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Abstract

We show that by taking a certain scaling limit of a Euclideanised form of the Plebanski—-Demianski metrics one obtains a
family of local toric Kahler—Einstein metrics. These can be used to construct local Sasaki—Einstein metrics in five dimensions
which are generalisations of th&’-9 manifolds. In fact, we find that these metrics are diffeomorphic to those recently found
by Cvetic, Lu, Page and Pope. We argue that the corresponding family of smooth Sasaki—Einstein manifolds all have topology
$2 x 3. We conclude by setting up the equations describing the warped version of the Calabi—Yau cones, sugpbyting
three-form flux.

0 2005 Elsevier B.VOpen access under CC BY license.

Recently Sasaki-Einstein geometry has been thetigate if there exist other local Kahler—Einstein met-
focus of much attention. The interest in this subject has rics in dimension four from which one can construct
arisen due to the discovery|ih,2] of an infinite family complete Sasaki—Einstein manifolds in one dimension

Y P-4 of explicit Sasaki—Einstein metrics &% x $3, higher.
and the subsequent identification of the corresponding As we show, one can obtain a family of local
family of AAS/CFT dual quiver gauge theoried®4]. toric Kéhler—Einstein metrics by taking a certain scal-

The construction of2] was immediately gener- ing limit of a Euclideanised form of the Plebanski—
alised to higher dimension in Refb] and a further Demianski metric§3]. Here toric refers to the fact that
generalisation subsequently appeared6ifr]. How- the metric has two commuting holomorphic Killing
ever, dimension five is the most interesting dimension vector fields. In fact the resulting metrics were found
physically and the purpose of this work was to inves- independently by Apostolov and collaborators[®}

using rather different methods. In the latter reference

it is shown that this family of metrics constitute the
 E-mail addresses: dario.martelli@cern.ctD. Martelli), most general local Kéhler-Einstein metric whiclois
sparks@math.harvard.e@l Sparks). thotoric, a term that we define later. We also show that
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these Kahler-Einstein metrics are precisely those useddsf =
in the recent construction of Sasaki—Einstein mani-

folds generalisingr -4 [10]. Higher-dimensional or-
thotoric Kéhler—Einstein metrics are given in explicit
form in Ref.[11].

Our starting point will be the following family of
local Einstein metrics in dimension four

dp?  dg?
ds‘% = (p2 — qz) |:T + zil
L1
P2 — g2
x [P(de +¢%do)? + Q(dt + p?do)’], (1)
where P and Q are the fourth order polynomials

P(p)=—«(p—r)(p—r2)(p—r3)(p—ra)
0(q)=k(q—r1)(q—r2)(q—r3)(q—ra)+cq, (2)
O=ri+ro+rz3+ra. 3)

As shown in[12], these metrics arise by taking a
scaling limit of the well-known Plebanski—Demianski
metrics[8]. The Weyl tensor is anti-self-dual if and
only if c=0.

The natural almost Kahler two-form associated to
the metric(1) is

J=dp A (dt +¢%do) +dg A (dr + pPdo).  (4)

Our strategy will be to obtain a scaling limit for
which (4) becomes closed. Thus, consider the follow-
ing change of coordinates

p=1-€, g=1l-en,

® =¢(t+0), U =—2e%0 (5)
and redefinition of the metric constants
ri=l—ea;, =123,

r4 =—3+ (a1 + a2 + az)e,

c=14e3y. (6)

The latter ensures that the constra(8} is satisfied.
Defining

F(§) =—k(a1—§) (a2 — &) (a3 —§),
G(n) = k(a1 —n)(az —n(az—n) +y (7

it is straightforward to see that, upon sending> O,
the metric(1) becomes

209
=6 o 2FE) )
d do dyw
2re) & TGt
n—-8) 2 2G(n) 2
d do dw)“. 8
T 26m T o @e T 6)

In fact it is also immediate to see that= 2 dA where

1
—-A= > )

One can verify that this metric is Kahler—Einstein with
curvature

E+ndo + :—Zléndlll.

Ric=3kg. (10)
In particular, settinge = 2 the metric
dsZ = ds2 + (dy' + A)2 (11)

is then locally Sasaki—Einstein with curvature 4. (See,
e.g.,[5] for curvature conventions.)

Having found these metrics we subsequently dis-
covered that the same solutions had been obtained in-
dependently, and in a completely different manner, in
referencd9]. In fact the metric, as presented, is essen-
tially already in the form given if9] and moreover
is the most general orthotoric Kahler—Einstein metric.
Here orthotoric means that the Hamiltonian functions
& + n, &n for the Killing vector fieldsa/o®, 9/0V,
respectively, have the property that the one-forts d
dn are orthogonal. The metric is self-dual if and only if
y = 0. Moreover these metrics have been generalised
to arbitrary dimension ifiL1] which thus gives a more
general construction of local Sasaki—Einstein metrics.

One should now proceed to analyse when the local
Sasaki—Einstein metrics extend to complete metrics on
a smooth manifold. As the metrics generically possess
three commuting Killing vector8/d®, 3/, 3/3v’,
the resulting five-dimensional manifolds should be
toric, as was the case i2]. In particular, real codi-
mension two fixed point sets correspond to toric divi-
sors[3] in the Calabi—Yau cone, and it is a very simple
matter to find such vector fields for the metfic).

A generic Killing vector can be written as

d
oy’

whereS, T andU are constants. A short calculation
then shows that its norm is given by

9 9
V=S—+T—+4U

12
0P 4 (12)
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12 [FE)S + T2+ G (S +TE)?]

BCED)

+ 5[5 +m + 7en — 20T (13)
Now, crucially, sinceF(¢)/(n — &) > 0,G(n)/(n —

&) > 0 for a positive definite metric, this is a sum of
positive functions. Therefore it can vanish in codimen-
sion two if and only if¢ = &; (or n = n;) are at the
roots of F (or G) and at the same time the remain-
ing terms manage to vanish for generic valuesof
(or &). In fact, it is easy to see that this is true. We
therefore see that there doeir codimension two fixed

D. Martelli, J. Sparks/ Physics Letters B 621 (2005) 208212

It is a simple exercise to show that, in these coordi-
nates, the metri¢14) takes the form(8) wherea, B
and u parametrise the cubic function. Explicitly, we
have

F() =2 —&)(a—B—§),
Gn)=—-2n(a—n)(a—p—n —2u. (17)

As shown in[10], the complete metricd. >
with local form (11) are specified by three integers
a,b,c. One recovers th&”?-9 metrics in the limit
a=p—q,b=p+q,c= p.Moreover, as explained,
there are precisely four Killing vector fieldg;, i =

point sets, so that if the metrics extend onto complete 1, 2, 3, 4, that vanish on codimension 2 submanifolds.
smooth toric manifolds, the Calabi—Yau cones must be This means that the image of the Calabi—Yau cone un-
a T® fibration over a four faceted polyhedral cone in  der the moment map for tHe® action is a four faceted
R3. polyhedral cone irR3—see[3] for a review. Indeed,
However, we will not complete the details of this using the linear relation among the vector§li] one
argument because it turns out that these metrics arecan show that the normal vectors to this polyhedral
diffeomorphic to those found by Cvetic, Lu, Page, and cone satisfy the relation
Pope in[10]. These authors have performed the global

analysis in detail. Therefore, we instead exhibit an ex- (18)

avi+bvy —cvz— (a+b—c)vga =0,

plicit change of coordinates, demonstrating the equiv- wherev;, i = 1,2, 3,4, are the primitive vectors in

alence of the two metrics.
The Kéhler—Einstein metrics in Refl0] were
given in the form

2 2 2 2
2 pdx p<do
dS4— 4A, Ag
A, (Sir?o co 2
+—;‘< do + dw)
P B
Ag Sir? — - 2
| Aosi (Zcos?@(a xd¢_ﬂ xdw) ’
P o B
(14)
where
Ac=x(@—x)B—x)—pn,  p°=Ag—x,
Ap = a COL 0 + BSinto. (15)

Consider the coordinate transformation

n=a—x, £ =(a— B)sifo,
1 v ¢ ¥

b =—1, = — .
25" 2a—Pa  2a—pp

(16)

1 Note that this is degenerate when= 8, which corresponds to
the Y ?+4 limit [10].

R3 that define the cone. From the Delzant theorem
in [13] it follows that, fora, b, ¢ relatively prime, the
Sasaki—Einstein metrics®?¢ are equivariantly con-
tactomorphic to the link of the symplectic quotient

C*/(a,b,—c,—a—b+c). (19)

Note that indeed in th&?-7 limit we obtain charges
(p—q,p+q.,—p,—p)whichis the result of3]. The
baseY of the cone is non-singular if andb are pair-
wise prime to each of anda + b — ¢, and these inte-
gers are strictly positive. By the results[@#] we then
have o (Y) = Z. SinceY is simply-connected, spin
and has no torsion iff>(Y) it follows from Smale’s
theorem that is diffeomorphic tas? x $°.

We conclude with some technical computations
that may be of use in future developments. In partic-
ular, following [3], we first introduce complex coor-
dinates on the Calabi—Yau cone. We then write down
the equations for a warped version of the Calabi-Yau
cone, thus generalising the solution[d6]. Note that
the form of the metric that we have presented here is
more symmetric than in the coordinate systerfilf.

The holomorphic(3, 0) form on the cone can be
written in the standard fashion

2=eVr22u A [dr +ir(dy’ + A)] (20)
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with appropriate24 [3]. Introducing the one-forms

. 1 i
niL= ﬁdé'}‘ ﬁ(d(p +77dl11),

1 i
N = — dnp + —— (do dy
=5 77+n_$( +&dv),
L dro
773=7+l(dl/f +A) (21)
this may be written as
2 =20 —E)VFGr¥V fis niig A . (22)

By construction thej; are such thafj; A 2 =0, i.e.,
they are(1, 0) forms. However, one must take com-
binations of these to obtain integrable (closed) forms.
These are given by

1 1

=f1 —flo= = df — — dn +i d¥,
ni=n1—12 2F$ °G n+i

en N U .
n2=£&m nnz—ZFdE 2Gdn ido,
13 = £%A1 — n°f2 — 203
£2 n? dr .,
~—dé ——dn—2— —2idy’.
oF & T g2 —Ady

The effect of this change of basis is to simpl{2)
slightly

2 =FGriV N1 A N2 AD3. (24)

Integrating these one-forms, thus introducing=
dz; /z;, we obtain the following set of complex coordi-
nates:

(23)

3 1 1
a1 =] & — &) TAED (5 — ) Tz Y
i=1
3 §i i )
22=[ (6 — &) T @ — ) TA"7 12,
i=1

3 §2
2= H(E _ Ei)“l_[j;ei(fi%j)
i=1
)71.2
x (1 — ;) T 0 =1)) 202V (25)
For convenience we have written the cubic polynomi-
als as

F(§) =26 —§1)(& —§2)(§ — 3),

G(n) =—-2(n—n1)(m —n2)(n —n3). (26)
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These coordinates generalise those introducd@]in
for the metric cone over thE?:¢ manifolds.

Next we turn to the problem of finding warped so-
lutions which arise after placing fractional branes at
the apex of the cone. These solutions are expected to
be relevant for the study of cascades in the dual gauge
theories. In the following we follow the logic of refer-
enceg[15]. Recall that in type 1IB supergravity it is pos-
sible to turn on a complex three-form flux preserving
supersymmetry, provided this is of Hodge ty(#& 1)
with respect to the complex structure of the Calabi—
Yau cone. Such a three-form is easily constructed in
terms of a local closed primitivél, 1) form on the
Kéhler-Einstein space. Itis straightforward to see that
such a two-form is

0= ﬁ[d@ — ) A dP + (s — & diy) A AW,
(27)

Then, by construction

d
§201= |:_r +i(d¢l+A)] Aw (28)

r
is (2, 1) and closed. Next, let us give the scalar Lapla-
cian operator on the Calabi-Yau cone, actingla
invariant functions. Again, this is highly symmetric in
&, n due to the particularly simple form of the metric:

Acy =

1
[ = )3 (r°9,
S —pl = Ox )
+2r3(8,(Gdy) + 3 (Fdg))]. (29)

One is then interested in finding solutions of the type

ds? = h~1/2(s? (R4) + hl/z(dr2 + rzdsé),

F3+iH3zx §221, (30)

where F3 and H3 are the RR and NS three-forms,
respectively[15], for which the only non-trivial equa-
tion reduces to

1
Acyh = _6|H3|2' (31)
After the substitution§l5]
4| A
h(r,€,m)=r Et—}-s(“g‘,n) , t=logr (32)
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we are left with the following PDE

9 d B 0
3_’7 (G(n)ﬁs(%‘, 77)) + ¥<F(§)¥S(E7 ’7))

2

C
—W +AE —n),

whereC is a proportionality constant. Of course this

(33)

is still dependent on two variables, but it seems that

solutions generalising those [df5] should exist.
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