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Abstract—This work aims at distilling a systematic method-
ology to modernize existing sequential scientific codes with a
limited re-designing effort, turning an old codebase into modern
code, i.e., parallel and robust code. We propose an automatable
methodology to parallelize scientific applications designed with
a purely sequential programming mindset, thus possibly using
global variables, aliasing, random number generators, and
stateful functions. We demonstrate the methodology by way of
an astrophysical application, where we model at the same time
the kinematic profiles of 30 disk galaxies with a Monte Carlo
Markov Chain (MCMC), which is sequential by definition. The
parallel code exhibits a 12 times speedup on a 48-core platform.

Keywords-loop parallelism; checkpointing; scientific code;
openMP

[. INTRODUCTION

The shift toward multi-core and many-core technologies
has many drivers that are likely to sustain this trend for
several years to come. Software technology is consequently
changing: in the long term, writing parallel programs that
are efficient, portable, and correct must be no more onerous
than writing sequential programs. To date, however, parallel
programming has not embraced much more than low-level
libraries, which often require the architectural re-design
of the application. While re-designing with an explicitly
parallel approach is still the most effective option to achieve
scalable and efficient parallel codes, this approach is unable
to effectively support the mainstream of software develop-
ment that builds on legacy sequential codebases. In this
context, human productivity and time-to-solution are equally,
if not more, important aspects than performance. Also, re-
design is a treacherous activity because it might impair the
correctness of the code; typical pitfalls are in numerical
stability, validation of results, and usage of random number
generators in parallel codes.

In the last three decades, parallel programming method-
ologies significantly evolved, aiming at easing programmers’
tasks and improving program efficiency. The common thread
of this evolution has been the raising of the level of ab-
straction of concurrency management primitives. A crucial
step in this process has been the definition of algorithmic
paradigms or skeletons (as called by M. Cole in the eighties
[1]-[6]) for which a pre-defined proper parallel implementa-
tion exists. Some of these paradigms have represented real

enabling technologies for whole applicative areas. Among
them, the embarrassingly parallel paradigm (i.e., task farm
skeleton) enabling elasticity in cloud computing [7], the data
parallel paradigm (map and reduce skeletons) enabling the
MapReduce programming model [8] with its whole array
of Apache-BigData solutions and the SIMT programming
model for GPUs. These paradigms happen to work well
because they are explicitly parallel abstractions. The pro-
grammers can directly design their applications within a
specific programming model and verify the compliance of
the embedded sequential code with programming model
constraints, such as associativity of accumulation operations,
concurrent access to shared data structures, absence of a
persistent state in pure functions. Parallel frameworks, offer-
ing programming patterns, allow for the explicit expression
of concurrency in applications to better exploit parallel
hardware. Notwithstanding, a large portion of production
software, from a broad range of scientific and industrial
areas, is still developed sequentially.

This kind of abstraction significantly simplifies the hand-
coding of applications, but it is still too low-level to ef-
fectively automatize the optimization of the parallel code:
here the major weakness lies in the lack of information
concerning the intent of the code (idiom recognition [9]);
inter-procedural/component optimization further exacerbates
the problem. The generative approach focuses on synthesiz-
ing implementations from higher-level specifications rather
than transforming them. The programmer can directly define
these specifications, which, in the form of either higher-order
functions (as in Intel TBB) or directives (as in OpenMP),
can be associated with semantically meaningful points of
the code, such as function calls and loops. Programmer
specifications enable the generation of reasonable parallel
codes, at least in the shared-memory model. In modern
languages, such as C++11, the role of directives can also be
played by artributes, i.e., first-class language statements that
allow the programmer to specify additional information to
enforce compilation constraints or specific code generation,
including parallelization [10].

Among the mentioned meaningful points of the code,
loops are certainly the most common in scientific codes.
They are typically used to navigate arrays and to go through
discretization of dimensions (e.g., time and random walks).
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Since several tools to parallelize a single loop exist, a
cost-effective method enhancing the performance and the
robustness of an entire scientific application revolves around
three main tasks. Firstly, selecting which loops we can cor-
rectly parallelize while avoiding both to restrict parallelism
needlessly and to require complex code transformations that
might affect the numerical stability of the code. Secondly,
selecting which loops are worth to be parallelized. Thirdly,
selecting checkpoints at the beginning of a nonparallelizable
loop that does not appear within a parallel loop. In these
points, the execution is sequential, and all the data structures
are globally consistent and can be quickly resumed.

This work directly aims at codifying a practical guide
for the cost-effective parallelization of scientific applications
in the shared-memory model. The approach is intention-
ally practical and intended to guide both domain expert
practitioners and students wanting to parallelize their codes
without necessarily becoming parallel computing experts.
After a brief outline of related work (Sec. II), we will
discuss the methodology in Sec. III, followed by a sample
application to an astrophysics problem (Sec. IV) and the
corresponding performance evaluations (Sec. V). Finally,
Sec. VI concludes the article.

II. RELATED WORK

One of the main issues when dealing with loop parallelism
is to find a solid strategy for the iterations scheduling
over a set of parallel workers, which must ensure excellent
performances in a wide range of cases while ensuring
sequential equivalence (at least to the extent allowed by the
finite numerical precision of floating-point operations). Since
the nineties, the polytope model has been recognized as the
de-facto way to map data dependency graphs to processing
elements topologies in the context of parallel loops [11].
Indeed, the rich mathematical framework introduced by
lattice theory allows investigating the space of possible
scheduling strategies.

Nowadays, lattice analysis is almost exclusively left to
either the compiler or the runtime layer of a higher-level
parallelization library, which offers a much more straight-
forward and user-friendly interface to developers. Usually,
such interface comes in the form of either higher-order
functions, as in Intel TBB, or #pragma directives, as in
OpenMP or OpenACC [12]. This kind of approach has the
advantage of minimizing the learning curve for developers
with little or no experience in parallel programming while
allowing more expert users to fine-tune their applications
by modifying many optional parameters. For this, these
techniques have been preferred to lower-level alternatives
over time, as explicitly parallel approaches, which provide
more scalability at the cost of a less intuitive interface [13].

The massive amount of sequential codebases pushed the
parallel computing community to find suitable techniques to
provide a fully automatic parallelization of serial codes [14],

[15]. The main drawback of this kind of approach is that, to
ensure correctness in all cases, often some straightforwardly
removable dependencies prevent full exploitation of the
potential parallelism degree. As a result, the performance
improvement against the baseline is often modest. Unfor-
tunately, even hybrid approaches like OpenMP can often
perform much below the expectations, due to the inability of
the underlying runtime in finding the best way to rearrange
data dependencies. Conversely, a minor and straightforward
reorganization of some small portions of the code can
significantly improve the overall performances. Neverthe-
less, a significant gap exists between the toy examples
commonly provided in OpenMP tutorials and guidelines and
real scientific applications with multi-level nested loops and,
potentially, parallel random number generation. The aim of
this work is precisely to fill this gap, providing a practical
but generic enough methodology for loop parallelization of
a typical scientific code. Even if in literature there are some
examples of the application of OpenMP to serial scientific
codes [16], [17], the discussion is usually very focused on
the analysed case, making it difficult for researchers without
parallel programming experience to generalize concepts and
apply them to a similar but different problem.

Other tools are trying to go beyond the state of the art,
trying to find several different parallel patterns in the code,
rather than simply loops [18]. Tools as Parallel Pattern
Analyzer Tool [19] aim at identifying some patterns, includ-
ing the map pattern (i.e., loop-independent loop), but also
the pipeline and farm patterns, which are typical of event
processing (streaming).

III. METHODS

The most prominent control flow statement in scientific
codes is the loop, which denotes iterative computations.
Pragmatically, the for-loop iterates over arrays of data,
whereas the while loop iterates up to a given convergence
criterion [20]. They can appear juxtaposed in a sequence
or nested in any order. Code in the loop body might
exhibit a network of dependencies among different loops
and iterations of the same loop. Examples are in:

e Farticle simulations, in which an internal loop com-
putes quantities related to each particle and an external
loop advances the simulation time step.

o Optimization algorithms, in which one or more internal
loops iterate over a subset of the solution space and an
external loop updates the best solution and the heuristic
parameters.

e ODE solvers, in which internal loops iterate over dif-
ferent functions or subsystems and an external loop
advances the time step.

To parallelize a nested loop program, we advocate the

following methodology:

1) Identify all parallelizable loops in the code, according

to a depth-first search strategy.



2) Evaluate the potential performance gain obtainable
modifying each parallelizable loop, filtering out those
that are not worth the parallelization effort.

3) Make each of the remaining candidate loops self-
contained, to remove true data dependencies among
different iterations.

4) Use nonparallelizable loops as a reference to imple-
ment a checkpointing logic, to support stop-resume
behaviour.

We will detail these steps in the remaining sections.

A. Identify parallelizable loops

We say that A and B are nested loops when the statements
of loop B are a proper subset of the statements of loop A.
In the most general case, due to procedure/function calls,
the described loop inclusion relationship generates a (cyclic)
graph of loops and is too weak to identify parallelizable
loops. For this, given a code containing multi-level nested
loops, it is useful to induce a partial order relation in
the inclusion graph using some additional relations to turn
the graph into a tree. A good example is the domination
relationship [21], which induces the loop-nest tree, in which
each node refers to a distinct loop and a node B is a child of
node A if they are nested loops, and no other loop appears
between them. To put all loops in the same tree, we can
consider the entire program body as a pseudo-loop with only
one iteration, and we can use it as the root of the tree.

A generic and formal treatment of this concept requires
some technicalities from graph theory. However, in many
common cases, it is quite simple to construct such a tree
just by carefully analysing the code. Such representation
of multi-level nested loops suggests a parallelizing strategy
consisting in considering one loop at a time with a depth-first
search technique, starting from the most external level. In
this setting, we consider the single iteration of the loop as an
atomic work unit, and a synchronization barrier is (implicitly
or explicitly) placed at the end of each loop, ensuring to
preserve potential inter-loop dependencies.

Bernstein’s seminal paper clearly states that the problem
of determining if two arbitrary program sections are paral-
lelizable is undecidable and offers sufficient conditions to
assert that two sections can be executed in parallel by way
of three kinds of data dependencies: true dependencies, anti-
dependencies and output dependencies [22].

We can categorized loops as:

o Loop-independent, when iteration ¢ does not depend on
any iteration j < ¢,V: < N.

o Loop-carried when dn > 1 s.t. iteration ¢ depends on
iteration i — n.

Loops with independent iterations can be trivially paral-
lelized, whereas in the presence of loop-carried dependen-
cies things get more involved. Unfortunately, loops that are
not written with a parallel mindset can sometimes contain

unnecessary dependencies. They are generally due to certain
sequential coding habits, such as “reusing” variable names
for other purposes (inducing anti- and output dependencies).
They can be automatically removed using techniques such as
variable privatization, i.e., using multiple copies of the same
variable. Loop induction variables are a typical example
of variables that can be privatized. True dependencies are
much harder to address and have been the object of intense
research [11]. The parallelization of loops that have loop-
carried dependencies in their original form is often possible
by transforming the loop into some new form in which the
dependencies are removed or arranged to occur at a sufficient
distance so that concurrent iterations do not conflict. A
paradigmatic example is the substitution of an accumulator
variable with a reduce (higher-order) function (over an array
of privatized variables). However, not all true dependencies
can be eliminated via a reduce function. A typical case
is when the accumulation operation is not associative, as
it happens for updating a variable with the next random
number in a sequence.

A practical way to parallelize a program is to descend the
loop hierarchy until a parallelizable loop is found. Unfortu-
nately, things can get a bit more complicated in the presence
of conditional branches, which can make the parallelizability
of a loop a data-dependent property. In this case, it is useful
to identify the most computationally demanding paths in
the control flow graph and separate them from the rest of
the code in dedicated procedure calls to reduce complexity.
Another potential source of complication arises in those
cases when a function containing a loop in its body is
called multiple times in the code. In such a scenario, the
same loop can appear multiple times in different positions of
the hierarchy, with different parallelizability properties each
time. In this case, a good strategy would be to maintain a
serial version of the function for the nonparallelizable cases,
together with one or more parallel versions for the others.

B. Evaluate potential performance gain

Every time the previously described depth-first search
encounters a parallelizable loop, it is necessary to evaluate
the potential benefit introduced by a parallel implementation,
which always comes with a certain amount of overhead
introduced by synchronizations among different workers.
When the effective computation time of a parallel section
(called grain) becomes too small, parallelization can result in
even worse performances than the original serial version. On
a modern multi-core platform, the mainstream frameworks
such as OpenMP or Intel TBB exhibit a lower limit for the
grain which can be considered on the order of tens of thou-
sands of clock cycles. Finer grains can be addressed only
with lock-free programming frameworks, such as Fastflow,
that can support grains down to hundreds of clock cycles
[5].

Some useful quantities that should be taken into account



when estimating the potential performance gain introduced
by the parallelization of a specific loop are the number
of iterations, which affect the maximum obtainable degree
of parallelism, and the fotal time spent by the program
inside the loop, which determines the maximum achievable
speedup. In some cases, when these estimations are com-
plicated due to the presence of a high number of branching
constructs or external procedure calls, a call-graph tool like
Callgrind [23] can be considerably helpful.

In general, it would be better to parallelize an outer
loop instead of one of its nested counterparts, because this
strategy minimizes the introduced overheads, e.g., for thread
creation and synchronization, even if we cannot define a
better strategy. For example, if a loop has very few iterations,
the parallelization of one or more of its inner loops can lead
to better results and, if the code runs on many processors,
the parallelization of both inner and outer loops can be more
convenient [24]. Nevertheless, an effective greedy technique
would be to start parallelizing the suitable outermost loop,
where suitable means both feasible and convenient, and
then descend the loop hierarchy parallelizing suitable nested
loops until either performance requirements are met, or no
noticeable speedup is brought by further optimizations.

Once all candidates for parallelization have been iden-
tified, it is worth to evaluate the maximum performance
gain that can be expected after the effective transformation
of the program. To predict the performance of a parallel
code, we have to investigate its potential strong and weak
scalability. Strong scaling represents the ability of a software
to solve a problem of fixed size faster with a higher amount
of computing resources and it is strictly related to the notion
of speedup of a program. The speedup S is defined as the
ratio between the time t5 taken by the sequential code and
the time ¢,,(n) taken by the parallel code with an increasing
number of processing elements n.

The ideal speedup is linear. Nevertheless, in a real sce-
nario, it is limited by those portions of the code that
cannot be parallelized. More precisely, as Amdahl stated
in 1967 [25], an upper bound for a program speedup can
be expressed as the inverse of s + p/n, where s is the
fraction of the total execution time of the code spent by
the serial portion of the code, and p is the fraction of the
total execution time of the code spent by the parallelized
part. Unfortunately, Amdahl’s law does not take into account
all the overheads introduced by a parallel implementation,
e.g., communications and synchronizations among different
workers or initialization of processes/threads. Indeed, actual
performances of a program are usually worse than those
derived from such law.

Whereas strong scaling is investigated for a problem of
fixed size, weak scaling is investigated for a problem of
variable size, keeping constant the amount of work assigned
to each computing resource. Gustafson’s law, formulated in
1988 [26], describes the scaled speedup as s + p X n. This

law states that the size of a problem scales with the available
number of processors: the time spent in the parallel part of
the code linearly grows with processors, whereas the time
spent in the serial part of the code remains constant with
the size of the problem. This means that, if a code is fully
parallelizable, the time spent by a problem of size n to run
on n processors will remain constant. The scaled speedup
does not have an upper limit.

C. Make loops self-contained

Once we have identified a loop that is worth to parallelize,
it is necessary to transform the iterative construct into a
self-contained procedure call, which takes in input all the
externally declared variables used inside an iteration. If the
code is parallelized on a many-core accelerator with a local
address space, all the external variables have to be passed
by value as arguments of the newly created procedure.
Otherwise, this is necessary only for the variables that have
to be written inside the body of the procedure. Nevertheless,
some modern programming models for hardware accelera-
tors (such as latest versions of CUDA) provide an abstract
unified address space between host and device memory and
manage data transfers under the hood, considerably reducing
the programming effort.

Frequently a loop is used to iterate over an array of inputs
to produce an array of outputs, but it is not uncommon
that such loop is immediately followed by another loop that
combines all the produced elements in a single value, by
means of an associative binary operator (e.g., the sum or the
product). When thinking about parallel implementations, this
particular pattern can be transformed into a reduce operation.
With an input array of n elements and n workers, a reduce
pattern is able to produce the final output in log n time steps.

Both the transformation of iterative constructs into self-
contained procedure calls and the implementation of the
reduce function can either be performed manually or left
to an external library like OpenMP or OpenACC. It is
always recommended to start with the second approach
since it is much easier and faster to implement and can
guarantee better performance portability among different
hardware architectures. Instead, we can resort to a manual
implementation only when appropriate.

D. Deal with random number generators

The complexity in dealing with random number gen-
erators in parallel codes is due to their stateful nature,
which is primarily aimed at approximating genuinely ran-
dom numbers with actually deterministic numbers generated
with pseudo-random number generators (PRNG). These
numbers can be reproduced if the state of the PRNG is
known. PRNGs appearing in sections of code that are
sequentially executed do not need special care but rather
the moment of generation can be used as a checkpoint (see
Sec. III-E). On the contrary, their parallelization requires



special care. Firstly, the PRNG implementation should be
thread-safe, i.e., performed from multiple threads safely and
reentrant, i.e., performed from multiple actors of the same
thread safely (called multiple times within the same thread).
Secondly, to enforce reproducibility, the random sequence
generated in each parallel section should be deterministic,
thus independent of the relative execution order of the
parallel sections. This is achieved by privatizing the random
induction variable. In object-oriented languages, this can
be easily achieved by using an array of PRNG objects.
Thirdly, to enforce correctness and reproducibility, the array
of PRNG objects should be initialized with a seed generated
with a master PRNG implemented with another algorithm,
since using the same algorithm is going to reduce the
period and induce loss of uniformity of distribution in
generated numbers. Once the seed of the master PRNG is
fixed, the sequence of random numbers generated in each
parallel section should be deterministic. Fourthly, scientists
should know that parallelizing a section of code with PRNG
breaks sequential equivalence, i.e., the results computed by
the sequential and the parallel codes are different. It is a
scientist’s duty to prove that the sequential and the parallel
codes compute the same stochastic process.

E. Implement checkpointing logic

The sequential regions of a parallel code do not provide a
gain in performance, but they can provide another advantage.
Indeed, since they define a global order in the execution of
the program, they can be defined as checkpoints. A check-
point is a snapshot of the entire state of the process at the
moment it was taken, which represents all the information
needed to restart the process from that point [27]. Usually,
checkpoints are recorded on stable storage that is persistent
storage with some reliability requirements.

Two essential concepts related to checkpoints are the
checkpointing overhead, i.e., the increase in the total exe-
cution time caused by the introduction of the checkpointing
procedure, and the checkpointing latency, i.e., the time
needed to save the checkpoint. The aim of an appropriate
checkpointing strategy is to minimize the first quantity. In
order to do that, two different approaches are possible. The
first is to try to minimize latency, either using more ad-
vanced storage and communication technologies or reducing
the amount of data that must be stored. The other is to
store checkpointing data asynchronously, reducing overhead
regardless of latency. Often, a combination of the two gives
the best results.

As an example, a checkpoint can be defined in a random
sequence of numbers initialized with a given seed. If the
application fail-stops in a given point in the sequence, it
is possible to restart it from the same point, provided that
the state of the random number generator is saved at every
iteration in permanent storage. In this work, we can see
that this procedure is particularly useful in Monte Carlo

Markov Chains (MCMCs), that can be quite computationally
expensive.

IV. APPLICATION TO ASTROPHYSICS

We apply the parallelization procedure described above
to an astrophysical case. We model, at the same time, the
rotation curves and the vertical velocity dispersions from
the mass distributions of 30 disk galaxies belonging to the
Disk Mass Survey [28], exploring the agreement between the
models and the measured data with a Bayesian approach. We
run a MCMC for 19000 iterations after 1000 burn-in steps,
a number suitable to reach a good convergence.

We adopt flat priors for the free parameters of the
model and a Metropolis-Hastings acceptance criterion for
the MCMC, obtaining the random variate Z at the step i + 1
from the multi-variate Gaussian probability density G(Z|Z;)
peaked at Z;, the random variate at the previous MCMC
step. We define a Metropolis-Hasting ratio

p(7) x L(Z) G(T]7:)
p(@) x L(Z;) G(T|T) 7
where 7 is the free parameters vector, p(Z) is the product of

the priors of the parameters and £(Z) = +/exp [—x2..(¥)] is

the likelihood. If Ry > 1 & is accepted, else it is accepted
with probability Ry or rejected with probability 1 — Ryyy.

6]

Ry =

A. Serial version

The overall structure of the code, written in C++, is
reported in Fig. 1. A first preparatory step imports some
input data from external files. Among them we find, for
each galaxy, the mass density, the kinematic data, that have
to be compared with the models, and the features of the
grid where the gravitational potential, the gravitational field
and the kinematic profiles of the galaxy are computed. Right
after the data import, we define the priors and initialize the
MCMC.

The main body of the program consists of two nested
for-loops. The most external loop iterates on the number of
MCMC iterations we decide to perform, while the internal
one iterates on the number of galaxies present in the sample.
Within the second level for-loop we have to execute the same
sequence of operations for every galaxy:

1) Computation of the galaxy’s gravitational potential ¢

from its mass density p, solving the Poisson equation

V2P(R,2) + S(p; R, 2) =0 )

with a Successive Over Relaxation Poisson solver [29],
where S(p; R, z) is the source term.

2) Computation of the radial and vertical derivatives of
¢ (gravitational field).

3) Computation of the rotation curve and the vertical
velocity dispersion profile and their respective x2.

After that, the x2 of the rotation curve and of the vertical
velocity dispersion computed for each galaxy are reduced
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Figure 1. Flowchart for the serial version of the program.

(with sum operation) to obtain the global likelihood. Then,
both the inner for-loop and the reduce operation are repeated
for the second part of the MCMC, starting from a new
combination of free parameters randomly generated from
the previous one. Finally, a Metropolis-Hastings acceptance
criterion is applied to accept or reject the last combination
of parameters for the next iteration of the MCMC.

B. Parallel implementation

Since this code involves many galaxies, whose quantities
are discretized, for each of them, on a grid of 100-150k
points, its sequential execution can become very slow when
several MCMC iterations are required to reach a good con-
vergence. In particular, the most computationally expensive
region of the code is the Poisson solver, which we have to
run 2 x 30 times per MCMC iteration.

For this reason, it is worth to parallelize this code follow-
ing the methods explained in Sec. III. First of all, we identify
the code regions with true data dependencies. The first
important region is the MCMC, which is a sequential process
by definition as the new combination of free parameters is
drawn from the previous one at every step. This region
cannot, therefore, be parallelized, but it can be used for
checkpointing purposes (more details are in Sec. IV-C).
The second region is made of the innermost loops, which
compute the field of every galaxy from the potential and the
kinematic profiles from the field.

Then, we identify the points without true data depen-
dencies, which can be parallelized. This region is the sec-
ond level for-loop that iterates on the number of galaxies
in the sample. Since we independently perform the same
operations for every galaxy, this loop results embarrass-
ingly parallelizable. Also, the reduce operation can be
parallelized, implying an eliminable dependence since it is
based on an associative binary operator (the sum in this
case) on the x? derived from the kinematic profiles of
each galaxy. For this reason, we put the reduce operation
within the for-loop that iterates on the number of galaxies.
We parallelize this for-loop using the OpenMP library,
with the #pragma omp parallel for shared (x?)
reduction (+: x2Z,) directive, obtaining the structure
reported in Fig. 2.

Poisson Potential Kinematic
solver derivatives profiles
Number of : Parallel reduce
galaxies o sum
Poisson Potential Kinematic
solver derivatives profiles

Flowchart for the parallel version of the galaxies loop.

Figure 2.

C. Checkpoints

The MCMC can be very computationally demanding,
requiring an execution time of one week on a modern
platform even after an adequate optimization process. During
such a long period, the code can be interrupted for many
reasons and restarting it from the beginning after every stop
would result in a severe loss of time.

In our MCMC, we implement two random sequences
initialized with the same seed. The first is the sequence
for a random number U, that follows a real uniform dis-
tribution between 0 and 1. Its definition is necessary for the
Metropolis-Hastings criterion: if Ryy > U Z;y11 = Z, else
Zi+1 = &;. The second is the sequence for a multi-variate
random variable that follows a normal distribution peaked
on the previous combination of free parameters with a given
standard deviation, used to generate the new combination of
free parameters from the previous one.

To implement these two random sequences, we define
two pseudo uniform random number generators, G; and G,
from the C++ library Boost. Every 1000 iterations we print
in text files, using the ofstream operator, the following
information: 1) The values of the generators G; and G5 at
the beginning of the MCMC iteration; 2) The parameters
chains at the end of the MCMC iteration. If the code is
interrupted between the MCMC iterations 7000 and 8000,
before the MCMC for-loop we import, using the 1 fstream
operator, the chains made of the first 7000 parameters and
the two generators saved at iteration 7000. At this point, it
is sufficient to start the MCMC for-loop at iteration 7000,
so we can complete the chain without restarting it from the
beginning.

V. PERFORMANCE EVALUATION

We investigate the strong and the weak scaling of this
code to test its performance. To perform these tests, we only
take 5 MCMC iterations to operate in reasonable timescales.
We perform the tests on a Linux OS running on a 48-core
platform (quad-socket Intel Xeon E7, 12 physical cores per
socket) with 768 GB of memory. The following performance
analysis also includes the impact of the numa control on the
results. On UNIX systems, a process can be launched with
the numactl command, which spreads the computation on
different sockets and affects how data are stored in different
cache levels. In particular, the interleave all mode keeps all



the cores available in all the sockets, whatever the number
of threads, allocating memory on all sockets using a round-
robin strategy. Conversely, the block mode uses one socket
per time, until the number of threads saturates its cores. For
comparison, we also investigate the strong and the weak
scaling of the code on a Linux OS running on a 24-core
platform (two-socket Intel Xeon ES5, 12 physical cores per
socket) with 128 GB of memory, using the default policy of
the machine (without the numa control).

A. Strong scaling

To investigate the strong scaling of this code, we consider
the entire galaxy sample. To measure the actual speedup of
our code we take the CPU time of each MCMC iteration
with the function gettimeofday (us) setting in the latter
an increasing number of threads from 1 to 48 with the
omp_set_num_threads (Nthreads) function, where
the number of threads Nthreads is taken in input from an
external file.

The left panel of Fig. 3 shows the strong scaling (speedup)
with the numa control in the block mode (red line) and
in the interleave all mode (blue line) and with the default
policy of the machine (green line) on the 48-core platform,
where t, and ¢, are the execution times for the sequential
and the parallel code, respectively. Each point of the plot
is the average over 5 MCMC runs. The errors on the ratio
ts/ tp, shown in the figure as shaded areas, are calculated by
propagating the uncertainties on ¢ and ;,, which in turn are
the standard deviations of the times of the five respective
iterations.

This figure shows that the ideal law S = Nipyeaqs holds
more or less from 1 to 4 threads, but there is still a quite
good linear trend until 9-10 threads. Then, the measures start
to increase more slowly, converging to an asymptotic value
around 12. According to the Amdahl’s law, this means that
the time of the serial fraction of the code is about 1/12 of
the total computational time. However, this asymptotic value
is reached in different ways in the three modes.

The speedup of the code is comparable among the three
modes only for a number of threads between 1 and 9 and
between 35 and 48. For an intermediate number of threads,
the speedup in the block mode increases more slowly than
in the other two cases. This means that, if we operate in
the block mode, we need a number of threads equal to the
resources of the entire machine, or of a large part of it,
to obtain the maximum gain in performance. Instead, with
the default policy of the machine and in the interleave all
mode, whose strong scaling curves are very similar, we only
need a number of threads equal to half of the resources of
the machine. Between 10 and 34 threads, the default and
the interleave all modes provide a better gain in performance
than the block mode.

From the left panel of Fig. 3 we can notice the big jump in
performance between 24 and 25 threads in the default and in

the interleave all modes. In the block mode, we can observe
an abrupt slowdown of the parallel code in correspondence
of 13 threads, which is where the number of threads has
saturated the first socket and has just started to use the
second one.

The left panel of Fig. 4 shows the strong scaling with
the default policy of the machine on the 24-core platform.
Qualitatively the trend of this strong scaling curve is quite
similar to the corresponding one on the 48-core platform.
Nevertheless, the most striking difference is the asymptotic
value reached by the speedup that on the 24-core platform
is around 8 and on the 48-core platform is around 12.

B. Weak scaling

In order to investigate weak scaling, we have to define
a unit of work. Since the parallelized for-loop iterates on
the number of galaxies in the considered sample, so that
the larger the number of galaxies, the more computational
demanding the code, we define one galaxy as our unit of
work. At this point, we measure the time spent by the
program with n galaxies run on n threads, where n goes
from 1 to 48. The galaxies in our original sample are
all different between each other. Nevertheless, to consider
homogeneous units of work, we choose a single galaxy and
we run the related computation once on a single-core, twice
on two cores and so forth.

In the right panel of Fig. 3 we plot the mean time in
seconds of each MCMC iteration in function of the number
of used threads, which coincides with the number of used
galaxies, for the default (green line), the interleave all (blue
line) and the block modes (red line). As in the left panel of
the same figure, the shaded areas show the error bars of the
measures, taken as the standard deviations of the times of the
five respective iterations. If the code were fully parallelizable
the time would remain constant, for whichever number of
threads equal to the number of galaxies but there is often a
section of code which remains sequential which makes the
trend not perfectly constant.

We can observe different trends in the three modes. As for
the strong scaling, the weak scaling curves corresponding to
the default and the interleave all modes are quite similar.
With these two modes, there is a very gradual slowdown of
the code from 1 to 37 threads, where the time passes from
4.9 to 5.9 seconds in the interleave all mode and from 4.9
to 6.2 seconds in the default mode. We can thus state that
weak scalability is mostly satisfied in this range of threads.
Then the code shows a steeper slowdown from 37 to 48
threads, where we lose almost two seconds in performance,
passing from ~ 6 to 7.7 or 7.9 seconds, in the interleave all
and in the default modes, respectively. We can see regular
bumps of the time from 4 to 37 threads.

In the block mode, we observe almost the same global
trend as in the default and in the interleave all modes,
but passing from 1 to 14 threads, which means that the



slowdown of the code occurs faster. After 14 threads, the
mean time of each MCMC iteration remains almost constant,
around 7.5 seconds, and the standard deviation of the
measures increases. Also this test shows that the default
and the interleave all modes provide the highest efficiency,
which means that to obtain the best performance gain we
have to use the entire machine. In this test, the interleave all
mode appears slightly more efficient than the default mode.
Conversely, using only a part of the machine sufficient to
host the number of used threads, as in the block mode, leads
to a loss in performance.

The right panel of Fig. 4 shows the weak scaling in
the default policy of the machine on the 24-core platform.
The time remains mostly constant from 1 to 10 threads,
and it shows a gradual slowdown until 24 threads, passing
along the entire considered range of threads from 4.7 to
5.8 seconds. So, the default mode on the 24-core platform
from 1 to 24 threads almost behaves like the corresponding
curve on the 48-core platform between 1 and 37 threads. The
default curve on the 48-core platform appears flatter than the
corresponding curve on the 24-core platform between 1 and
24 threads.

We can state that our code satisfies weak scalability since
the mean time of one MCMC Iiteration remains mostly
constant for quite long intervals of threads equal to the
number of galaxies.

VI. CONCLUSION

We described a practical methodology for the cost-
effective parallelization of scientific applications, and we
applied it to an astrophysical case, where we modelled
the kinematic profiles of a sample of galaxies considered
at the same time with a MCMC. The MCMC is a deter-
ministic sequence dominated by a strict true dependence
between successive steps, and therefore it cannot be fully
parallelized. We defined a checkpoint every 1000 MCMC
iterations, removing the need to restart the MCMC from the
beginning when the code execution is interrupted. Within
the MCMC for-loop, another internal for-loop iterates on
an array of galaxies, which are independent of each other.
We parallelized this loop with OpenMP. For reproducibility
of results, the code and the input dataset have been made
publicly available (https://github.com/alpha-unito/astroMP).

We analysed the performance of this code by investigating
its strong and weak scaling. Regarding the former, results
show that the maximum gain factor obtained by parallelizing
this code is around 12 on a 48-core platform and around
8 on a 24-core platform. Concerning weak scalability, the
mean time spent by one MCMC iteration is approximately
constant in large intervals of threads equal in number to the
used galaxies, where one galaxy is considered as our unit
of work.

We pass from a total computing time of 6.1 Ms (~71
days) for the sequential version of the code to a total

computing time of 0.52 Ms (~6 days) for the parallel version
of the code with the maximum gain factor, considering all
the 20000 MCMC iterations.

Given the simplicity and the generality of the proposed
parallelization methodology, it can be applied to different
problems concerning different topics, like particle simu-
lations, optimization algorithms, ODE solvers or particle
hydrodynamics simulations. In general, it can be applied to
any code whose control flow statements are made of loops,
which can be defined either in sequence or nested.
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