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A B S T R A C T

Pain has an inhibitory effect on the corticospinal excitability that has been interpreted as an evolutionary
mechanism, directed to down-regulate cortical activity in order to facilitate rapid protective spinal reflexes. Here,
we focused on the link between defensive mechanisms and motor system and we asked whether voluntary actions
can modulate the corticospinal excitability during painful stimulations. To this aim, we manipulated the volition-
related aspects of our paradigm by comparing conditions in which either the participant (self-generated action) or
the experimenter (other-generated action) pressed the button to deliver painful high-intensity transcutaneous
electric shocks to the right digit V. MEPs to TMS were recorded from the FDI and APB muscles of the stimulated
hand. A compelling agent-dependent modulation of the corticospinal excitability was found, showing, in self-
generated compared to other-generated actions, a significantly lower inhibitory effect, as measured by greater
MEP amplitude. This finding suggests a top-down modulation of volitional actions on defensive mechanisms,
promoting the view that predictive information from the motor system attenuates the responses to the foreseeable
adverse events generated by one’s own actions as compared to unpredictable events generated by someone else’s
actions.
1. Introduction

In the literature examining the relationship between pain and
sensorimotor system, several studies demonstrated a physiological
counterpart of defensive motor responses to painful stimuli, showing a
consistent modulation of the primary motor cortex (M1) excitability
(Burns et al., 2016). Nociceptive fingertip stimulation inhibits voluntary
EMG activity of contracting muscles, the so-called cutaneous silent
period (Kofler, 2003; Kofler et al., 1998). At rest condition, by using brain
stimulation to evoke motor evoked potentials (MEPs) and different
methods to induce pain, an inhibitory effect on the corticospinal excit-
ability has been demonstrated. Some studies investigated the effect of
short painful CO2 laser stimulation in modulating MEP amplitude,
recorded from both hands’ (Algoet et al., 2018; Valeriani et al., 1999) and
arms’ (Valeriani et al., 2001) muscles. Other studies, employing noxious
electrical fingertip stimulation found different modulation patterns on
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the EMG activity of the upper-limb: they showed inhibition of the hand
muscle activity and facilitation on the arm muscle activity (Kofler et al.,
1998; Urban et al., 2004). In other research contexts, several studies
demonstrated that the mere observation of painful stimuli delivered to
another individual induces corticospinal inhibition in the observer
similar to those recorded during oneself pain (Avenanti et al., 2010,
2009b; 2009a, 2006; 2005; Bucchioni et al., 2016; Bufalari et al., 2007).
This has been interpreted as the physiological basis of empathy (Singer
and Frith, 2005) or, more recently, as the physiological counterpart of an
embodiment phenomenon related to the sense of body-ownership (Buc-
chioni et al., 2016). Such effects may suggest that the observed cortico-
spinal inhibition rather than being entirely explained by a bottom-up
mechanism, might instead be linked also to a top-down component,
related to the pain anticipation. Coherently, through a conditioning
paradigm, we recently showed that the mere expectancy of a painful
stimulus may induce corticospinal inhibition, even when the
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conditioning painful stimulus was not actually delivered (Fossataro et al.,
2018c).

Capitalizing on this TMS literature, in the present study we focused on
the link between defensive mechanisms and motor system and we asked
whether voluntary actions can modulate the corticospinal excitability
during painful transcutaneous electrical stimulation. The everyday
experience of volitional action is strongly associated with the fore-
seeability of the events generated by our own action, as compared to the
unpredictability of the events generated by others’ actions. The tight link
between volitional actions and the physical (or even moral) events they
caused has been extensively investigated in the literature on motor
cognition (Haggard, 2017). Here, we reasoned that the same painful
(high intensity) electric shock can induce a different modulation of the
corticospinal excitability, depending on whether it is perceived as the
consequence of the own action or, on the contrary, as an externally
generated event.

2. Materials and methods

2.1. Participants

Eighteen healthy volunteers (8 males, 20–29 years, mean � SD 24.61
� 2.25; educational level ¼ 16.4 � 2.5 years) participated in the study.
All participants were right-handed, as assessed with the Edinburgh
Handedness Inventory (Oldfield, 1971), naïve to the experimental pro-
cedure and, before taking part in the study, they gave written informed
consent. None of them had a history of neurological, major medical or
psychiatric disorders and they were free from any contraindication to
TMS (Bruno et al., 2018a; Rossi et al., 2009). The experimental procedure
Fig. 1. Schematic representation of the experimental condition. Single-pulse TM
FDI muscles of the right hand. Left panel shows the two no-shock conditions in whi
shock. Right panel shows the two shock conditions in which painful stimuli were
self-generated conditions participants had to press the button with their left hand; i
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was approved by local ethics committee of the University of Turin (3167,
February 1, 2016).
2.2. Experimental paradigm

In the present study, we investigated whether volitional actions
interacted with a defensive motor response to painful stimuli. To this
aim, we contrasted the MEP amplitude to single TMS pulses over the M1
(contralateral to the stimulated hand) in two different conditions,
wherein high electrical stimuli could be generated either by the partici-
pant’s button press (self-generated shock) or by the experimenter’s but-
ton press (other-generated shock). A vocal signal “you” indicated that
participants had to press the button with their left index finger; a vocal
signal “other” indicated that participants had to look at a co-experimenter
pressing the button. Note that, either participants or the experimenter
might press the button delivering the stimulus whenever they wanted,
therefore the latency between the vocal signal and the stimulus delivery
was random. In control conditions, the button press did not cause the
electric shock, either in self-generated (no-shock) trials or in other-
generated (no-shock) trials (see Fig. 1). It is important to note that we
decided to adopt no-shock trials as control condition since in a previous
study it has been demonstrated that non-painful tactile stimuli do not
modulate the MEP amplitude (Fossataro et al., 2018c).

In shock conditions, in order to have a behavioural measure of the
perceived subjective pain intensity, after each electrical stimulation,
participants were asked to rate the perceived pain intensity on a 0-7
Likert scale ranging from “It is not painful at all” to “It is very painful”.
Moreover, in order to avoid response bias and to control for phantom
sensations, catch trials (without stimulation) were randomly included
S delivered over the participant’s left M1 and MEPs recorded from the APB and
ch no stimuli were delivered: self-generated/no-shock and other-generated/no-
delivered: self-generated/shock and other-generated/shock. Note that in both
n both other-generated conditions they did not.
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and the corresponding MEPs were not considered for the analysis. Note
that, during the button-pressing, the movement required to the subjects
was very little. Indeed, subjects were already in position, with the left
hand on the keyboard, to be ready to press the button, which needed a
minimal force in order to trigger the stimulation.

The experiment consisted of two TMS sessions with a between ses-
sions break of 20 min in order to minimize habituation and to ensure
that, after the first TMS session, the corticospinal excitability came back
to normal values. Within each session, the order of no-shock (A) and
shock (B) blocks was counterbalanced within subjects (ABBA) resulting
in a total of 48 trials: 12 trials self-generated no-shock; 12 trials other-
generated no-shock; 12 trials (and 2 catch trials) self-generated shock;
12 trials (and 2 catch trials) other-generated shock. Note that participants
were explicitly informed whether a shock block or a no-shock block was
about to start.

The experiment was programmed by using E-prime presentation
software V2.0 (Psychology Software Tool Inc., USA) in order to a) control
sequence, timing and duration of the stimuli; and b) trigger TMS pulses,
EMG recording and electrical stimulation delivering. Participants were
comfortably seated in front of a PC screen (24 inches monitor) at a dis-
tance of ~80 cm. In order to avoid any muscles contractions, they were
asked to keep their right forearm resting on a pillow.

2.3. Stimulation and recordings

2.3.1. Transcranial magnetic stimulation
MEPs were elicited by a single pulse transcranial magnetic stimula-

tion (TMS) (Magstim Rapid2; Magstim Co. Ltd, Whitland, UK) with a
figure-of-eight-shaped coil positioned over the left motor cortex (M1,
hand area). The coil was held tangentially to the scalp with the handle
pointing backwards and laterally 45� away from the mid-sagittal line,
such that the flow induced by the second most effective phase of the
biphasic pulse moved in a posterior anterior direction (Di Lazzaro et al.,
2001; Kammer et al., 2001). In order to determine the optimal position
able to elicit the greatest MEP amplitude with the lowest stimulation
intensity, this orientation permits the lowest motor threshold estimation,
optimizing the stimulation (Brasil-Neto et al., 1992). By moving the coil
in step of 1 cm over the left motor cortex the optimal point able to
activate the selected muscle was found, then the coil was fixed and held
by a mechanical arm. The intensity of magnetic pulses was set at 110% of
the resting motor threshold (mean� SD 54.33%� 9.15%, range 48–67%
of the maximum stimulator output), defined as the lowest intensity of the
stimulator output able to elicit five MEPs out of ten consecutive pulses
with an amplitude of at list 50 μV (Rossini et al., 1994).

2.3.2. Electrical stimulation
Transcutaneous electrical stimuli consisted in constant current

square-wave pulses (DS7A, Digitimer) delivered to the right digit V, using
a surface bipolar electrode attached with a Velcro strap. The stimulus
duration was 200 μs and the delivery occurred ~50 ms before the TMS
pulse, in order to obtain the maximum pain dependent inhibition on the
MEP amplitude accordingly to previous studies (Fossataro et al., 2018c;
Urban et al., 2004). The mean stimulus intensities were 18.90 � 10.61
mA, range 6.8–50 mA. The stimulation intensity was initially set at
10-fold the perceptual threshold and then individually adjusted to elicit a
painful sensation of at list 4/7 (i.e. “clearly painful sensation”) on a 0–7
Likert scale, where 0 is “not painful” and 7 is “the most painful imagin-
able”. Thus, although the electrical stimulus is not pain-specific per se (it
does not selectively activate nociceptive A-delta and C fibers), it is sub-
jectively perceived as painful (Burin et al., 2017a). Note that, in order to
minimize habituation (Torta et al., 2012; Valentini et al., 2011), stimuli
were randomly delivered to three different locations of the digit V.

2.3.3. Electromyography recording
Electromyographic (EMG) activity was simultaneously recorded

(MP150, Biopac System, USA), from the right Abductor Pollicis Brevis
3

(APB) and the right First Dorsal Interosseous (FDI) muscles, using two
pairs of bipolar surface electrodes with the active electrode over the
muscle belly and the reference electrode over the associated joint or
tendon. Our selected target muscles were APB and FDI since previous
studies (Farina et al., 2001; Svensson et al., 2003; Urban et al., 2004)
showed that their motor response is modulated during painful stimula-
tion (electric shocks). Signals were amplified and digitalized with a
sample rate of 10 kHz, filtered with a band-pass (10–500 Hz) and a notch
(50 Hz) filter, according to the method used in previous studies (Bruno
et al., 2018b, 2017; Bucchioni et al., 2016; Burin et al., 2017b; Dell’Anna
et al., 2018; Fossataro et al., 2018c, 2018b; Garbarini et al., 2018), and
stored for off line analysis.

2.3.4. Self-report measure
After the TMS session, all participants completed the Trait and State

scale of the State-Trait-Anxiety-Inventory (STAI) (Spielberger et al.,
1970; Weiner and Craighead, 2010). The STAI is a self-report question-
naire for the assessment of two different dimensions of anxiety: state and
trait, by means of two scales of 20 items each. State anxiety is a measure
of anxiety experienced at the time of the test, while trait anxiety is a
measure of a general tendency for anxiety. Anxiety scales include items
related either to the presence (e.g. “I worry toomuch over something that
really doesn’t matter”) or to the absence of anxiety (e.g. “I am content; I
am a steady person”). Each item is scored on a 4-point scale in terms of
how often participants felt as described, from 1 indicating “Almost
Never” to 4 indicating “Almost Always” (items indicating absence of
anxiety are reversed scored). The total score can range from 20 to 80 and
higher scores indicate greater anxiety.

2.4. Data analysis

EMG data were analysed offline using AcqKnowledge software (Bio-
pac Systems, Inc., Santa Barbara, CA) and Statistica Software 8.0 (Stat-
Soft, Inc., Tulsa, OK). In order to prevent contamination of MEPs by
background EMG activity, the absence of any voluntary contraction in
100 ms window preceding the TMS pulse was verified by visual inspec-
tion monitoring the EMG activity online. For each muscle, all trials with
any activity greater than 50 μVwere excluded from the analysis (less than
2% of collected data) (Bucchioni et al., 2016; Fossataro et al., 2018c). For
each participant and separately for each experimental condition the
average peak-to-peak MEPs’ amplitude (μV) was extracted and used as
dependent variable for further analyses.

In data analyses, firstly, we used mean MEP raw values to perform
comparisons between conditions, including both no-shock conditions
(self-generated/other-generated) and shock conditions (self-generated/
other-generated). The normal distribution of the residuals was checked
by means of Shapiro-Wilk test. Since the residuals were not normally
distributed (p < .05), a non-parametric Friedman test for differences
among repeated measures was conducted. Post-hoc pairwise compari-
sons were performed by means of non-parametric Wilcoxon signed-rank
tests. To account for multiple comparisons, the significance level (p
value) was corrected using a false discovery rate (FDR) procedure
(Benjamini and Hochberg, 1995).

Then, in order to obtain an ‘index of MEP decrease’, MEP amplitude of
each shock condition, either in self-generated or in other-generated ac-
tions, was expressed as percentage of MEP decrease with respect to the
relative no-shock conditions [100-(MEPshock*100)/MEPno-shock] and the
resulting values were compared. As in previous analyses, parametric T-
test did not run properly, due to the not-normal distribution of residuals,
and the Wilcoxon signed-rank test was used.

When a significant effect was found, Cohen’s d value (calculated as
within-subjects effect sizes using G*Power’s matched pairs statistical
tests) was reported as well.

Behavioural data for each condition (subjective ratings on the 0-7
Likert scale) were normalized in z-scores in order to obtain comparable
measures among participants (Bruno et al., 2019; Bucchioni et al., 2016;
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Fossataro et al., 2016a; Garbarini et al., 2014; Romano et al., 2014) and
the normal distribution of the residuals was checked by means of
Shapiro-Wilk test (W ¼ 0.97; p ¼ .45). Thus, data were analysed by
means of paired T-test (two tailed). When a significant effect was found,
Cohen’s d value (calculated as within-subjects effect sizes using
G*Power’s matched pairs statistical tests) was reported as well.

Furthermore, we calculated Spearman’s correlation in order to
investigate whether STAI-Trait and STAI-State scores were significantly
correlated to the subjective ratings on the perceived pain intensity and to
the MEP amplitude changes recorded from APB and FDI muscles. In order
to perform the correlation analysis, an index of agent-dependent modu-
lation was calculated as a delta between self- and other-generated action,
in both behavioural and physiological data.

3. Results

3.1. Physiological data

In the first analyses on raw data, the Friedman test on the MEPs ac-
quired from both APB and FDI muscles showed a significant difference
among the distributions of the experimental conditions [APB: χ2(3) ¼
20.33; p ¼ .00014; FDI: χ2(3) ¼ 24.93; p ¼ .00001]. Wilcoxon test
showed that, in both muscles, when shock conditions were compared to
the corresponding no-shock conditions, significantly lower MEP ampli-
tude was found in both self-generated condition [APB: shock vs no-shock
(z¼ 2.89; p¼ .003; p after FDR correction¼ 0.007; dz¼ 0.8); FDI: shock
vs no-shock (z ¼ 3.24; p ¼ .001; p after FDR correction ¼ 0.004; dz ¼
0.98)] and other-generated condition [APB: shock vs no-shock (z ¼ 3.59;
p ¼ .0003; p after FDR correction ¼ 0.001; dz ¼ 0.97); FDI: shock vs no-
shock (z ¼ 3.20; p ¼ .001; p after FDR correction ¼ 0.002; dz ¼ 0.93)].
See Fig. 2A and Fig. 2B. This suggests that, in both shock conditions
(irrespective of the agent of the action), painful stimulation induced a
Fig. 2. Physiological results. Top panel, in each experimental condition, we plotte
differences between self-generated/no-shock [mean � SD (μV), APB ¼ 173.23 � 114
APB ¼ 178.20 � 126.79; FDI ¼ 319.20 � 231.29]. Significant lower MEP amplitude in
[mean � SD (μV): self-generated/shock ¼ 96.32 � 64.03; self-generated/no-shock ¼
shock ¼ 178.21 � 126.79] and in FDI [mean � SD (μV): self-generated/shock ¼ 181.
¼ 132.39 � 55.21; other-generated/no-shock ¼ 319.21 � 231.29]. Significant lower
181.67 � 82.67] compared to other-generated/shock [mean � SD (μV) APB ¼ 80.87
for both self-generated and other-generated conditions, we plotted the ‘index of MEP
Note significantly lower effect in self-generated index (APB ¼ 38.17 � 31.72; FDI ¼ 3
� 42.49) (i.e. physiological counterpart of the sensory attenuation). Error bars indica
.0005). Dots represent individual participants.
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significant decrease of the MEP amplitude compared to no-shock con-
ditions. Importantly, when the two no-shock (control) conditions were
compared, no significant difference was found (self-generated action vs
other-generated action p > .5). See Fig. 2A and B. On the contrary, when
the two shock conditions were compared, a significantly lower inhibition
in self-generated action as compared to other-generated action was found
in both APB (z¼ 2.37; p¼ .0.01; p after FDR correction¼ 0.02; dz¼ 0.7)
and FDI (z ¼ 2.19; p ¼ .0.02; p after FDR correction ¼ 0.03; dz ¼ 0.87).
See Fig. 2A and B.

These results were confirmed by Wilcoxon test performed on the
‘index of MEPs decrease’, showing a significant difference between self-
generated action and other-generated action both in APB (z ¼ 2.11; p ¼
.0.034; dz ¼ 0.65)] and in FDI (z ¼ 2.15; p ¼ .0.031; dz ¼ 0.85)]. See
Fig. 2C and D. This suggests that the corticospinal inhibition, in response
to painful stimuli, is significantly modulated by the agent of the action.
3.2. Behavioural data

In shock conditions, T-test over the subjective ratings on the
perceived pain intensity showed a significant effect [t(17)¼ -2.5409; p¼
.021; dz ¼ 0.77], suggesting that, at the behavioural level, participants
reported the subjective pain perception in self-generated action as
attenuated compared to the other-generated action. See Fig. 3.
3.3. Correlations

Correlation analyses between subjective ratings on the STAI scores
(mean � SD STAI-Trait ¼ 44.77 � 8.82; STAI-State ¼ 32.41 � 8.50) and
both perceived pain intensity and MEP amplitude changes recorded from
APB and FDI muscles, did not show any significant result. The absence of
correlations with the STAI scores suggests that, even if in different
experimental contexts this test was able to predict the amplitude of motor
d the MEP amplitude (μV), recorded in APB (A) and FDI (B) muscle. Note no
.96; FDI ¼ 356.96 � 192.01] and other-generated/no-shock [mean � SD (μV),
shock condition compared to the corresponding no-shock condition both in APB
173.23 � 114.96; other-generated/shock ¼ 80.87 � 55.54; other-generated/no-
67 � 82.67; self-generated/no-shock ¼ 356.96 � 192.02; other-generated/shock
inhibition in self-generated/shock [mean � SD (μV) APB ¼ 96.32 � 64.03; FDI ¼
� 55.54; FDI ¼ 132.39 � 55.20]. Bottom panel, in each experimental condition,
decrease’ [100-(MEPsshock/MEPsno-shock)] of both APB (C) and FDI (D) muscle.

4.17 � 43.75) than in other-generated index (APB ¼ 47.93 � 26.31; FDI ¼ 47.41
te sem. Asterisk indicates significant comparisons (*P < .05; **P < .005; ***P <



Fig. 3. Behavioural results. Significant difference between subjective ratings
on the perceived painful stimuli during the two shock conditions. Note lower
responses in self-generated/shock (mean � standard deviation ¼ �0.21 � 0.36)
compared to other-generated/shock (mean � standard deviation ¼ 0.19 � 0.32)
(i.e. sensory attenuation). Error bars indicate sem. Asterisk indicates the sig-
nificant comparison (*P < .05). Dots represent individual participants.
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defensive responses [e.g. (Fossataro et al., 2018c; Sambo and Iannetti,
2013)], no linear relationship exists between the individual anxiety
profile and the agent-dependent modulation index of both subjective
ratings and MEP amplitude, at least in our sample.

4. Discussion

In the present study, we focused on the interaction between defensive
and motor systems, and we asked whether voluntary actions can modu-
late defensive motor responses to painful stimuli. To manipulate the
volitional component of our paradigm, we compared conditions in which
painful electric stimuli were either self-generated or other-generated and
we found two main results. First, we replicated the inhibitory effect of
painful electrical stimuli on the corticospinal excitability, widely
demonstrated in previous physiological studies. Indeed, in both self-
generated and other-generated actions, the MEP amplitude during
shock conditions was significantly reduced as compared to the respective
no-shock conditions. Second, and more crucial, we found an agent-
dependent corticospinal excitability modulation, consisting in a signifi-
cantly lower inhibitory effect (i.e. greater MEP amplitude) following self-
generated than other-generated shocks. This suggests that volitional ac-
tions are effective in modulating defensive mechanisms. Similarly, in
behavioural data, we found that subjective ratings on the perceived pain
intensity were significantly attenuated in self-generated compared to
other-generated conditions.

4.1. Inhibitory effect of painful transcutaneous electrical stimuli on the
corticospinal excitability

Here, we clearly replicate the inhibitory effect of painful trans-
cutaneous electrical stimuli on the corticospinal excitability (Fig. 2A and
B). It is interesting to note that, in our sample, this effect is observed in
the majority of the subjects (83.33% in APB and 88.8% in FDI) and it is
present in both self- and other-generated shock conditions. Importantly,
the amount of inhibition in other-generated shock condition (56.57%
reduction of the MEP amplitude as compared to no-shock condition) is
largely comparable to the previously described inhibitory effect in
different experimental contexts in which the painful stimulus is auto-
matically triggered (Fossataro et al., 2018c; Urban et al., 2004).

The amplitude reduction of MEPs recorded from the stimulated hand
5

muscles has been described after 20–50 ms electrical stimulation (i.e. at
the same short-latency employed here) of both the median nerve (Fischer
and Orth, 2011; Tokimura et al., 2000) and the digits (Farina et al., 2001;
Fossataro et al., 2018c; Kofler et al., 2001; Urban et al., 2004). This
short-latency inhibition is compatible with the nature of electrical stim-
ulation. Indeed, at this latency, the electrical input conveyed by
large-diameter Aβ fibres, with a fast conduction velocity (>30 m/s), has
enough time to reach both spinal motoneuron pools and the sensorimotor
cortex before the onset of the TMS pulse (Caccia et al., 1973; Tokimura
et al., 2000). Importantly, high-intensity electrical stimulation, such as
that employed here, is able to modulate the MEP amplitude, while
low-intensity innocuous electrical stimuli are not (Bikmullina et al.,
2009; Fossataro et al., 2018c). High-intensity electrical stimulation is
likely to recruit also a wide set of pain-related afferents, thus explaining
the painful sensation reported by the subjects (4.62 up to 7). Importantly,
as pointed out by previous research, some group III nociceptors, known
to be activated by high intensity electrical stimulation, have fast con-
duction velocities (between 25 and 30 m/s), compatible with the latency
of the present inhibition (Caccia et al., 1973; Lewin and Moshourab,
2004; Martin et al., 2008).

A recent evidence, coming from the literature studying the acoustic
startle reflex [a protective behaviour, consisting in a motor activation
following high-intensity auditory stimuli (Sege et al., 2018)] demon-
strated that, at rest, MEPs of the left biceps were inhibited when
threatening acoustic stimuli were delivered 50 ms prior to TMS pulses
(Chen et al., 2016). This finding in the auditory domain, combined with
previous research highlighting corticospinal inhibition following the
simple observation (Avenanti et al., 2005) or expectancy (Fossataro et al.,
2018c) of painful stimuli, suggests that this modulation of corticospinal
excitability might represent a combined effect including both bottom-up
components, related to the actual pain experience, and top-down com-
ponents, related to the anticipation of potentially dangerous events.

Interestingly, a dissociation between cortical and spinal excitability
has been observed as a consequence of both painful stimulation (Martin
et al., 2008) and threatening auditory stimuli (Kühn et al., 2004).
Crucially, this opposite modulation of motor outputs (inhibition vs
facilitation) was observed by comparing MEPs evoked by TMS over M1
with those evoked by subcortical electrical stimulation (bypassing the
motor cortex). Previous studies proposed that, in the brainstem, the
reticular formation (RF) plays a pivotal role in orchestrating this opposite
modulation of the motor system, by inhibiting the motor cortex and, at
the same time, enhancing the spinal motor system excitability (Kühn
et al., 2004). Such dissociation, also described as partial “motor decer-
ebration” (Valeriani et al., 1999), has been interpreted as an evolutionary
mechanism, directed to inhibit cortical activity in order to facilitate rapid
protective spinal reflexes (Farina et al., 2003; Katayama et al., 1994).

4.2. Agent-dependent modulation of defensive motor responses to painful
stimuli

More crucial for the purpose of the present study, our results show
that inhibitory motor responses to self-generated painful stimuli are
significantly attenuated compared to those triggered by other-generated
ones (Fig. 2).

It is possible that a low-level movement-dependent effects could have
affected our results. In the literature, some studies described a facilitation
effect of the contralateral hand movement over the target one (Muell-
bacher et al., 2000; Tinazzi and Zanette, 1998). In contrast, other studies
showed neither facilitation nor inhibition during contralateral homolo-
gous muscle activation (Chiappa et al., 1991; Samii et al., 1997). How-
ever, in the present study, the analysis of no-shock conditions did not
show any significant difference on MEP amplitude between
self-generated condition (in which the subjects moved the left index
finger to press the button) and other-generated condition (in which they
did not) (Fig. 2A and B). This negative result rules out a possible
movement-dependent effect related to the contraction of the
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contralateral (left) hand muscles during the button-press. We can sup-
pose that the absence of a facilitatory effect may be due to the scarce
complexity of the motor act (i.e. button press) and the minimal force
requested to trigger the stimulation.

Instead, to explain the attenuation of MEPs inhibition following self-
generated shock, we suggest the existence of an agent-dependent mod-
ulation of defensive mechanisms: when the electrical stimuli are self-
generated, predictive information from the motor system attenuates
the defensive responses to the foreseeable adverse event generated by
one’s own actions as compared to unpredictable sensations generated by
someone else’s actions. Importantly, this agent-dependent modulation
was present in the 72.2% of the subjects and was recorded in both APB
and FDI.

Interestingly, behavioural data paralleled the physiological results,
since participants gave significantly lower ratings of the perceived pain
intensity during self-generated than other-generated actions (Fig. 3). This
result can be interpreted as a “sensory attenuation”, well-exemplified by
the fact of being unable to tickle oneself [e.g. (Blakemore et al., 2000,
1999, 1998; Burin et al., 2018, 2017c; Colle et al., 2020; Frith, 2005;
Hughes et al., 2013; Kilteni et al., 2019, 2020; Kilteni and Ehrsson, 2020,
2017; Limanowski et al., 2019; Pyasik et al., 2019). According to the
forward model of action generation, once motor programs are selected
and sent to the periphery, an efference copy is formed and, based on this
signal, a forward model predicts the sensory consequences of the
movement (Wolpert et al., 1995). When predictions and outcomes match
each other, somatosensory afferences are not fully processed because
they do not add new information, thus resulting in a sensory attenuation
of the perceived stimuli intensity. A similar mechanism, comparing
predicted and actual sensory consequence of one’s own actions, can be
useful to explain our physiological results. We may speculate that, during
self-generated shocks, the agent-dependent effect we observed on the
motor system is mediated by a top-down modulation of brain areas
predicting the sensory consequence of the movement over the RF, via
Fig. 4. Model of the perception of sensory consequences of the other-generate
painful stimuli are delivered, the reticular formation (RF) may exert an opposite m
enhancing (“þ þ”) the spinal motor system. This opposite modulation between th
comparing the amplitude of MEP (dark red) evoked by TMS over M1 with the amplit
amplitude should be inhibited (verified; “v”) while the CMEP amplitude should be en
of a man receiving pain represents the subjective perception of the perceived pain inte
delivered, an internal forward model [adapted from (Blakemore et al., 2001, 1999)]
the left hand. These predictions are then compared to the actual sensory feedback
attenuation of the painful sensation. In case of self-generated shocks, the motor com
right hand (i.e. “I feel 3”). Concurrently, brain areas predicting the sensory consequ
producing a lower inhibition (“-” in light pink) of RF over the motor cortex and a lowe
the MEP amplitude evoked by TMS over M1 (verified; “v”) and reduced the amplitud
(to be verified in future experiments; “?”).
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periaqueductal grey matter (PAG) [for other examples of top-down
modulation of defensive subcortical responses see also (Bufacchi et al.,
2017; Bufacchi and Iannetti, 2016; Fossataro et al., 2019, 2018a, 2016b,
2016a; Sambo et al., 2012b, 2012a; Sambo and Iannetti, 2013; Wallwork
et al., 2016)]. Interestingly, previous studies demonstrated that the RF
plays a pivotal role in the processing and response to somatosensory
painful stimuli (Barik et al., 2018; Martins and Tavares, 2017; Tracey and
Mantyh, 2007). By representing a key connection between the spinal
neurons and higher brain regions (such as somatosensory and motor
cortices, anterior cingulate cortex, and insula), RF may be considered as
the “gateway” of top-downmodulations of defensive responses to painful
stimuli (and to other threatening sensory event), by balancing the
contribution of cortical and spinal activity (Martins and Tavares, 2017).
Thus, during voluntary movement, brain areas predicting the sensory
consequence of the movement can down-regulate the RF activity, via
PAG. This, in turn, might produce a lower inhibition of RF over the motor
cortex, as supported by the enhanced MEP amplitude we found here after
TMS over M1, and a lower facilitation of RF over the spinal tract, as could
be investigated in future experiments, by recording reduced cervicome-
dullary MEP (CMEP) after electrical subcortical stimulation (Kühn et al.,
2004; Martin et al., 2008) (Fig. 4).

Alternatively, one may argue that the attenuated motor inhibition in
the self- compared to the other-generated conditions could be generally
ascribed to either a more accurate temporal predictability or to a better
cognitive controllability of action sensory consequences in the self-
generated condition. The fact that the subjects could observe the other
person pressing the button to trigger the stimulus seems to control for the
temporal predictability. However, in the self-generated condition, sub-
jects could actively control the timing of the stimulation, thus allowing
them to choose the instant when the system was optimally tuned to
receive the sensory input. This effect might be investigated by comparing
the time-lag between the instruction to move and the movement itself in
the self- vs other-generated conditions. Unfortunately, in the present
d and the self-generated actions. Left panel, when other-generated electrical
odulation over the motor outputs by inhibiting (“- -”) the motor cortex and
e cortical and spinal motor outputs could be tested in future experiments by
ude of CMEP (dark green) evoked by subcortical electrical stimulation: the MEP
hanced (to be verified in future experiments; “?”). The schematic representation
nsity (i.e. “I fell 7”). Right panel, when self-generated electrical painful stimuli are
makes predictions of the sensory feedback based on the motor command sent to
to produce the sensory prediction error. The lower the error, the greater the

mand to the left hand can be used to attenuate predictively the sensation on the
ence of the movement can down-regulate (“-” in red) the RF activity, via PAG,
r facilitation (“þ” in light green) of RF over the spinal tract. This should enhance
e of cervicomedullary MEP (CMEP) evoked by electrical subcortical stimulation
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study, we did not collect such data. Even though we cannot rule out such
an alternative hypothesis, previous papers explored whether putative
self-attenuation reflects actor-independent, general predictive mecha-
nisms, or whether instead it is specifically bound to the self (Kaiser and
Schütz-Bosbach, 2018; Klaffehn et al., 2019; Weiss and Schütz-Bosbach,
2012). However, results reported in the literature are controversial.
Through a behavioural study, Weiss and Schütz-Bosbach (2012) directly
compared the perceived intensity of self-generated sounds (elicited via a
button press) vs other-generated identical sounds, whose delivery could
be anticipated or not by participants. Crucially, results revealed an
attenuation of the self-generated sounds that clearly differed from the
perceived loudness intensity of the same sounds when generated by
another person, irrespective of the predictability of the sound-eliciting
action. This suggests that the attenuation of sensory effects resulting
from one’s own actions is specifically bound to the self as the respective
agent, instead of being related to general, agent-independent mecha-
nisms of action preparation or predictability. Diverging evidence comes
from an EEG study (Kaiser and Schütz-Bosbach, 2018). The authors
compared self- and other-generated stimuli between contexts wherein
both self and other’s actions were driven by either internal willingness or
external cues (expressed by a count-down). Results showed that the
absence of external cues led to a sensory attenuation for the
self-generated stimuli, while the presence of external cues resulted in the
attenuation of other-generated stimuli. They suggested that the attenu-
ation of self-generated sounds does not depend on the motor command
but solely on the predictability of the outcome, concluding that,
contrarily to common assumptions about the processing of self-generated
sensory input, sensory attenuation is not bound to self-generation per se.
However, different explanations of such results may be proposed. The use
of a count-down to control for predictability in the externally driven
context, for example, may have led to the loss of the internal state of
volition (or ‘urge’ to move), which is crucial to build the sense of agency
over an outcome (Haggard, 2017). Therefore, in the context of Kaiser and
Schütz-Bosbach’s study (2018), it is not possible to disentangle between
the effect of predictability and agency on the amount of sensory atten-
uation observed. A more recent study (Klaffehn et al., 2019), by contrast,
found the N1 auditory event related component to be attenuated for
self-generated tones as compared to other-generated ones, even when,
after the button-press, a loading bar signalled the tone occurrence. This
suggest that, even when the temporal predictability between self- and
external-generated actions is comparable, the sensory attenuation is
bound to self-generation per se.

In the face of such contrasting evidence, the current state of the field
does not allow to disambiguate whether sensory attenuation is best
explained by self-dependent predictive mechanism or not. Furthermore,
it is worth noting that all the above-mentioned studies employed audi-
tory stimuli, on which the sensory attenuation literature focused the
most. However, it is well known that somatosensory and auditory pro-
cessing does not share common properties both at a peripheral and
central levels. Therefore, further studies are needed to explore the role of
temporal predictability and cognitive controllability in modulating the
sensory attenuation phenomenon, specifically directed to investigate the
somatosensory domain.

It is important to note that in our experimental paradigm we did not
manipulate the delay between the movement and its consequence (i.e.
between the button-press and the delivery of the tactile stimuli). How-
ever, the temporal constraints under which the sensory attenuation oc-
curs have been wildly debated and extensively investigated within the
sensory attenuation literature. Indeed, it is well known that when the
sensory effects of one’s own actions are artificially delayed (even by only
100 ms) their attenuation is reduced and such effects are attributed to
external causes rather than the self (Bays et al., 2005; Blakemore et al.,
2001, 1999). Interestingly, a recent study demonstrated that the sensory
attenuation is an adaptive phenomenon since people can rapidly unlearn
to attenuate touch immediately after their movement and learn to
attenuate delayed touch instead, after repeated exposure to a systematic
7

delay between the movement and the resulting touch (Kilteni et al.,
2019). Furthermore, in a different experimental context of pain stimu-
lation, it has been shown that motor output and pain report can be
influenced both by the nature of the control individuals may exercise
over their pain and importantly by their dispositional phenotype (i.e.
internal or external locus of control) (Wiech et al., 2006). In future
studies, it would be relevant to explore whether the individual trait-like
belief to have general control over one’s own life may affect the sensory
attenuation effects.

To conclude, we interpreted our results as an agent-dependent mod-
ulation, observable both at a physiological level, on defensive motor
responses, and at a behavioural level, on subjective ratings (even though
we cannot exclude that other factors, such as predictability and cognitive
controllability, might have contributed to the present findings). Ac-
cording to an evolutionary perspective, these effects can be interpreted as
an integrated mechanism advantageous for survival, designed for
enhancing the salience of unpredictable environmental changes to the
detriment of foreseeable events generated by one’s own actions.
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