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EVERY ZERO-DIMENSIONAL HOMOGENEOUS SPACE IS

STRONGLY HOMOGENEOUS UNDER DETERMINACY

RAPHAËL CARROY, ANDREA MEDINI, AND SANDRA MÜLLER

Abstract. All spaces are assumed to be separable and metrizable. We show

that, assuming the Axiom of Determinacy, every zero-dimensional homoge-
neous space is strongly homogeneous (that is, all its non-empty clopen sub-

spaces are homeomorphic), with the trivial exception of locally compact spaces.

In fact, we obtain a more general result on the uniqueness of zero-dimensional
homogeneous spaces which generate a given Wadge class. This extends work

of van Engelen (who obtained the corresponding results for Borel spaces) and

complements a result of van Douwen.

1. Introduction

Throughout this article, unless we specify otherwise, we will be working in the
theory ZF`DC, that is, the usual axioms of Zermelo-Fraenkel (without the Axiom
of Choice) plus the Principle of Dependent Choices (see Section 2 for more details).
By space we always mean separable metrizable topological space. A space X is
homogeneous if for every x, y P X there exists a homeomorphism h : X ÝÑ X
such that hpxq “ y. For example, using translations, it is easy to see that every
topological group is homogeneous (as [vE3, Corollary 3.6.6] shows, the converse is
not true, not even for zero-dimensional Borel spaces). Homogeneity is a classical
notion in topology, which has been studied in depth (see for example [AvM]). In
particular, in his remarkable doctoral thesis [vE3] (see also [vE1] and [vE2]), Fons
van Engelen gave a complete classification of the homogeneous zero-dimensional
Borel spaces. In fact, as we will make more precise, this article is inspired by his
work and relies heavily on some of his techniques.

A space X is strongly homogeneous (or h-homogeneous) if every non-empty
clopen subspace of X is homeomorphic to X. This notion has been studied by
several authors, both “instrumentally” and for its own sake (see the list of refer-
ences in [Me1]). It is well-known that every zero-dimensional strongly homogeneous
space is homogeneous (see for example [vE3, 1.9.1] or [Me2, Proposition 3.32]). Our
main result shows that, under the Axiom of Determinacy (briefly, AD) the converse
also holds (with the trivial exception of locally compact spaces, see Proposition
2.5). For the proof, see Corollary 15.3.
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Theorem 1.1. Assume AD. If X is a zero-dimensional homogeneous space that is
not locally compact then X is strongly homogeneous.

The above theorem follows from a uniqueness result about zero-dimensional ho-
mogeneous spaces, namely Theorem 15.2, which is of independent interest. This
theorem essentially states that, for every sufficiently high level of complexity Γ,
there are at most two homogeneous zero-dimensional spaces of complexity exactly
Γ (one meager and one Baire).

Our fundamental tool will be Wadge theory, which was founded by William
Wadge in his doctoral thesis [Wa1] (see also [Wa2]), and has become a classical
topic in descriptive set theory. In fact, most of this article (Sections 3 to 13)
is purely Wadge-theoretic in character. The ultimate goal of the Wadge-theoretic
portion of the paper is to show that good Wadge classes are closed under intersection
with Π0

2 sets (see Section 12), hence they are reasonably closed (see Section 13).
Homogeneity comes into play in Section 14, where we show that rXs is a good
Wadge class whenever X is a homogeneous space of sufficiently high complexity.
This will allow us to use a theorem of Steel from [St2], which will in turn yield the
uniqueness result mentioned above (see Section 15). In the preceding sections, the
necessary tools are developed. More specifically, Section 4 is devoted to the analysis
of the selfdual Wadge classes, Sections 5 to 8 develop the machinery of relativization
through Hausdorff operations, and Sections 9 to 11 develop the notions of level and
expansion.

The application of Wadge theory to the study of homogeneous spaces was pio-
neered by van Engelen in [vE3], who obtained the classification mentioned above.
As a corollary (namely, [vE3, Corollary 4.4.6]), he obtained the Borel version of
Theorem 1.1. The reason why his results are limited to Borel spaces is that they
are all based on the fine analysis of the Borel Wadge classes given by Louveau in
[Lo1]. Fully extending this analysis beyond the Borel realm appears to be a very
hard problem (although partial results have been obtained in [Fo]). Here, we will
follow a different strategy, and we will “substitute” facts from [Lo1] about Borel
Wadge classes with more general results about arbitrary Wadge classes (under AD).
Furthermore, since most of the literature on Wadge theory only deals with ωω as
the ambient space, while Steel’s theorem is stated for 2ω, we decided to work in the
context of arbitrary zero-dimensional uncountable Polish spaces. With regard to
these issues, Louveau’s book [Lo2] and van Wesep’s results on Hausdorff operations
from [VW1] were crucial.

At this point, it is natural to ask whether assuming AD is really necessary in
the above results. As the following theorem shows, the answer is “yes”. This result
was essentially proved in [vD], but our exposition is based on [vM, Theorem 5.1].
Following [vM], we will say that X Ď R is a bi-Bernstein set if K X X ‰ ∅ and
K X pRzXq ‰ ∅ for every K Ď R that is homeomorphic to 2ω.

Theorem 1.2 (van Douwen). There exists a ZFC example X of a homogeneous
zero-dimensional space that is not locally compact and not strongly homogeneous.

Proof. Let X be the space given by [vM, proof of Theorem 5.1]. Notice that X
is homogeneous because X is a subgroup of R. Furthermore, X is a bi-Bernstein
set by [vM, Proposition 4.5]. It follows that both X and RzX are dense in R. In
particular, X is zero-dimensional and not locally compact.
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Given any Borel subset B of X, pick a Borel subset A of R such that AXX “ B,
then define µpBq “ µpAq, where µ denotes the Lebesgue measure on R. Using the
fact that X is bi-Bernstein, it is easy to check that µ is a well-defined measure on
the Borel subsets of X. The crucial property of µ, as given by the statement of
[vM, Theorem 5.1], is that if B and C are homeomorphic Borel subspaces of X,
then µpBq “ µpCq.

Now pick a, b, c P RzX such that a ă b ă c. Observe that U “ pa, bq X X and
V “ pa, cq XX are non-empty clopen subsets of X. Furthermore, it is clear from
the definition of µ that µpUq “ b´ a ‰ c´ a “ µpV q. Therefore U and V are not
homeomorphic, which concludes the proof. �

However, we do not know the answer to the following question. Recall that,
when Γ “ Σ1

n or Γ “ Π1
n for some n ě 1, a space is Γ if it is homeomorphic to a Γ

subspace of some Polish space (see [MZ, Section 4] for a more detailed treatment).

Question 1.3. Assuming V “ L, is it possible to construct a zero-dimensional Π1
1 or

Σ1
1 space that is homogeneous, not locally compact, and not strongly homogeneous?

The above question is natural because there are many examples of properties
(such as the perfect set property1) that are known to hold for all spaces under AD,
for which definable counterexamples can be constructed under V “ L. Notice that
Π1

1 and Σ1
1 are optimal by [vE3, Corollary 4.4.6]. For other relevant examples, see

[vEMS, Theorem 2.6], [Mi], and [Vi].

2. Preliminaries and notation

Let Z be a set, and let Γ Ď PpZq. Define Γ̌ “ tZzA : A P Γu. We will say that
Γ is selfdual if Γ “ Γ̌. Also define ∆pΓq “ ΓX Γ̌.

Definition 2.1 (Wadge). Let Z be a space, and let A,B Ď Z. We will write
A ď B if there exists a continuous function f : Z ÝÑ Z such that A “ f´1rBs.2

In this case, we will say that A is Wadge-reducible to B, and that f witnesses the
reduction. We will write A ă B if A ď B and B ę A. We will write A ” B if
A ď B and B ď A.

Definition 2.2 (Wadge). Let Z be a space. Given A Ď Z, define

rAs “ tB Ď Z : B ď Au.

We will say that Γ Ď PpZq is a Wadge class if there exists A Ď Z such that
Γ “ rAs. We will say that Γ Ď PpZq is continuously closed if rAs Ď Γ for every
A P Γ.

Both of the above definitions depend of course on the space Z. Often, for the
sake of clarity, we will specify what the ambient space is by saying, for example,
that “A ď B in Z” or “Γ is a Wadge class in Z”. We will say that A Ď Z is selfdual
if A ď ZzA in Z. It is easy to check that A is selfdual iff rAs is selfdual. Given a
space Z, we will also use the following shorthand notation:

‚ SDpZq “ tΓ : Γ is a selfdual Wadge class in Zu,

1To see that every space has the perfect set property under AD, proceed as in [Ke, Section
21.A]. For the counterexample under V “ L, see [Ka, Theorem 13.12].

2Wadge-reduction is usually denoted by ďW, which allows to distinguish it from other types
of reduction (such as Lipschitz-reduction). Since we will not consider any other type of reduction
in this article, we decided to simplify the notation.
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‚ NSDpZq “ tΓ : Γ is a non-selfdual Wadge class in Zu.

Our reference for descriptive set theory is [Ke]. In particular, we assume fa-
miliarity with the basic theory of Borel sets and Polish spaces, and use the same
notation as in [Ke, Section 11.B]. For example, given a space Z, we use Σ0

1pZq,
Π0

1pZq, and ∆0
1pZq to denote the collection of all open, closed, and clopen subsets

of Z respectively. Our reference for other set-theoretic notions is [Je].
The classes defined below constitute the so-called difference hierarchy (or small

Borel sets). For a detailed treatment, see [Ke, Section 22.E] or [vE3, Chapter 3].
Here, we will only mention that the DηpΣ

0
ξpZqq are among the simplest concrete

examples of Wadge classes (see Propositions 9.3 and 9.6).

Definition 2.3 (Kuratowski). Let Z be a space, let 1 ď η ă ω1 and 1 ď ξ ă ω1.
Given a sequence of sets pAµ : µ ă ηq, define

DηpAµ : µ ă ηq “

" Ť

tAµz
Ť

ζăµAζ : µ ă η and µ is oddu if η is even,
Ť

tAµz
Ť

ζăµAζ : µ ă η and µ is evenu if η is odd.

Define A P DηpΣ
0
ξpZqq if there exists a Ď-increasing sequence pAµ : µ ă ηq such

that Aµ P Σ0
ξpZq for each µ and A “ DηpAµ : µ ă ηq.

For an introduction to the topic of games, we refer the reader to [Ke, Section
20]. Here, we only want to give the precise definition of determinacy. A play of the
game Gpω,Xq is decribed by the diagram

I a0 a2 ¨ ¨ ¨

II a1 a3 ¨ ¨ ¨ ,

in which an P ω for every n P ω and X Ď ωω is called the payoff set. We will say
that Player I wins this play of the game Gpω,Xq if pa0, a1, . . .q P X. Player II wins
if Player I does not win.

A strategy for a player is a function σ : ωăω ÝÑ ω. We will say that σ is a
winning strategy for Player I if setting a2n “ σpa1, a3, . . . , a2n´1q for each n makes
Player I win for every pa1, a3, . . .q P ω

ω. A winning strategy for Player II is defined
similarly. We will say that the game Gpω,Xq (or simply the set X) is determined
if (exactly) one of the players has a winning strategy. The Axiom of Determinacy
(briefly, AD) states that every X Ď ωω is determined.3

It is well-known that AD is incompatible with the Axiom of Choice (see [Je,
Lemma 33.1]). This is the reason why, throughout this article, we will be working
in ZF` DC. 4 Recall that the Principle of Dependent Choices (briefly, DC) states
that if R is a binary relation on a non-empty set A such that for every a P A there
exists b P A such that pb, aq P R, then there exists a sequence pa0, a1, . . .q P A

ω such
that pan`1, anq P R for every n P ω. This principle is what is needed to carry out
recursive constructions of length ω. Another consequence (in fact, an equivalent
formulation) of DC is that a relation R on a set A is well-founded iff there exists no
sequence pa0, a1, . . .q P A

ω such that pan`1, anq P R for every n P ω (see [Je, Lemma
5.5.ii]). Furthermore, DC implies the Countable Axiom of Choice (see [Je, Exercise
5.7]). To the reader who is unsettled by the lack of the full Axiom of Choice, we
recommend [HR].

3Quite amusingly, Van Wesep referred to AD as a “frankly heretical postulate” (see [VW1,

page 64]), and Steel deemed it “probably false” (see [St1, page 63]).
4The consistency of ZF`DC`AD can be obtained under suitable large cardinal assumptions

(see [Ka, Proposition 11.13] and [Ne]).
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We conclude this section with some miscellaneous topological definitions and
results. We will write X « Y to mean that the spaces X and Y are homeomorphic.
Given a function s : F ÝÑ 2, where F Ď ω is finite, we will use the notation
rss “ tz P 2ω : s Ď zu. A space is crowded if it is non-empty and it has no isolated
points. A space X is Baire if every non-empty open subset of X is non-meager
in X. A space X is meager if X is a meager subset of X. Proposition 2.4 is a
particular case of [FZ, Lemma 3.1] (see also [vE3, 1.12.1]). Proposition 2.5 is the
reason why we refer to locally compact spaces as the “trivial exceptions”. Theorem
2.8 is a special case of [Te, Theorem 2.4] (see also [Me1, Theorem 2 and Appendix
A] or [Me2, Theorem 3.2 and Appendix B]).

Proposition 2.4 (Fitzpatrick, Zhou). Let X be a homogeneous space. Then X is
either a meager space or a Baire space.

Proposition 2.5. Let X be a zero-dimensional locally compact space. Then X is
homogeneous iff X is discrete, X « 2ω, or X « ω ˆ 2ω.

Proof. The right-to-left implication is trivial. For the left-to-right implication, use
the well-known characterization of 2ω as the unique zero-dimensional crowded com-
pact space (see [Ke, Theorem 7.4]). �

Proposition 2.6. Let X be a zero-dimensional homogeneous space. If there exists
a non-empty Polish U P Σ0

1pXq then X is Polish.

Proof. Let U P Σ0
1pXq be non-empty and Polish. Since X is zero-dimensional,

we can assume without loss of generality that U P ∆0
1pXq. Let U “ thrU s :

h is a homeomorphism of Xu. Notice that U is a cover of X because X is homoge-
neous and U is non-empty. Let tUn : n P ωu be a countable subcover of U . Define
Vn “ Unz

Ť

kăn Uk for n P ω, and observe that each Vn is Polish. Since Vn X Vm
whenever m ‰ n, it follows from [Ke, Proposition 3.3.iii] that X “

Ť

nPω Vn is
Polish. �

Proposition 2.7. Assume AD. Let Z be a Polish space, and let X be a dense
Baire subspace of Z. Then X is comeager in Z.

Proof. Notice that X has the Baire property because we are assuming AD (see [Ke,
Section 21.C]). So, by [Ke, Proposition 8.23.ii], we can write X “ G YM , where
G P Π0

2pZq and M is meager in Z. It will be enough to show that G is dense in Z.
Assume, in order to get a contradiction, that there exists a non-empty open subset
U of Z such that U XG “ ∅. Observe that U XX is a non-empty open subset of
X because X is dense in Z. Furthermore, using the density of X again, it is easy
to see that M “ M XX is meager in X. Since U XX Ď M , this contradicts the
fact that X is a Baire space. �

Theorem 2.8 (Terada). Let X be a non-compact space. Assume that X has a base
B Ď ∆0

1pXq such that U « X for every U P B. Then X is strongly homogeneous.

3. The basics of Wadge theory

The following simple lemma will allow us to generalize many Wadge-theoretic
results from ωω to an arbitrary zero-dimensional Polish space. Recall that, given
a space Z and W Ď Z, a retraction is a continuous function ρ : Z ÝÑ W such
that ρ æ W “ idW . By [Ke, Theorem 7.8], every zero-dimensional Polish space is
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homeomorphic to a closed subspace Z of ωω, and by [Ke, Proposition 2.8] there
exists a retraction ρ : ωω ÝÑ Z.

Lemma 3.1. Let Z Ď ωω, and let ρ : ωω ÝÑ Z be a retraction. Fix A,B Ď Z.
Then A ď B in Z iff ρ´1rAs ď ρ´1rBs in ωω.

Proof. If f : Z ÝÑ Z witnesses that A ď B in Z, then f ˝ρ : ωω ÝÑ ωω will witness
that ρ´1rAs ď ρ´1rBs in ωω. On the other hand, if f : ωω ÝÑ ωω witnesses that
ρ´1rAs ď ρ´1rBs in ωω, then ρ ˝ pf æ Zq : Z ÝÑ Z will witness that A ď B in
Z. �

The following result (commonly known as “Wadge’s Lemma”) shows that an-
tichains with respect to ď have size at most 2.

Lemma 3.2 (Wadge). Assume AD. Let Z be a zero-dimensional Polish space, and
let A,B Ď Z. Then either A ď B or ZzB ď A.

Proof. For the case Z “ ωω, see [Ke, proof of Theorem 21.14]. To obtain the full
result from this particular case, use Lemma 3.1 and the remarks preceding it. �

Theorem 3.3 (Martin, Monk). Assume AD. Let Z be a zero-dimensional Polish
space. Then the relation ď on PpZq is well-founded.

Proof. For the case Z “ ωω, see [Ke, proof of Theorem 21.15]. To obtain the full
result from this particular case, use Lemma 3.1 and the remarks preceding it. �

Given a zero-dimensional Polish space Z, define

WpZq “ ttΓ, Γ̌u : Γ is a Wadge class in Zu.

Notice that, by the two previous results, the ordering induced by Ď on WpZq is a
well-order. Therefore, there exists an order-isomorphism φ : WpZq ÝÑ Θ for some
ordinal Θ.5 The reason for the “1+” in the definition below is simply a matter of
technical convenience (see [AHN, page 45]).

Definition 3.4. Let Z be a zero-dimensional Polish space, and let Γ be a Wadge
class in Z. Define

||Γ|| “ 1` φptΓ, Γ̌uq.

We will say that ||Γ|| is the Wadge-rank of Γ.

It is easy to check that tt∅u, tZuu is the minimal element of WpZq. Furthermore,
elements of the form tΓ, Γ̌u for Γ P NSDpZq are always followed by t∆u for some
∆ P SDpZq, while elements of the form t∆u for ∆ P SDpZq are always followed by
tΓ, Γ̌u for some Γ P NSDpZq. This was proved by Van Wesep for Z “ ωω (see [VW1,
Corollary to Theorem 2.1]), and it can be generalized to arbitrary uncountable zero-
dimensional Polish spaces using Corollary 4.4 and the machinery of relativization
that we will develop in Sections 6 to 8. Since these facts will not be needed in the
remainder of the paper, we omit the proof.

In fact, as Proposition 6.6 (together with Theorem 6.5) will show, the ordering
of the non-selfdual classes is independent of the space Z. However, the situation
is more delicate for selfdual classes. For example, it follows easily from Corollary
4.4 that if Γ is a Wadge class in 2ω such that ||Γ|| is a limit ordinal of countable
cofinality, then Γ is non-selfdual. On the other hand, if Γ is a Wadge class in ωω

5For a characterization of Θ, see [So, Definition 0.1 and Lemma 0.2].
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such that ||Γ|| is a limit ordinal of countable cofinality, then Γ is selfdual (see [VW1,
Corollary to Theorem 2.1] again).

We conclude this section with an elementary result, which shows that clopen sets
are “neutral sets” for Wadge-reduction. By this we mean that, apart from trivial
exceptions, intersections or unions with these sets do not change the Wadge class.
In Section 12, we will prove more sophisticated closure properties.

Proposition 3.5. Let Z be a space, let Γ be a Wadge class in Z, and let A P Γ.

‚ Assume that Γ ‰ tZu. Then AX V P Γ for every V P ∆0
1pZq.

‚ Assume that Γ ‰ t∅u. Then AY V P Γ for every V P ∆0
1pZq.

Proof. We will only prove the first statement, since the second one can be obtained
by applying it to Γ̌. So pick V P ∆0

1pZq, and assume that Γ “ rBs. Choose
f : Z ÝÑ Z witnessing that A ď B. Since Γ ‰ tZu, we can fix z P ZzB. Define
g : Z ÝÑ Z by setting

gpxq “

"

fpxq if x P V,
z if x P ZzV.

Since V P ∆0
1pZq and f is continuous, the function g is continuous as well. It is

clear that g witnesses that AX V ď B. �

4. The analysis of selfdual sets

The aim of this section is to show that every selfdual set can be built using
non-selfdual sets of lower complexity (apply Corollary 4.4 with U “ Z). This is a
well-known result (see for example [Lo2, Lemma 7.3.4]). Our approach is essentially
the same as the one used in the proof of [AM, Theorem 16] or in [MR, Theorem
5.3]. However, since the proof becomes slightly simpler in our context, we give all
the details below.

Given a space Z and A Ď Z, define

IpAq “ tV P ∆0
1pZq : there exists a partition U Ď ∆0

1pV q of V

such that U XA ă A for every U P Uu.
Notice that IpAq is σ-additive, in the sense that if Vn P IpAq for n P ω and
V “

Ť

nPω Vn P ∆0
1pZq, then V P IpAq.

We begin with two simple preliminary results. Recall that F Ď 2ω is a flip-set if
whenever z P F and w P 2ω are such that |tn P ω : zpnq ‰ wpnqu| “ 1 then w R F .

Lemma 4.1. Let F Ď 2ω be a flip-set. Then F does not have the Baire property.

Proof. Assume, in order to get a contradiction, that F has the Baire property.
Since 2ωzF is also a flip-set, we can assume without loss of generality that F is
non-meager in 2ω. By [Ke, Proposition 8.26], we can fix n P ω and s P 2n such that
FXrss is comeager in rss. Fix k P ωzn and let h : rss ÝÑ rss be the homeomorphism
defined by

hpxqpiq “

"

xpiq if i ‰ k,
1´ xpiq if i “ k

for x P rss and i P ω. Observe that prssXF qXhrrssXF s is comeager in rss, hence it
is non-empty. It is easy to realize that this contradicts the definition of flip-set. �

Lemma 4.2. Let Z be a space, and let A Ď Z be a selfdual set such that A R ∆0
1pZq.

Assume that V P ∆0
1pZq and V R IpAq. Then V XA ď V zA in V .
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Proof. Using Proposition 3.5, one sees that V X A ď A and V zA ď ZzA, where
both reductions are in Z. On the other hand, since V X A ă A would contradict
the assumption that V R IpAq, we see that V X A ” A. It follows that V zA ď

ZzA ” A ” V X A. Let f : Z ÝÑ Z be a function witnessing that V zA ď V X A.
Notice that V zA ‰ ∅, otherwise we would have V “ V XA ” A, contradicting the
assumption that A R ∆0

1pZq. So we can fix z P V zA, and define g : Z ÝÑ V by
setting

gpxq “

"

x if x P V,
z if x P ZzV.

Since V P ∆0
1pZq, the function g is continuous. Finally, it is straightforward to

verify that g ˝ pf æ V q : V ÝÑ V witnesses that V XA ď V zA in V . �

Theorem 4.3. Assume AD. Let Z be a zero-dimensional Polish space, and let A
be a selfdual subset of Z. Assume that A R ∆0

1pZq. Then ∆0
1pZq “ IpAq.

Proof. Assume in order to get a contradiction, that V P ∆0
1pZqzIpAq. Fix a com-

plete metric on Z that induces the given Polish topology. We will recursively
construct sets Vn and functions fn : Vn ÝÑ Vn for n P ω. Before specifying which
properties we require from them, we introduce some more notation. Given a set X
and a function f : X ÝÑ X, set f0 “ idX and f1 “ f . Furthermore, given m,n P ω
such that m ď n and z P 2ω (or just z P 2rm,ns), define

fzrm,ns “ fzpmqm ˝ ¨ ¨ ¨ ˝ fzpnqn .

We will make sure that the following conditions are satisfied for every n P ω:

(1) Vn P ∆0
1pZq,

(2) Vn R IpAq,
(3) Vm Ě Vn whenever m ď n,
(4) fn : Vn ÝÑ Vn witnesses that Vn XA ď VnzA in Vn,
(5) diampfs

rm,nsrVn`1sq ď 2´n whenever m ď n and s P 2rm,ns.

Start by setting V0 “ V and let f0 : V0 ÝÑ V0 be given by Lemma 4.2. Now fix
n P ω, and assume that Vm and fm have already been constructed for every m ď n.
Fix a partition U of Z consisting of clopen sets of diameter at most 2´n. Given
m ď n and s P 2rm,ns, define

Vsm “ tpfsrm,nsq
´1rU X Vms : U P Uu.

Observe that each Vsm Ď ∆0
1pVnq because each fs

rm,ns is continuous. Furthermore,

it is clear that each Vsm consists of pairwise disjoint sets, and that
Ť

Vsm “ Vn.
Since there are only finitely many m ď n and s P 2rm,ns, it is possible to obtain
a partition V Ď ∆0

1pVnq of Vn that simultaneously refines each Vsm. This clearly
implies that any choice of Vn`1 P V will satisfy condition p5q. On the other hand
since IpAq is σ-additive and Vn R IpAq, it is possible to choose Vn`1 P V such
that Vn`1 R IpAq, thus ensuring that condition p2q is satisfied as well. To obtain
fn`1 : Vn`1 ÝÑ Vn`1 that satisfies condition p4q, simply apply Lemma 4.2. This
concludes the construction.

Fix an arbitrary yn`1 P Vn`1 for n P ω. Given m P ω and z P 2ω, observe that
the sequence pfz

rm,nspyn`1q : m ď nq is Cauchy by condition p5q, hence it makes

sense to define

xzm “ lim
nÑ8

fzrm,nspyn`1q.
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To conclude the proof, we will show that F “ tz P 2ω : xz0 P Au is a flip-set. This
will contradict Lemma 4.1, since AD implies that every subset of 2ω has the Baire
property (see [Ke, Section 21.C]).

Define A0 “ A and A1 “ ZzA. Given any m P ω and ε P 2, it is clear from the
definition of fεm and condition p4q that

x P A iff fεmpxq P A
ε

for every x P Vm. Furthermore, using the continuity of fεm and the definition of xzm,
it is easy to see that

fzpmqm pxzm`1q “ xzm

for every z P 2ω and m P ω.
Fix z P 2ω and notice that, by the observations in the previous paragraph,

xz0 P A iff xz1 P A
zp0q iff ¨ ¨ ¨ iff xzm`1 P p¨ ¨ ¨ pA

zp0qqzp1q ¨ ¨ ¨ qzpmq

for every m P ω. Now fix w P 2ω and m P ω such that z æ ωztmu “ w æ ωztmu
and zpmq ‰ wpmq. We need to show that xz0 P A iff xw0 R A. For exactly the same
reason as above, we have

xw0 P A iff xw1 P A
wp0q iff ¨ ¨ ¨ iff xwm`1 P p¨ ¨ ¨ pA

wp0qqwp1q ¨ ¨ ¨ qwpmq.

Since z æ m “ w æ m and zpmq ‰ wpmq, in order to finish the proof, it will be
enough to show that xzm`1 “ xwm`1. To see this, observe that

xzm`1 “ lim
nÑ8

fzrm`1,nspyn`1q “ lim
nÑ8

fwrm`1,nspyn`1q “ xwm`1,

where the middle equality uses the assumption z æ ωzpm` 1q “ w æ ωzpm` 1q. �

Corollary 4.4. Assume AD. Let Z be a zero-dimensional Polish space, let A be
a selfdual subset of Z, and let U P ∆0

1pZq. Then there exist pairwise disjoint
Vn P ∆0

1pUq and non-selfdual An ă A in Z for n P ω such that
Ť

nPω Vn “ U and
Ť

nPωpAn X Vnq “ AX U .

Proof. As one can easily check, it will be enough to show that there exists a partition
V Ď ∆0

1pUq of U such that for every V P V either A X V P ∆0
1pZq or A X V is

non-selfdual in Z. If this were not the case, then, using Theorem 4.3, one could
recursively construct a strictly ď-decreasing sequence of subsets of Z, which would
contradict Theorem 3.3. �

5. Basic facts on Hausdorff operations

For a history of the following important notion, see [Ha, page 583]. For a modern
survey, we recommend [Za]. Most of the proofs in this section are straightforward,
hence we leave them to the reader.

Definition 5.1. Given a set Z and D Ď 2ω, define

HDpA0, A1, . . .q “ tx P Z : tn P ω : x P Anu P Du

whenever A0, A1, . . . Ď Z, where we identify tn P ω : x P Anu with its characteristic
function. Functions of this form are called Hausdorff operations (or ω-ary Boolean
operations).
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Of course, the function HD depends on the set Z, but what Z is will usually be
clear from the context. In case there might be uncertainty about the ambient space,
we will use the notation HZ

D. Notice that, once D is specified, the corresponding
Hausdorff operation simultaneously defines functions PpZqω ÝÑ PpZq for every Z.

The following proposition lists the most basic properties of Hausdorff operations.
Given n P ω, define sn : tnu ÝÑ 2 by setting snpnq “ 1.

Proposition 5.2. Let I be a set, and let Di Ď 2ω for every i P I. Fix an ambient
set Z and A0, A1, . . . Ď Z.

‚ HrsnspA0, A1, . . .q “ An for all n P ω.
‚

Ş

iPI HDi
pA0, A1, . . .q “ HDpA0, A1, . . .q, where D “

Ş

iPI Di.
‚

Ť

iPI HDi
pA0, A1, . . .q “ HDpA0, A1, . . .q, where D “

Ť

iPI Di.
‚ ZzHDpA0, A1, . . .q “ H2ωzDpA0, A1, . . .q for all D Ď 2ω.

The point of the above proposition is that any operation obtained by com-
bining unions, intersections and complements can be expressed as a Hausdorff
operation. For example, if D “

Ť

nPωprs2n`1szrs2nsq, then HDpA0, A1, . . .q “
Ť

nPωpA2n`1zA2nq.
The following proposition shows that the composition of Hausdorff operations is

again a Hausdorff operation. We will assume that a bijection π : ω ˆ ω ÝÑ ω has
been fixed, and use the notation xm,ny “ πpm,nq.

Proposition 5.3. Let Z be a set, let D Ď 2ω and Em Ď 2ω for m P ω. Then there
exists a set F Ď 2ω such that

HDpB0, B1, . . .q “ HF pA0, A1, . . .q

for all A0, A1, . . . Ď Z, where Bm “ HEm
pAxm,0y, Axm,1y, . . .q.

Proof. Define z P F if tm P ω : tn P ω : xm,ny P zu P Emu P D, where we
identify 2ω with Ppωq through characteristic functions. The rest of the proof is a
straightforward verification. �

We conclude this section with a result that will easily imply the fundamental
Lemma 6.4.

Proposition 5.4. Let Z and W be sets, let A0, A1, . . . Ď Z and B0, B1, . . . ĎW .

(1) W XHZ
DpA0, A1, . . .q “ HW

D pA0 XW,A1 XW, . . .q whenever W Ď Z.
(2) f´1rHDpB0, B1, . . .qs “ HDpf

´1rB0s, f
´1rB1s, . . .qs for all f : Z ÝÑW .

(3) f rHDpA0, A1, . . .qs “ HDpf rA0s, f rA1s, . . .qs for all bijections f : Z ÝÑW .

6. Wadge classes and Hausdorff operations

When one tries to give a systematic exposition of Wadge theory, it soon becomes
apparent that it would be very useful to be able to talk about “abstract” Wadge
classes, as opposed to Wadge classes in a particular space. More precisely, given
a Wadge class Γ in some space Z, one would like to find a way to define what a
“Γ subset of W” is, for every other space W , while of course preserving suitable
coherence properties. It turns out that Hausdorff operations allow us to do exactly
that in a rather elegant way, provided that Γ is a non-selfdual Wadge class, Z
and W are uncountable zero-dimensional Polish spaces, and AD holds (see also the



EVERY ZERO-DIMENSIONAL HOMOGENEOUS SPACE IS STRONGLY HOMOGENEOUS 11

discussion in Section 3). For an early instance of this idea, see [LSR2, Theorem
4.2].6 The following is the crucial definition.

Definition 6.1. Given a space Z and D Ď 2ω, define

ΓDpZq “ tHDpA0, A1, . . .q : An P Σ0
1pZq for every n P ωu.

As examples (that will be useful later), consider the following two simple propo-
sitions.

Proposition 6.2. Let 1 ď η ă ω1. Then there exists D Ď 2ω such that ΓDpZq “
DηpΣ

0
1pZqq for every space Z.

Proof. This follows from Propositions 5.2 and 5.3 (in case η ą ω, use a bijection
π : η ÝÑ ω). The only confusion might result from the fact that the Σ0

1pZq sets
in the definition of DηpΣ

0
1pZqq are required to form an increasing sequence, while

the Σ0
1pZq sets in the definition of ΓDpZq have no restrictions. This issue can be

resolved by considering
Ť

µďξ Aµ instead of Aξ. �

Proposition 6.3. Let 1 ď ξ ă ω1. Then there exists D Ď 2ω such that ΓDpZq “
Σ0
ξpZq for every space Z.

Proof. This can be proved by induction on ξ, using Propositions 5.2 and 5.3. �

Next, we prove a very useful lemma, which shows that this notion behaves well
with respect to subspaces and continuous functions. This lemma is essentially what
we refer to when we speak about the “machinery of relativization”. It extends (and
is inspired by) [vE4, Lemma 2.3].

Lemma 6.4. Let Z and W be spaces, and let D Ď 2ω.

(1) Assume that W Ď Z. Then B P ΓDpW q iff there exists A P ΓDpZq such
that B “ AXW .

(2) If f : Z ÝÑW is continuous and B P ΓDpW q then f´1rBs P ΓDpZq.
(3) If h : Z ÝÑW is a homeomorphism then A P ΓDpZq iff hrAs P ΓDpW q.

Proof. This is a straightforward consequence of Proposition 5.4. �

The following result (together with the above lemma) is the reason why Hausdorff
operations are such an indispensable tool in our treatment of Wadge theory. Its
proof is the content of the next two sections.

Theorem 6.5. Assume AD. Let Z be an uncountable zero-dimensional Polish
space. Then

NSDpZq “ tΓDpZq : D Ď 2ωu

Proof. This will follow immediately from Theorem 7.5 and Corollary 8.2. �

Notice that the following simple result, together with the above theorem, shows
that the ordering of the non-selfdual Wadge classes is independent of the ambient
space Z (provided that AD holds).

Proposition 6.6. Let Z and W be zero-dimensional spaces that contain a copy of
2ω, and let D,E Ď 2ω. Then ΓDpZq Ď ΓEpZq iff ΓDpW q Ď ΓEpW q.

6This result is limited to the Borel context. On the other hand, the ambient space is allowed
to be analytic, as opposed to Polish.
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Proof. Assume that ΓDpZq Ď ΓEpZq. Since Z contains a copy of 2ω and W is
zero-dimensional, we see that Z contains a copy of W . Using Lemma 6.4.3, we can
assume without loss of generality that W Ď Z. Then

ΓDpW q “ tAXW : A P ΓDpZqu Ď tAXW : A P ΓEpZqu “ ΓEpW q,

where the first and last equalities hold by Lemma 6.4.1. The proof of the other
implication is similar. �

7. Universal sets

The aim of this section is to prove the easier half of Theorem 6.5 (namely,
Theorem 7.5). Our approach is inspired by [Ke, Section 22.A].

Definition 7.1. Let Z and W be spaces, and let D Ď 2ω. Given U ĎW ˆ Z and
x P W , let Ux “ ty P Z : px, yq P Uu denote the vertical section of U above x.
We will say that U Ď W ˆ Z is a W -universal set for ΓDpZq if the following two
conditions hold:

‚ U P ΓDpW ˆ Zq,
‚ tUx : x PW u “ ΓDpZq.

Notice that, by Proposition 6.3, the above yields the definition of a W -universal
set for Σ0

ξpZq whenever 1 ď ξ ă ω1. Furthermore, this definition agrees with [Ke,

Definition 22.2].

Proposition 7.2. Let Z be a space, and let D Ď 2ω. Then there exists a 2ω-
universal set for ΓDpZq.

Proof. By [Ke, Theorem 22.3], we can fix a 2ω-universal set U for Σ0
1pZq. Let

h : 2ω ÝÑ p2ωqω be a homeomorphism, and let πn : p2ωqω ÝÑ 2ω be the projection
on the n-th coordinate for n P ω. Notice that, given any n P ω, the function
fn : 2ω ˆZ ÝÑ 2ω ˆZ defined by fnpx, yq “ pπnphpxqq, yq is continuous. Let Vn “
f´1
n rU s for each n, and observe that each Vn P Σ0

1p2
ωˆZq. Set V “ HDpV0, V1, . . .q.

We claim that V is a 2ω-universal set for ΓDpZq. It is clear that V P ΓDp2
ωˆZq.

Furthermore, using Lemma 6.4, one can easily check that Vx P ΓDpZq for every
x P 2ω. To complete the proof, fix A P ΓDpZq. Let A0, A1, . . . P Σ0

1pZq be such
that A “ HDpA0, A1, . . .q. Since U is 2ω-universal, we can fix zn P 2ω such that
Uzn “ An for every n P ω. Set z “ h´1pz0, z1, . . .q. It is straightforward to verify
that Vz “ A. �

Corollary 7.3. Let Z be a space that contains a copy of 2ω, and let D Ď 2ω. Then
there exists a Z-universal set for ΓDpZq.

Proof. By Proposition 7.2, we can fix a 2ω-universal set U for ΓDpZq. Let W Ď Z
be such that W « 2ω, and fix a homeomorphism h : 2ω ÝÑ W . Notice that
ph ˆ idZqrU s P ΓDpW ˆ Zq by Lemma 6.4.3. Therefore, by Lemma 6.4.1, there
exists V P ΓDpZ ˆ Zq such that V X pW ˆ Zq “ ph ˆ idZqrU s. Using Lemma 6.4
again, one can easily check that V is a Z-universal set for ΓDpZq. �

Lemma 7.4. Let Z be a space, and let D Ď 2ω. Assume that there exists a Z-
universal set for ΓDpZq. Then ΓDpZq is non-selfdual.
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Proof. Fix a Z-universal set U Ď Z ˆ Z for ΓDpZq. Assume, in order to get a
contradiction, that ΓDpZq is selfdual. Let f : Z ÝÑ ZˆZ be the function defined by
fpxq “ px, xq, and observe that f is continuous. Since f´1rU s P ΓDpZq “ Γ̌DpZq,
we see that Zzf´1rU s P ΓDpZq. Therefore, since U is Z-universal, we can fix
z P Z such that Uz “ Zzf´1rU s. If z P Uz then fpzq “ pz, zq P U by the
definition of Uz, contradicting the fact that Uz “ Zzf´1rU s. On the other hand,
If z R Uz then fpzq “ pz, zq R U by the definition of Uz, contradicting the fact that
ZzUz “ f´1rU s. �

The case Z “ ωω of the following result is [VW1, Proposition 5.0.3], and it is
credited to Addison by Van Wesep.

Theorem 7.5. Let Z be a zero-dimensional space that contains a copy of 2ω, and
let D Ď 2ω. Then ΓDpZq P NSDpZq.

Proof. The fact that ΓDpZq is non-selfdual follows from Corollary 7.3 and Lemma
7.4. Therefore, it will be enough to show that ΓDpZq is a Wadge class. By Propo-
sition 7.2, we can fix a 2ω-universal set U Ď 2ω ˆ Z for ΓDpZq. Let W Ď Z be
such that W « 2ω ˆ Z, and fix a homeomorphism h : 2ω ˆ Z ÝÑ W . By Lemma
6.4, we can fix A P ΓDpZq such that AXW “ hrU s. We claim that ΓDpZq “ rAs.
The inclusion Ě follows from Lemma 6.4.2. In order to prove the other inclusion,
pick B P ΓDpZq. Since U is 2ω-universal, we can fix z P 2ω such that B “ Uz.
Consider the function f : Z ÝÑ 2ω ˆ Z defined by fpxq “ pz, xq, and observe that
f is continuous. It is straightforward to check that h ˝ f : Z ÝÑ Z witnesses that
B ď A in Z. �

8. Van Wesep’s theorem

The following is one of the main results of Van Wesep’s doctoral thesis (see
[VW1, Theorem 5.3.1], whose proof also employs results from [St1]), and it will
allow us to obtain the harder half of Theorem 6.5.

Theorem 8.1 (Van Wesep). Assume AD. For every Γ P NSDpωωq there exists
D Ď 2ω such that Γ “ ΓDpω

ωq.

Corollary 8.2. Assume AD. Let Z be a zero-dimensional Polish space, and let
Γ P NSDpZq. Then there exists D Ď 2ω such that Γ “ ΓDpZq.

Proof. By [Ke, Theorem 7.8], there exists a closed W Ď ωω such that Z « W .
Therefore, using Lemma 6.4.3, we can assume without loss of generality that Z is
a closed subspace of ωω. Hence, by [Ke, Proposition 2.8], we can fix a retraction
ρ : ωω ÝÑ Z. Let A Ď Z be such that Γ “ rAs. Set B “ ρ´1rAs, and let Λ “ rBs
be the Wadge class generated by B in ωω.

Using Lemma 3.1, it is easy to see that Λ P NSDpωωq. Therefore, by Theorem 8.1,
we can fix D Ď 2ω such that Λ “ ΓDpω

ωq. We claim that Γ “ ΓDpZq. Notice that
A “ B X Z P ΓDpZq by Lemma 6.4.1, hence Γ Ď ΓDpZq by Lemma 6.4.2. Finally,
to see that ΓDpZq Ď Γ, pick C P ΓDpZq. Observe that ρ´1rCs P ΓDpω

ωq “ Λ by
Lemma 6.4.2. This means that ρ´1rCs ď B “ ρ´1rAs in ωω, hence C ď A in Z by
Lemma 3.1. So C P rAs “ Γ, which concludes the proof. �
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9. Basic facts on expansions

The following notion is due to Wadge (see [Wa1, Chapter IV]), and it is inspired
by work of Kuratowski. Recall that, given 1 ď ξ ă ω1 and spaces Z and W , a
function f : Z ÝÑW is Σ0

ξ-measurable if f´1rU s P Σ0
ξpZq for every U P Σ0

1pW q.

Definition 9.1. Let Z be a space, and let ξ ă ω1. Given Γ Ď PpZq, define

Γpξq “ tf´1rAs : A P Γ and f : Z ÝÑ Z is Σ0
1`ξ-measurableu.

We will refer to Γpξq as an expansion of Γ.

The following is the corresponding definition in the context of Hausdorff opera-
tions. Corollary 10.5 below shows that this is in fact the “right” definition.

Definition 9.2. Let Z be a space, let D Ď 2ω, and let ξ ă ω1. Define

Γ
pξq
D pZq “ tHDpA0, A1, . . .q : An P Σ0

1`ξpZq for every n P ωu.

As an example (that will be useful later), consider the following simple observa-
tion.

Proposition 9.3. Let 1 ď η ă ω1. Then there exists D Ď 2ω such that Γ
pξq
D pZq “

DηpΣ
0
1`ξpZqq for every space Z and every ξ ă ω1.

Proof. This is proved like Proposition 6.2 (in fact, the same D will work). �

The following proposition shows that Definition 9.2 actually fits in the context
provided by Section 6.

Proposition 9.4. Let D Ď 2ω, and let ξ ă ω1. Then there exists E Ď 2ω such

that Γ
pξq
D pZq “ ΓEpZq for every space Z.

Proof. This is proved by combining Propositions 6.3 and 5.3. �

The following useful result is the analogue of Lemma 6.4 in the present context.

Lemma 9.5. Let Z and W be spaces, let D Ď 2ω, and let ξ ă ω1.

(1) Assume that W Ď Z. Then B P Γ
pξq
D pW q iff there exists A P Γ

pξq
D pZq such

that B “ AXW .
(2) If f : Z ÝÑW is continuous and B P Γ

pξq
D pW q then f´1rBs P Γ

pξq
D pZq.

(3) If f : Z ÝÑW is Σ0
1`ξ-measurable and B P ΓDpW q then f´1rBs P Γ

pξq
D pZq.

(4) If h : Z ÝÑW is a homeomorphism then A P Γ
pξq
D pZq iff hrAs P Γ

pξq
D pW q.

Proof. This is a straightforward consequence of Proposition 5.4. �

Proposition 9.6. Let Z be an uncountable zero-dimensional Polish space, let D Ď

2ω, and let ξ ă ω1. Then Γ
pξq
D pZq P NSDpZq.

Proof. This is proved like Theorem 7.5. More precisely, all results from Section 7

have straightforward adaptations for Γ
pξq
D pZq, which can be obtained by applying

Lemma 9.5 instead of Lemma 6.4, together with the fact that Σ0
1`ξpZq has a 2ω-

universal set (see [Ke, Theorem 22.3]). �
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10. Kuratowski’s transfer theorem

The aim of this section is to develop the tools needed to successfully employ the
notion of expansion. For example, Corollary 10.4 will be a crucial ingredient in the
proof of Theorem 11.3.

A slightly stronger form of Theorem 10.2 appears as [Lo2, Theorem 7.1.6], where
it is called “Kuratowski’s transfer theorem”. We also point out that Theorem 10.2
can be easily obtained from [Ke, Theorem 22.18], and viceversa. However, our proof
seems to be more straightforward.

Lemma 10.1. Let pZ, τq be a Polish space, and let A Ď τ be countable. Then
there exists a Polish topology σ on the set Z such that τ Ď σ Ď Σ0

2pZ, τq and
A Ď ∆0

1pZ, σq. Furthermore, if τ is zero-dimensional then there exists a zero-
dimensional σ as above.

Proof. By [Ke, Lemma 13.3], it will be enough to consider the case A “ tAu. Define

σ “ tpU XAq Y pV zAq : U, V P τu.

Notice that pZ, σq is the topological sum of the subspaces A and ZzA of pZ, τq,
which are both Polish by [Ke, Theorem 3.11]. Therefore, pZ, σq is Polish by [Ke,
Proposition 3.3.iii]. All the other claims are straightforward to check. �

Theorem 10.2 (Kuratowski). Let pZ, τq be a Polish space, let 1 ď ξ ă ω1, and
let A Ď Σ0

ξpZ, τq be countable. Then there exists a Polish topology σ on the set Z

such that τ Ď σ Ď Σ0
ξpZ, τq and A Ď σ. Furthermore, if τ is zero-dimensional then

there exists a zero-dimensional σ as above.

Proof. By [Ke, Lemma 13.3], it will be enough to consider the case A “ tAu.
We will proceed by induction on ξ. The case ξ “ 1 is proved by setting σ “ τ .
Next, assume that ξ is a limit ordinal and the theorem holds for all η ă ξ. Write
A “

Ť

nPω An, where each An P Σ0
ξn
pZ, τq for suitable ξn ă ξ. By the inductive

assumption, for each n, we can fix a Polish topology σn on the set Z such that
τ Ď σn Ď Σ0

ξn
pZ, τq and An P σn. Using [Ke, Lemma 13.3] again, it is easy to

check that the topology σ on Z generated by
Ť

nPω σn is as desired.
Finally, assume that ξ “ η ` 1 and the theorem holds for η. Write A “

Ť

nPωpZzAnq, where each An P Σ0
ηpZ, τq. By the inductive assumption, we can

fix a Polish topology σ1 on the set Z such that τ Ď σ1 Ď Σ0
ηpZ, τq and An P σ

1

for each n. Now, applying Lemma 10.1, we can obtain a Polish topology σ on
the set Z such that σ1 Ď σ Ď Σ0

2pZ, σ
1q and An P ∆0

1pZ, σq for each n. It is
clear that A P σ and τ Ď σ. Furthermore, since σ1 Ď Σ0

ηpZ, τq, we see that

σ Ď Σ0
2pZ, σ

1q Ď Σ0
η`1pZ, τq “ Σ0

ξpZ, τq. �

Corollary 10.3. Let Z be a Polish space, let 1 ď ξ ă ω1, and let A Ď Σ0
ξpZq

be countable. Then there exists a Polish space W and a Σ0
ξ-measurable bijection

f : Z ÝÑ W such that f rAs P Σ0
1pW q for every A P A. Furthermore, if Z is

zero-dimensional then there exists a zero-dimensional W as above.

Proof. The space W is simply the set Z with the finer topology given by Theorem
10.2, while f “ idZ . �

Corollary 10.4. Let Z be Polish space, let D Ď 2ω, let ξ ă ω1, and let A Ď Γ
pξq
D pZq

be countable. Then there exists a Polish space W and a Σ0
1`ξ-measurable bijection
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f : Z ÝÑ W such that f rAs P ΓDpW q for every A P A. Furthermore, if Z is
zero-dimensional then there exists a zero-dimensional W as above.

Proof. Let A “ tAm : m P ωu be an enumeration. Given m P ω, fix Bm,n P
Σ0

1`ξpZq for n P ω such that Am “ HDpBm,0, Bm,1, . . .q. Define B “ tBm,n :

m,n P ωu. By Corollary 10.3, we can fix a Polish space W and a Σ0
1`ξ-measurable

bijection f : Z ÝÑ W such that f rBs P Σ0
1pW q for every B P B. It remains to

observe that

f rAms “ f rHDpBm,0, Bm,1, . . .qs “ HDpf rBm,0s, f rBm,1s, . . .q P ΓDpW q,

where the second equality follows from Proposition 5.4.3. �

Corollary 10.5. Let Z be an uncountable zero-dimensional Polish space, let D Ď

2ω, and let ξ ă ω1. Then ΓDpZq
pξq “ Γ

pξq
D pZq.

Proof. The inclusion ΓDpZq
pξq Ď Γ

pξq
D pZq follows from Lemma 9.5.3. In order to

prove the other inclusion, pick A P Γ
pξq
D pZq. By Corollary 10.4, we can fix a zero-

dimensional Polish space W and a Σ0
1`ξ-measurable bijection f : Z ÝÑ W such

that f rAs P ΓDpW q. Since Z contains a copy of 2ω and W is zero-dimensional, using
Lemma 6.4.3 we can assume without loss of generality that W is a subspace of Z, so
that f : Z ÝÑ Z. By Lemma 6.4.1, we can fix B P ΓDpZq such that BXW “ f rAs.
It is easy to check that A “ f´1rBs, which concludes the proof. �

Corollary 10.6. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, and let ξ ă ω1. Then Γpξq P NSDpZq for every Γ P NSDpZq.

Proof. This follows from Corollary 8.2, Corollary 10.5, and Proposition 9.6. �

Corollary 10.7. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, and let ξ ă ω1. Then Γ Ď Λ iff Γpξq Ď Λpξq for every Γ,Λ P NSDpZq.

Proof. The fact that Γ Ď Λ implies Γpξq Ď Λpξq is a trivial consequence of the
definition of expansion. Now fix Γ,Λ P NSDpZq such that Γpξq Ď Λpξq. Assume, in
order to get a contradiction, that Γ Ę Λ. Then Λ̌ Ď Γ by Lemma 3.2, hence

}Λpξq “ Λ̌pξq Ď Γpξq Ď Λpξq.

Since Λpξq is non-selfdual by Corollary 10.6, this is a contradiction. �

11. The expansion theorem

The main result of this section is Theorem 11.3, which will be a crucial tool in
obtaining the closure properties in the next section, and will be referred to as the
expansion theorem. The proof given here is essentially the same as [Lo2, proof of
Theorem 7.3.9.ii]. This result can be traced back to [LSR1, Théorème 8], which is
however limited to the Borel context. We need to introduce the following notions
from [LSR1] (see also [Lo2, Section 7.3.4]).7

Definition 11.1 (Louveau, Saint-Raymond). Let Z be a space, let Γ Ď PpZq, and
let ξ ă ω1. Define PUξpΓq to be the collection of all sets of the form

ď

nPω

pAn X Vnq,

7 In [LSR1], the notation ∆0
1`ξ-PU is used instead of PUξ, and λC is used instead of `.
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where each An P Γ, each Vn P ∆0
1`ξpZq, the Vn are pairwise disjoint, and

Ť

nPω Vn “
Z. A set in this form is called a partitioned union of sets in Γ.

Notice that the sets Vn in the above definition are not required to be non-empty.
It is easy to check that PUξpΓq is continuously closed whenever Γ is.

Definition 11.2 (Louveau, Saint-Raymond). Let Z be a space, let Γ Ď PpZq, and
let ξ ă ω1. Define

‚ `pΓq ě ξ if PUξpΓq “ Γ,
‚ `pΓq “ ξ if `pΓq ě ξ and `pΓq ğ ξ ` 1,
‚ `pΓq “ ω1 if `pΓq ě η for every η ă ω1.

We refer to `pΓq as the level of Γ.

As a trivial example, observe that `pt∅uq “ `ptZuq “ ω1. Also notice that the
inclusion Γ Ď PUξpΓq holds for every Γ Ď PpZq. Using the definition of Wadge-
reduction, it is a simple exercise to see that `pΓq ě 0 for every Wadge class Γ.

We remark that it is not clear at this point whether for every Wadge class Γ
there exists ξ ď ω1 such that `pΓq “ ξ.8 This happens to be true under AD, and
it can be proved by combining techniques from [AM] and [Lo2]. However, since we
will not need this fact, we omit the proof.

Theorem 11.3. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, let Γ P NSDpZq, and let ξ ă ω1. Then the following conditions are equivalent:

(1) `pΓq ě ξ,
(2) Γ “ Λpξq for some Λ P NSDpZq.

Proof. In order to show that p1q Ñ p2q, assume that `pΓq ě ξ. Let Λ P NSDpZq
be minimal with respect to the property that Γ Ď Λpξq. Assume, in order to
get a contradiction, that Λpξq Ę Γ. It follows from Lemma 3.2 that Γ Ď Λ̌pξq,
hence Γ Ď ∆pΛpξqq. Fix A Ď Z such that Γ “ rAs. Also fix D,E Ď 2ω such

that Γ “ ΓDpZq and Λ “ ΓEpZq. Then tA,ZzAu Ď ΓEpZq
pξq “ Γ

pξq
E pZq, where

the equality holds by Corollary 10.5. Then, by Corollary 10.4, we can fix a zero-
dimensional Polish space W and a Σ0

1`ξ-measurable bijection f : Z ÝÑ W such

that tf rAs, f rZzAsu Ď ΓEpW q.
Next, we will show that rf rAss P SDpW q. Assume, in order to get a contradiction,

that this is not the case. By Corollary 8.2, we can fix F Ď 2ω such that rf rAss “
ΓF pW q. Notice that ΓF pW q Ď ΓEpW q. Furthermore W zf rAs “ f rZzAs P ΓEpW q,
hence Γ̌F pW q Ď ΓEpW q. Since ΓEpW q is non-selfdual by Theorem 7.5, it follows
that ΓF pW q Ĺ ΓEpW q. Therefore, ΓF pZq Ĺ ΓEpZq “ Λ by Proposition 6.6.
On the other hand, Lemma 9.5.3 and Corollary 10.5 show that A “ f´1rf rAss P

Γ
pξq
F pZq “ ΓF pZq

pξq. Hence Γ Ď ΓF pZq
pξq, which contradicts the minimality of Λ.

Since rf rAss P SDpW q, by Corollaries 4.4 and 8.2, we can fix An ĎW , Gn Ď 2ω

and pairwise disjoint Vn P ∆0
1pW q for n P ω such that f rAs “

Ť

nPωpAn X Vnq and
An P ΓGnpW q Ĺ ΓEpW q for each n. Notice that ΓGnpZq Ĺ ΓEpZq for each n by
Proposition 6.6, hence ΓDpZq Ę ΓGn

pZqpξq for each n by the minimality of Λ. It

follows from Corollary 10.5 and Lemma 3.2 that Γ̌
pξq
Gn
pZq Ď ΓDpZq. Then, using

Propositions 9.4 and 6.6, one sees that Γ̌
pξq
Gn
pW q Ď ΓDpW q.

8For example, it is conceivable that PUηpΓq “ Γ for all η ă ξ, where ξ is a limit ordinal, while

PUξpΓq ‰ Γ.
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Set Bn “ W zAn P Γ̌GnpW q for n P ω. Observe that f´1rBns P Γ̌
pξq
Gn
pZq Ď

ΓDpZq “ Γ for each n by Lemma 9.5.3. Furthermore, it is clear that f´1rVns P
∆0

1`ξpZq for each n. In conclusion, since W zf rAs “
Ť

nPωpBn X Vnq, we see that

ZzA “
ď

nPω

pf´1rBns X f
´1rVnsq P PUξpΓq “ Γ,

where the last equality uses the assumption that `pΓq ě ξ. This contradicts the
fact that Γ is non-selfdual.

In order to show that p2q Ñ p1q, let Λ P NSDpZq be such that Λpξq “ Γ. Pick
An P Γ and pairwise disjoint Vn P ∆0

1`ξpZq for n P ω such that
Ť

nPω Vn “ Z. We

need to show that
Ť

nPωpAn X Vnq P Γ. By Corollary 8.2, we can fix D Ď 2ω such
that Λ “ ΓDpZq. As in the proof of Corollary 10.4, we can fix a Polish space W
and a Σ0

1`ξ-measurable bijection f : Z ÝÑW such that each f rAns P ΓDpW q and

each f rVns P ∆0
1pW q. Let B “

Ť

nPωpf rAns X f rVnsq. Since ΓDpW q is a Wadge
class in W by Theorem 7.5, one sees that B P PU0pΓDpW qq “ ΓDpW q. It follows
from Lemma 9.5.3 that

ď

nPω

pAn X Vnq “ f´1rBs P Γ
pξq
D pZq “ Λpξq “ Γ,

where the second equality holds by Corollary 10.5. �

Corollary 11.4. Assume AD. Let Z and W be uncountable zero-dimensional Pol-
ish spaces, let D Ď 2ω, and let ξ ă ω1. Then `pΓDpZqq ě ξ iff `pΓDpW qq ě ξ.

Proof. We will only prove the left-to-right implication, as the other one can be
proved similarly. Assume that `pΓDpZqq ě ξ. Then, by Theorems 7.5 and 11.3,
there exists Λ P NSDpZq such that Λpξq “ ΓDpZq. By Corollary 8.2, we can fix
E Ď 2ω such that Λ “ ΓEpZq. By Proposition 9.4, we can fix F Ď 2ω such

that ΓF pZq “ Γ
pξq
E pZq and ΓF pW q “ Γ

pξq
E pW q. Notice that ΓF pZq “ ΓDpZq by

Corollary 10.5, hence ΓF pW q “ ΓDpW q by Proposition 6.6. By applying Corollary
10.5 again, we see that ΓDpW q “ ΓEpW q

pξq, hence `pΓDpW qq ě ξ by Theorems
7.5 and 11.3. �

12. Good Wadge classes

The following key notion is essentially due to van Engelen, although he did not
give it a name. One important difference is that van Engelen’s treatment of this
notion is fundamentally tied to Louveau’s classification of the Borel Wadge classes
from [Lo1], hence it is limited to the Borel context. The notion of level and the
expansion theorem allow us to completely bypass [Lo1], and extend this concept to
arbitrary Wadge classes.

Definition 12.1. Let Z be a space, and let Γ be a Wadge class in Z. We will say
that Γ is good if the following conditions are satisfied:

‚ Γ is non-selfdual,
‚ ∆pDωpΣ

0
2pZqqq Ď Γ,

‚ `pΓq ě 1.

The following proposition gives some concrete examples of good Wadge classes.

Proposition 12.2. Let Z be an uncountable zero-dimensional Polish space, let
ω ď η ă ω1, and let 2 ď ξ ă ω1. Then DηpΣ

0
ξpZqq is a good Wadge class in Z.
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Proof. Set Γ “ DηpΣ
0
ξpZqq. The fact that Γ P NSDpZq follows from Propositions 9.3

and 9.6. The inclusion ∆pDωpΣ
0
2pZqqq Ď Γ holds trivially. Finally, using Corollary

10.5 and [LSR1, Théorème 8],9 one sees that `pΓq ě 1. �

The main result of this section is Corollary 12.4, which will be crucial in showing
that good Wadge classes are reasonably closed (see Lemma 13.2). The case Z “ ωω

of the following theorem is due to Andretta, Hjorth, and Neeman (see [AHN, Lemma
3.6.a]), and the general case follows easily from this particular case (thanks to the
machinery of relativization).

Theorem 12.3. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, and let Γ P NSDpZq. Assume that DnpΣ

0
1pZqq Ď Γ for every n P ω.

‚ If A P Γ and C P Π0
1pZq then AX C P Γ.

‚ If A P Γ and U P Σ0
1pZq then AY U P Γ.

Proof. Observe that, since Γ̌ also satisfies the assumptions of the theorem, it will be
enough to prove the first statement. So pick A P Γ and C P Π0

1pZq. By Corollary
8.2, we can fix D Ď 2ω such that Γ “ ΓDpZq, and let Λ “ ΓDpω

ωq. Using Lemma
6.4.3, we can assume without loss of generality that Z is a closed subspace of ωω. By
[Ke, Proposition 2.8], we can fix a retraction ρ : ωω ÝÑ Z. Notice that ρ´1rAs P Λ
by Lemma 6.4.2. Furthermore, it is clear that C P Π0

1pω
ωq.

Next, we claim that ||Λ|| ě ω. Since DnpΣ
0
1pZqq Ď Γ for every n P ω, using

Propositions 6.2 and 6.6 one sees that DnpΣ
0
1pω

ωqq Ď Λ for every n P ω. Since these
are Wadge classes by Theorem 7.5, and they form a strictly increasing sequence
by [Ke, Exercise 22.26.iv], our claim is proved. Therefore, we can apply [AHN,
Lemma 3.6.a], which shows that ρ´1rAs XC P Λ. Finally, Lemma 6.4.1 shows that
AX C “ pρ´1rAs X Cq X Z P ΓDpZq “ Γ. �

Corollary 12.4. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, and let Γ P NSDpZq. Assume that DnpΣ

0
2pZqq Ď Γ for every n P ω and

`pΓq ě 1.

‚ If A P Γ and G P Π0
2pZq then AXG P Γ.

‚ If A P Γ and F P Σ0
2pZq then AY F P Γ.

In particular, the above two statements hold for every good Wadge class Γ in Z.

Proof. Observe that, since Γ̌ also satisfies the assumptions of the theorem, it will
be enough to prove the first statement. So pick A P Γ and G P Π0

2pZq. By Theorem
11.3, we can pick Λ P NSDpZq such that Λp1q “ Γ. By Corollary 8.2, we can fix
E Ď 2ω such that ΓEpZq “ Λ.

Since Λp1q “ Γ, there exists a Σ0
2-measurable function f : Z ÝÑ Z and B P Λ

such that A “ f´1rBs. Furthermore, using Corollary 10.5 for a suitable choice of D,
it is easy to check that Π0

1pZq
p1q “ Π0

2pZq. Therefore, there exists a Σ0
2-measurable

function g : Z ÝÑ Z and C P Π0
1pZq such that G “ g´1rCs. By applying Lemma

6.4.2 to the projection on the first coordinate π : Z ˆ Z ÝÑ Z, one sees that
B ˆ Z P ΓEpZ ˆ Zq. Furthermore, it is clear that Z ˆ C P Π0

1pZ ˆ Zq.
We claim that DnpΣ

0
1pZ ˆ Zqq Ď ΓEpZ ˆ Zq for every n P ω. So fix n P ω, and

let D Ď 2ω be the set given by Proposition 9.3 when η “ n. Notice that

ΓDpZq
p1q “ Γ

p1q
D pZq “ DnpΣ

0
2pZqq Ď Γ “ ΓEpZq

p1q,

9Here, we apply [LSR1, Théorème 8] instead of Theorem 11.3 simply because the former does
not require AD.
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where the first equality holds by Corollary 10.5. Therefore ΓDpZq Ď ΓEpZq by
Corollary 10.7. An application of Proposition 6.6 with W “ Z ˆ Z concludes the
proof of our claim.

Therefore, we can apply Theorem 12.3, which shows that B ˆ C “ pB ˆ Zq X
pZ ˆ Cq P ΓEpZ ˆ Zq. Consider the function pf, gq : Z ÝÑ Z ˆ Z defined by
pf, gqpxq “ pfpxq, gpxqq, and observe that pf, gq is Σ0

2-measurable. By Lemma
9.5.3, it follows that

AXG “ pf, gq´1rB ˆ Cs P Γ
p1q
E pZq “ Λp1q “ Γ,

where the second equality holds by Corollary 10.5. �

13. Reasonably closed Wadge classes

In this section we will define reasonably closed Wadge classes and prove that
every good Wadge class is reasonably closed. This notion is an ad hoc definition,
and it is the key idea of an ingenious lemma due to Harrington (see [St2, Lemma
3]). This lemma is a crucial ingredient in the proof of Theorem 15.1. Here, we will
follow the approach of [vE3, Section 4.1].

Given i P 2, set

Qi “ tx P 2ω : xpnq “ i for all but finitely many n P ωu.

Notice that every element of 2ωzpQ0 YQ1q is obtained by alternating finite blocks
of zeros and finite blocks of ones. Define the function φ : 2ωzpQ0 YQ1q ÝÑ 2ω by
setting

φpxqpnq “

"

0 if the nth block of zeros of x has even length,
1 otherwise,

where we start counting with the 0th block of zeros. It is easy to check that φ is
continuous.

Definition 13.1. Let Γ be a Wadge class in 2ω. We will say that Γ is reasonably
closed if φ´1rAs YQ0 P Γ for every A P Γ.

The following result is essentially the same as [vE3, Lemma 4.2.17], except that
it is not limited to the Borel context.

Lemma 13.2. Assume AD. Let Γ be a good Wadge class in 2ω. Then Γ is
reasonably closed.

Proof. By Corollary 8.2, we can fix D Ď 2ω such that Γ “ ΓDp2
ωq. Set Z “

2ωzpQ0YQ1q. Pick A P Γ. Notice that φ´1rAs P ΓDpZq by Lemma 6.4.2. Therefore,
by Lemma 6.4.1, there exists B P Γ such that B X Z “ φ´1rAs. Since Γ is a good
Wadge class and Z P Π0

2p2
ωq, it follows from Corollary 12.4 that φ´1rAs P Γ.

Finally, again by Corollary 12.4, we see that φ´1rAsYQ0 P Γ, which concludes the
proof. �

14. Wadge classes of homogeneous spaces are good

The main result of this section is that rXs is a good Wadge class whenever X
is a homogeneous space of sufficiently high complexity (see Theorem 14.4 for the
precise statement). Together with Lemma 13.2, this will allow us to apply Theorem
15.1 in the next section.
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We will need three preliminary results. Lemmas 14.1, 14.2, and 14.3 correspond
to [vE3, Lemma 4.2.16], [vE3, Lemma 4.4.2], and [vE3, Lemma 4.4.1] respectively,
while Theorem 14.4 corresponds to [vE3, Lemma 4.4.3]. Once again, the difference
is that we work with arbitrary sets instead of just Borel sets. In the case of Lemma
14.3, this yields at the same time a substantially simpler proof, inspired by [Lo2,
proof of Theorem 7.3.10.ii].

Lemma 14.1. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, and let Γ be a good Wadge class in Z. Assume that A and B are subspaces
of Z such that B P Γ and A « B. Then A P Γ.

Proof. Let h : A ÝÑ B be a homeomorphism. By [Ke, Theorem 3.9], we can fix
G,H P Π0

2pZq and a homeomorphism f : G ÝÑ H such that h Ď f . By Corollary
8.2, we can fix D Ď 2ω such that Γ “ ΓDpZq. Notice that B P ΓDpHq by Lemma
6.4.1. It follows from Lemma 6.4.2 that A P ΓDpGq. Therefore, according to
Lemma 6.4.1, there exists C P ΓDpZq such that C XG “ A. Since G P Π0

2pZq, an
application of Corollary 12.4 concludes the proof. �

Lemma 14.2. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, let Γ be a good Wadge class in Z, and let X be a homogeneous subspace
of Z. Assume that A P Σ0

1pXq is non-empty and A P Γ. Then X P Γ.

Proof. Define U “ thrAs : h is a homeomorphism of Xu. Notice that U is a cover of
X because X is homogeneous and A is non-empty. Let tAn : n P ωu be a countable
subcover of U . Observe that each An P Γ by Lemma 14.1. Fix Un P Σ0

1pZq for
n P ω such that Un X X “ An for each n. Set Vn “ Unz

Ť

kăn Uk for n P ω, and
observe that Vn P ∆0

2pZq for each n. Furthermore, it is easy to check that

X “
ď

´1ďnăω

pVn XAnq,

where V´1 “ Zz
Ť

năω Vn “ Zz
Ť

năω Un and A´1 “ ∅. In conclusion, we see that
X P PU1pΓq. Since `pΓq ě 1, it follows that X P Γ. �

Lemma 14.3. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, let Γ P NSDpZq be such that `pΓq “ 0, and let X P Γ be codense in Z.
Then there exists a non-empty U P ∆0

1pZq and Λ P NSDpZq such that Λ Ĺ Γ and
X X U P Λ.

Proof. First we claim that Γ̌ Ď PU1pΓq. Since `pΓq “ 0, we can fix A P PU1pΓqzΓ.
Using Lemma 3.2 and the fact that PU1pΓq is continuously closed, it is easy to
see that Γ̌ Ď rAs Ď PU1pΓq. Therefore, we can fix An P Γ and pairwise disjoint
Vn P ∆0

2pZq for n P ω such that
Ť

nPωpAn X Vnq “ ZzX. Since Z is a Baire space,
we can fix n P ω and a non-empty U P ∆0

1pZq such that U Ď Vn.
Notice that Γ ‰ tZu and Γ ‰ t∅u because `pΓq “ 0, hence it is possible to

apply Proposition 3.5. In particular, one sees that UzX “ An X U P Γ, hence
ZzpX X Uq “ pZzUq Y pUzXq P Γ. So, we have X X U P Γ (again by Proposition
3.5) and ZzpXXUq P Γ. This easily yields the desired result if XXU is non-selfdual,
so assume that X X U is selfdual. By Corollary 4.4, we can fix pairwise disjoint
Un P ∆0

1pUq and non-selfdual Bn ă X X U in Z for n P ω such that
Ť

nPω Un “ U
and

Ť

nPωpBn X Unq “ X X U . If we had Bn “ Z for each n such that Un ‰ ∅
then the assumption that X is codense in Z would be contradicted, so assume that
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n P ω is such that Bn ‰ Z and Un ‰ ∅. To conclude the proof, set Λ “ rBns and
observe that X X Un “ Bn X Un ď Bn by Proposition 3.5. �

Theorem 14.4. Assume AD. Let Z be an uncountable zero-dimensional Polish
space, and let X be a homogeneous dense subspace of Z such that X R ∆pDωpΣ

0
2pZqqq.

Then rXs is a good Wadge class in Z.

Proof. Fix Γ P NSDpZq minimal with respect to the property that X X U P ΓY Γ̌
for some non-empty U P ∆0

1pZq. Fix a non-empty U P ∆0
1pZq such that X X U P

Γ Y Γ̌. Assume without loss of generality that X X U P Γ (the case X X U P Γ̌ is
similar). First we will prove that Γ is a good Wadge class, then we will show that
rXs “ Γ. Observe that DωpΣ

0
2pZqq and ĎωpΣ

0
2pZqq are good Wadge classes in Z

by Proposition 12.2. We claim that X X U R ∆pDωpΣ
0
2pZqqq. Assume, in order to

get a contradiction, that X X U P ∆pDωpΣ
0
2pZqqq. Then, by the density of X, it

is possible to apply Lemma 14.2 (twice), obtaining that X P ∆pDωpΣ
0
2pZqqq. Since

this contradicts our assumptions, our claim is proved. By Lemma 3.2, it follows
that ∆pDωpΣ

0
2pZqqq Ď Γ.

Next, we claim that `pΓq ě 1. Assume, in order to get a contradiction, that
`pΓq “ 0. By Corollary 8.2, we can fix D Ď 2ω such that ΓDpZq “ Γ. Since X is
dense in Z and homogeneous, if U were countable then X would be countable, by
the same argument as in the proof of Proposition 2.6. So U is an uncountable zero-
dimensional Polish space, and `pΓDpUqq “ 0 by Corollary 11.4. Furthermore, X
must be codense in Z, otherwise it would follow that X is Polish by Proposition 2.6,
hence X P Π0

2pZq by [Ke, Theorem 3.11]. Therefore, by Lemma 14.3, there exists
a non-empty V P ∆0

1pUq and Λ P NSDpUq such that Λ Ĺ ΓDpUq and X X V P Λ.
By Corollary 8.2, we can fix E Ď 2ω such that ΓEpUq “ Λ. Observe that ΓEpZq Ĺ
ΓDpZq by Proposition 6.6. Therefore, in order to contradict the minimality of Γ,
it remains to show that X X V P ΓEpZq. By Lemma 6.4.1, there exists A P ΓEpZq
such that AXU “ XXV . Notice that ΓEpZq ‰ tZu, otherwise it would follow that
X “ Z, which contradicts our assumptions. Therefore X XV “ AXU P ΓEpZq by
Proposition 3.5.

At this point, we know that Γ is a good Wadge class, so we can apply Lemma
14.2, obtaining that X P Γ. To conclude the proof, it will be enough to show that
X is non-selfdual, as it will follow from the minimality of Γ and Proposition 3.5
that rXs “ Γ. Assume, in order to get a contradiction, that X is selfdual. Then,
by Corollary 4.4, there exist a non-empty V P ∆0

1pZq and a non-selfdual A ă X in
Z such that A X V “ X X V . Set Λ “ rAs, and observe that Λ Ĺ Γ. Notice that
Λ ‰ tZu, otherwise it would follow that V Ď X, hence X would not be codense
in Z. Therefore X X V “ A X V P Λ by Proposition 3.5. This contradicts the
minimality of Γ. �

15. The main results

This sections contains our main results. Theorem 15.2 extends (and is inspired
by) [vE4, Lemma 2.7]. All the work done so far was aimed at applying the following
result, which is a particular case of [St2, Theorem 2]. Given a Wadge class Γ in 2ω

and X Ď 2ω, we will say that X is everywhere properly Γ if XXrss P ΓzΓ̌ for every
s P 2ăω.

Theorem 15.1 (Steel). Assume AD. Let Γ be a reasonably closed Wadge class in
2ω. Assume that X and Y are subsets of 2ω that satisfy the following conditions:
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‚ X and Y are everywhere properly Γ,
‚ X and Y are either both meager in 2ω or both comeager in 2ω.

Then there exists a homeomorphism h : 2ω ÝÑ 2ω such that hrXs “ Y .

Theorem 15.2. Assume AD. Let X and Y be homogeneous dense subspaces of 2ω.
Assume that X R ∆pDωpΣ

0
2p2

ωqqq, and that the following conditions are satisfied:

‚ rXs “ rY s,
‚ X and Y are either both meager spaces or both Baire spaces.

Then there exists a homeomorphism h : 2ω ÝÑ 2ω such that hrXs “ Y .

Proof. Let Γ “ rXs. Notice that Γ is a good Wadge class by Theorem 14.4, hence
it is reasonably closed by Lemma 13.2. It is clear that if X and Y are both meager
spaces, then they are both meager in 2ω. On the other hand, if X and Y are both
Baire spaces, then they are comeager in 2ω by Proposition 2.7. Hence, by Theorem
15.1, it will be enough to show that X and Y are everywhere properly Γ. We will
only prove this for X, since the proof for Y is perfectly analogous. Pick s P 2ăω.
Using Proposition 3.5, one sees that X X rss P Γ. In order to get a contradiction,
assume that XXrss P Γ̌. Since Γ̌ is also a good Wadge class, it follows from Lemma
14.2 that X P Γ̌, which contradicts the fact that Γ is non-selfdual. �

Corollary 15.3. Assume AD. Let X be a zero-dimensional homogeneous space
that is not locally compact. Then X is strongly homogeneous.

Proof. Notice that X is crowded, otherwise it would be discrete by homogeneity.
Therefore, we can assume without loss of generality that X is a dense subspace of
2ω. If X P ∆pDωpΣ

0
2p2

ωqqq, then the desired result follows from [vE3, Corollary
4.4.6]. So assume that X R ∆pDωpΣ

0
2p2

ωqqq.
By Theorem 2.8, it will be enough to show that X X rss « X for every s P 2ăω.

Pick s P 2ăω. Let h : rss ÝÑ 2ω be a homeomorphism, and let Y “ hrX X rsss. It
is easy to check that Y is a homogeneous dense subspace of 2ω. Furthermore, it is
clear that X and Y are either both meager spaces or both Baire spaces. We claim
that rXs “ rY s. By Theorem 15.2, this will conclude the proof.

Set Γ “ rXs, and observe that Γ is a good Wadge class by Theorem 14.4. In
particular, Γ is non-selfdual. Hence, by Corollary 8.2, we can fix D Ď 2ω such that
Γ “ ΓDp2

ωq. Notice that X Xrss P ΓDprssq by Lemma 6.4.1, hence Y P ΓDp2
ωq by

Lemma 6.4.3. This shows that rY s Ď rXs. In order to prove the other inclusion,
by Lemma 3.2, it will be enough to show that Y R Γ̌Dp2

ωq. Assume, in order to
get a contradiction, that Y P Γ̌Dp2

ωq. Then X X rss P Γ̌Dprssq by Lemma 6.4.3. It
follows easily from Lemma 6.4.1 and Proposition 3.5 that X X rss P Γ̌Dp2

ωq “ Γ̌.
This implies that X P Γ̌ by Lemma 14.2, which contradicts the fact that Γ is
non-selfdual. �
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24 RAPHAËL CARROY, ANDREA MEDINI, AND SANDRA MÜLLER
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Kurt Gödel Research Center for Mathematical Logic

University of Vienna

Währinger Straße 25
A-1090 Wien, Austria

E-mail address: mueller.sandra@univie.ac.at

URL: https://muellersandra.github.io


