doublet can be assigned...
to CO adsorbed on Ce3+ sites, since CO interacting with Ce4+ is expected to give bands at frequencies higher than 2156 cm-1 [20,21], in agreement also with XANES results. With the crystal structure of the desolvated material unknown, we can only hypothesize the presence of at least two different Ce3+ probed sites [20–22]. Only two out of the five different cerium atoms among the crystallographic asymmetric unit underwent the removal of DMF molecules during activation, however for an in-depth understanding of the desolvation process more investigation is needed. It is of relevance also the overall low intensity of the bands associated with CO adsorption could be due to a low accessibility of the uncoordinated sites. In case of FTIR CO adsorption on MOF-76-Ce [5], two quite intense bands at 2155 cm-1 and 2149 cm-1, due, respectively, to the probe interacting with one Ce site and bridged on two close sites, were reported, testifying the completely different local structure of the metal in MOF-76-Ce and in the present Ce\textsubscript{5}(BDC)\textsubscript{7.5}(DMF)\textsubscript{4}.

![Figure 6](image6.png)

Figure 6. Background-subtracted CO adsorption FTIR spectra at −196 °C on Ce\textsubscript{5}(BDC)\textsubscript{7.5}(DMF)\textsubscript{4} activated at 350 °C for 1 h.

CO\textsubscript{2} volumetric isotherms at various activation temperatures are reported in Figure 7. The same powder was heated in vacuo for three hours at the next activation temperature in a consecutive way.

![Figure 7](image7.png)

Figure 7. CO\textsubscript{2} Adsorption isotherms at 25 °C on Ce\textsubscript{5}(BDC)\textsubscript{7.5}(DMF)\textsubscript{4} at different activation temperatures (150 °C, 200 °C, 250 °C, 350 °C, 450 °C).
CO$_2$ uptake showed a clear increase with the activation temperature by reaching a plateau at the 350–450 °C temperature range, as reported in Figure 7 and Table 2.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CO$_2$ Uptake at 1 Bar and 25 °C</th>
<th>Weight Percentage</th>
<th>$n_{ads}/S_{Langmuir}$ (1 bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 °C-3 h</td>
<td>0.1281</td>
<td>2.87</td>
<td>0.56%</td>
</tr>
<tr>
<td>200 °C-3 h</td>
<td>0.2728</td>
<td>6.12</td>
<td>1.19%</td>
</tr>
<tr>
<td>250 °C-3 h</td>
<td>0.7954</td>
<td>17.83</td>
<td>3.38%</td>
</tr>
<tr>
<td>350 °C-3 h</td>
<td>0.8352</td>
<td>18.72</td>
<td>3.55%</td>
</tr>
<tr>
<td>450 °C-3 h</td>
<td>0.8301</td>
<td>18.61</td>
<td>3.52%</td>
</tr>
</tbody>
</table>

Calorimetric data, reported in Figure 8, were recorded for the adsorption of CO$_2$ at 30 °C in the 0–90 mbar range. The adsorbed quantity and the heat released by the adsorption as a function of the pressure are plotted, respectively, in Figure 8a,b. Both these curves are nearly Henry-type, as confirmed by the first part of our CO$_2$ volumetric adsorption isotherms collected with a different instrument at 25 °C (Figure 7). The studied pressure range was too low to observe saturation of the adsorbing sites and the temperature difference of 5 °C between these two experiments was due to technical requirements. The differential heat of adsorption at low coverages was about 32–33 kJ/mol and it is quite typical for the interaction of CO$_2$ with an open-metal site, as in MOF-76-ds [5], HKUST-1 [23], Mg-MOF-74 [17]. It is worth noting that the differential heat curve (Figure 8c) is characterized by an abrupt diminishing with the adsorbed quantity; this can be ascribed to the overall low number of strongly coordinating sites present in the desolvated material, as highlighted by our CO FTIR experiment (Figure 6). The total reversibility of the adsorption of CO$_2$ upon outgassing at 30 °C was testified thoroughly by the perfect recovery of the adsorption properties between the primary and secondary adsorption cycles.

Figure 8. (a) Volumetric isotherm (b) calorimetric isotherm and (c) differential heat distribution of CO$_2$ adsorption measured at 30 °C on Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ activated at 350 °C.

3. Materials and Methods

The variable temperature X-ray diffraction patterns (VTXRD) were collected with an X’Pert PRO MPD diffractometer from PANalytical (Almelo, The Netherlands), working in Bragg–Brentano geometry equipped with a Cu Kα source using about 10 mg of sample. Scattered photons were revealed by an X’celerator linear detector (PANalytical, Almelo, The Netherlands) equipped with a Ni filter to attenuate Kβ. A non-ambient chamber XRK900 from Anton Paar (Graz, Austria) with
Be windows was used to collect diffractograms as a function of temperature in a flow of dry N$_2$
(20 mL/min). The temperature program was set to measure a pattern every 25 °C, waiting 25 min at
the target temperature before collecting the data. The temperature was increased at a rate of 2 °C/min.

X-Ray absorption spectra at the Ce L$_3$ edge (5723 eV) were collected at the BM23 beamline of the
European Synchrotron Radiation Facility (ESRF). Data were acquired up to the Ce L$_2$ edge (6164 eV),
which limited the EXAFS signal down to k ≈ 0.10 Å$^{-1}$. The acquisition step was set to 0.3 eV in the
near-edge region and Δk = 0.035 Å$^{-1}$ in the EXAFS part of the spectrum. We used three He/N$_2$-filled
ionization chambers as I$_0$, I$_1$, and I$_2$ detectors, placing chromium foil between I$_1$ and I$_2$ for energy
calibration. XANES and EXAFS data were analyzed by using the Demeter 0.9.20 package. Sample
treatment was carried out in an in situ cell under a flow of He (80 mL min$^{-1}$). During activation, the
sample was heated to 350 °C after a ramp heating at 4 °C min$^{-1}$, then to be cooled to 30 °C.

Adsorption isotherms were collected on a ASAP 2020 apparatus from Micromeritics (Norcross,
GA, USA) using a liquid nitrogen bath at −196 °C, albeit CO$_2$ isotherms were collected filling the same
dewar vessel with water at 25 °C. About 150 mg of sample was heated in dynamic vacuum at 350 °C
for 3 h prior to measuring the isotherm. Langmuir fit was made in the 0.05 < p/p$_0$ < 0.2 range, while the
BET analysis was carried out in a very low-pressure region, as prescribed by the so-called Rouquerol
rules [24], in order to obtain a positive C value.

FTIR spectra were collected on a Nicolet 6700 from Thermo Scientific (Waltham, MA, USA)
equipped with a MCT detector in the 4000–400 cm$^{-1}$ range with a resolution of 2 cm$^{-1}$. The sample
was prepared by pressing a thin self-supporting pellet (10 mg of sample) and using a vacuum line and
a jacketed IR cell of local construction capable of cooling down the sample with liquid nitrogen and
permitting the dosing of probe molecules (i.e., CO). The experiment was run by activating the pellet in
dynamic vacuum at 350 °C for 1 h, then dosing about 15 mbar of CO on the sample to record spectra
during cooling to the liquid nitrogen temperature, desorption, and then heating back to RT.

Adsorption heats were measured simultaneously with the adsorption isotherms by means of a
C80 Tian-Calvet microcalorimeter from Setaram (Caluire-et-Cuire, France) at a temperature of 30 °C,
coupled with a glass vacuum line of local construction. The procedure is thoroughly described in
references [25,26], and in this case required thermal activation under dynamic vacuum at 350 °C for
3 h, then an overnight outgassing at 30 °C in the calorimeter before measuring the primary and the
secondary adsorption runs in order to determine the non-desorbable (irreversible) fraction.

4. Conclusions

The synthesis of Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ was successful, starting from Ce(NO$_3$)$_3$·6H$_2$O and H$_2$BDC in
solvothermal conditions in DMF at 140 °C. We obtained the same crystal structure reported by D’Arras
et al. [11] using a Ce$^{3+}$ source directly, conversely to the previous contribution. The thermal stability
(up to 475 °C in an inert atmosphere) previously observed by D’Arras et al. [11] was confirmed by our
VTXRD and TGA measurements. Differently from D’Arras et al. [11] we found a discrete surface
area due to microporosity through N$_2$ adsorption isotherms at −196 °C (about 220 m2/g) after thermal
activation in the 250–450 °C range. XAS confirmed the presence of Ce$^{3+}$ in the material also after
desolvation. FTIR spectroscopy confirmed the successful removal of DMF within the pore system at
temperatures above 250 °C, and by means of low-temperature CO adsorption evidenced the presence
of a Ce$^{3+}$ open metal sites. The interaction of the desolvated material with CO$_2$ was characterized by
volumetric and calorimetric measurements, finding a modest capacity of adsorption (about 3.5 wt % at
1 bar and 25 °C) but a relevant enthalpy (32–33 kJ/mol) for the very first dose, compatible with the
presence of open metal sites. This work can open the way to a deep understanding and description of
this MOF crystal structure and phase changes upon activation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/8/2/9/s1,
Figure S1: Diffractograms of 1, 3, 4, and 6 batches: adopted solvent and metal to ratio (M:L) are reported, Figure S2:
Diffractograms of 8, 12, 19 batches: reaction conditions are reported, Figure S3: Diffractograms of batch 19 and
and the MOF reported by D’Arras et al., Figure S4: SEM images of Ce$_5$(BDC)$_{7.5}$(DMF)$_4$ MOF. Part (b) reports a
magnification of a portion reported in part (a), Figure S5: TGA in N₂ (solid line) and dry (dash-dotted line) air flow of Ce₅(BDC)₇.₅(DMF)₄ MOF, Figure S6: Magnitude of the Fourier transform of k² χ(k) EXAFS signal (phase uncorrected) at different temperatures of Ce₅(BDC)₇.₅(DMF)₄. 2.74 < k < 9.874 Å⁻¹ range for the transform is used, Figure S7: Background subtracted CO₂ adsorption FTIR spectra at RT on Ce₅(BDC)₇.₅(DMF)₄ activated 350 °C for 1 h.

Author Contributions: Conceptualization, F.B. and J.E.; Methodology, F.B., J.E., and C.A.; Formal Analysis, C.A.; Investigation, C.A.; Resources, S.B.; Data Curation, C.A.; Writing—Original Draft Preparation, F.B. and C.A.; Writing—Review and Editing, all authors; Visualization, C.A. and F.B.; Validation, V.C.; Supervision, F.B. and S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Italian Ministry of Education, University and Research (MIUR), grant number 2017/KKPSZR (PRIN project). The APC was funded by the same institution.

Acknowledgments: Claudia Barolo is acknowledged for the fruitful discussion during the synthetic procedure optimization. The authors thank Jenny G. Vitillo for the help in collecting the adsorption data and Kirill A. Lomachenko for XAS data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References

