

UNIVERSITÀ

DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage

(Article begins on next page)

Metal Hydrides and Related Materials - Energy Carriers for Novel Hydrogen and Electrochemical Storage

A. El Kharbachi,,†, § E.M. Dematteis,∆ K. Shinzato,# S.C. Stevenson,‖ L.J.*

Bannenberg,‡ M. Heere,¶ C. Zlotea,[∆] P.Á. Szilágyi,◊ J.-P. Bonnet,#,□ W. Grochala,▼

T. Ichikawa,[#] *M. Baricco,^{* \perp *} and B.C. Hauback*[†]

† Institute for Energy Technology (IFE), Norway

§ Helmholtz Institute Ulm, Germany

[∆] Univ Paris Est Creteil, CNRS-ICMPE, France

Graduate School of Engineering, Hiroshima University, Japan

‖ School of Chemistry, Univ. of Glasgow, UK

[‡] Faculty of Applied Sciences, Delft Univ. of Technology, The Netherlands

¶ IAM-ESS, Karlsruhe Institute of Technology, Germany

◊ SEMS, Queen Mary Univ. of London, UK

□ Univ Picardie Jules Verne, CNRS-LRCS, France

▼ Center of New Technologies, Univ. of Warsaw, Poland

 Department of Chemistry and NIS, University of Turin, Italy

ABSTRACT

This Viewpoint summarizes the Meeting at the IRSEC'19 conference and discussions of experts around the perspectives of metal hydrides and their implication in next generation of energy storage systems and related issues.

1. INTRODUCTION

The 7th edition of the International Renewable and Sustainable Energy Conference (IRSEC) was held in Agadir (Sofitel Royal Bay, Nov. 27-30, Morocco) under the Program Chair of Prof. Ahmed Ennaoui (IRESEN). IRSEC, as one of the biggest conferences in north Africa, aims at creating an international forum to facilitate discussions and exchanges in all aspects of renewable and sustainable energy. This Viewpoint will summarize the scientific presentations and stimulated discussions during the Special Session (Nov. 28-29) on Metal Hydrides' Energy covering topics of metal hydrides and energy related issues for innovative processes and technologies, with focus on magnesium-based hydrides, intermetallic hydrides, complex and melt hydrides, porous materials and thin-films.

Materials such as metal hydrides are distinctive owing to the presence of the lightest element of the periodic table (H), being bonded to a metal. The chemical bond due to the metal-hydrogen interaction type and equilibrium conditions could be translated in a multitude of properties and applications, such as solid-state hydrogen and heat storage, thermal and electrochemical batteries,

chemical compression, hydrogen sensors and photochromic devices. For the sake of optimization of properties and functionalities of metal hydrides, this meeting, gathering experts and international scientists, aimed at presenting the recent advances in the field of materials for energy storage and conversion. The addressed topics moved from fundamental aspects to technological challenges for safer hydrogen storage, high capacity electrodes and Li/Mg solid-state battery electrolytes, with high ionic conductivities. The discussions covered advanced characterization studies, such as operando/in-situ X-ray scattering, electrochemical data analysis, thermodynamics, reactions kinetics and ionic/electronic properties determination, combined with theoretical calculations. The recent implication of borohydrides in all-solid-state batteries is one of the questions which is discussed here, in addition to the central application with respect to hydrogen storage technologies.

2. MEETING AND DISCUSSIONS

2.1. Solid state hydrogen and heat storage for energy conversion

Renewable energies, such as photovoltaic and wind power, are characterized by intermittent production, so their storage is necessary for an efficient management. Among several solutions proposed, the use of hydrogen as an energy carrier is under investigation. Compared to batteries, hydrogen allows storing larger amounts of energy in small volumes, over long-time, i.e. no selfdischarge issues, with low environmental impact.¹ Hydrogen can be absorbed in the form of a metal hydride under mild conditions, i.e. close to room temperatures and atmospheric pressure. This solution ensures a safe storage and reduces the volume required for storing even large quantities of hydrogen. Solid state hydrogen storage based on hydrides has been investigated in recent years, with the goal to improve hydrogen gravimetric and volumetric density and to match thermodynamic requirements necessary for dehydrogenation reactions with an equilibrium close to ambient conditions. Accordingly, Marcello Baricco (Department of Chemistry and NIS, University of Turin, Italy) presented a talk on "Metal Hydrides as Hydrogen Carriers", showing the advances in the field of application of metal hydrides, as well as an outline of the recent results obtained on melt hydrides as energy carriers. Using the state-of-the-art characterization techniques, he reported the results obtained in his research group on hydrogen sorption and assessments of thermodynamic properties for metal hydrides and intermetallic compounds (e.g. MgH2, La(Ni,Al) $5H_7$).²⁻³ Based on hydrogen sorption properties, he showed applications of solid state hydrogen tanks coupled with PEM fuel cells.⁴ Novel category of materials were presented, dealing with disordered solid solutions with a high configurational entropy $S_{conf} > 1.5 R$, where R is the gas constant, which are commonly defined High Entropy Alloys (HEA). Lattice distortion in bcc HEA allows hydrogen to accommodate not only in tetrahedral interstitial sites, but even in the octahedral ones, increasing the hydrogen gravimetric density. An in-house developed method,⁵ based on maps related to atomic radius, electronegativity and electronic concentration, has been used to identify HEAs to be used as hydrogen carriers. As an example under study, hydrogen sorption properties of the $TiV_{0.6}Cr_{0.3}Zr_{0.3}NbMo$ alloy, which consists of a solid solution with cubic centered body structure plus a fraction of intermetallic compounds, was discussed. Hydrogen storage at large scale remains a challenge and the HyCARE project,⁶ supported by the European Fuel Cells and Hydrogen Joint Undertaking,⁷ was also presented. The project involves the production of about 5 tons of a metal alloy, which will fill special containers for large-scale stationary hydrogen storage. The thermal management of the plant will take place through an innovative approach, making use of phase change materials (PCM), significantly increasing the efficiency of the process. The amount of stored hydrogen will be around 50 kg, which will represent the highest quantity ever

stored in Europe with this technique. Additional details on the concept and the research behind are also given below by Erika M. Dematteis.

Takayuki Ichikawa (Graduate School of Engineering, Hiroshima University, Japan) delivered a talk on "Metal Hydrides for H2 storage, heat storage, chemical compression, and anode of Li-ion batteries". In several decades, metal hydrides were studied for hydrogen storage with high volumetric density of hydrogen. Recently, several functional applications of metal hydride have been developed, such as those listed in the title of the presentation.

Metal hydrides are candidate materials for heat storage. Hydrogen absorption/desorption reactions can be written according to following equation, including the heat of reaction:

$$
M + (x/2)H_2 \leftrightarrow MH_x + \Delta H_{ab} \tag{1}
$$

Here, ΔH_{ab} is the enthalpy change for hydrogen absorption. The reaction (1) indicates that hydrogen absorption/desorption reaction can be used as a reversible thermochemical heat storage system. The thermochemical heat storage system has a higher heat storage capacity if compared to sensible heat and latent heat systems.⁸ Titanium hydride (TiH₂) is considered to be suitable for practical applications, due to the high ΔH_{ab} of about 144 kJ/mol H₂. In order to use TiH₂ as a thermochemical heat storage medium, hydrogenating reaction of Ti must be controlled under a wide temperature range. So, the hydrogen absorption reaction should be fast even at low temperatures. However, a high temperature of 400 $^{\circ}$ C is required to realize the hydrogen absorption reaction of pristine Ti.

Referring to previous works about kinetic improvement of hydrogen sorption reactions in magnesium,⁹ magnesium hydride (MgH₂) is the one of the most studied metal hydride materials for solid-state hydrogen storage, owing to its high gravimetric capacity and low cost. The hydrogen absorption reaction kinetics is improved by metal or metal oxide additives. Among them, it has

been revealed by Barkhordarian *et al.*¹⁰ that Nb₂O₅ has superior properties. Following this report, Ichikawa's group reported that Mg catalyzed by $Nb₂O₅$ can absorb hydrogen even at room temperature.¹¹ Referring to these studies on MgH₂, several kinds of solid additives were investigated to improve the hydrogen absorption reaction of Ti. However, remarkable additive effects were not found. In addition, the reproducibility of the results is rather poor for all samples, which suggests that the reactivity changed during experiments. Therefore, Ichikawa has studied the hydrogen absorption reaction of Ti to improve the kinetics. The experimental details of this work were presented by Keita Shinzato (Ph. D student in Ichikawa's group). He reported a study aimed to improve the hydrogen absorption kinetics of Ti by ball-milling method with suitable additives.¹² In particular, the degradation of reactivity for hydrogen on dehydrogenated TiH₂ was investigated. From obtained results, it is clarified that the pristine Ti itself should have an active surface to absorb hydrogen. However, the reactivity was lost after 1 day even keeping the sample in a glove box filled with purified argon, i.e. with few ppm of water and oxygen. It is considered, from the above results, that Ti can easily oxidize, so that the reactivity for hydrogen is lost by the presence of a surface oxide layer. On the other hand, when Ti was ball-milled with acetone, the hydrogen can be easily absorbed, even at room temperature. Thus, it is found that acetone modified the surface of Ti. In addition, the hydrogen absorption properties of Ti were more improved by ball-milling with graphite. Although Ti milled with acetone was also deactivated after 7 days, the reactivity with hydrogen of the Ti milled with graphite was kept rather high for more than 7 days.

With respect to the chemical compression using metal hydrides, van't Hoff equation (2) lead to important thermodynamic properties on hydrogen absorption/desorption reaction of the material:

$$
\ln P_{eq}/P_0 = \Delta H/R \cdot 1/T + \Delta S/R \tag{2}
$$

where P_{eq} is equilibrium pressure at fixed temperature (*T*), P_0 is standard pressure, ΔH is the formation enthalpy of the metal hydride, R is gas constant, and ΔS is entropy of hydrogen gas at standard conditions. If a metal hydride is selected, ΔH is determined, indicating the variable value is only temperature. Therefore, the equation (2) suggests that *P*eq depends on reaction temperature, so that hydrogen can be compressed by increasing the temperature. In the presentation, it has been shown that the hydrogen can be compressed from 5 MPa to 82 MPa by heating a Ti-Cr-Mn alloy from room temperature (RT) up to 250 °C. In order to realize a metal hydride based compressor, the sorption properties as well as cyclic durability were studied at high temperatures and pressures. It is revealed from the investigation that a high vanadium-containing V-Ti-Cr alloy is stable after 10 cycles, but a low vanadium-containing V-Ti-Cr alloy is continuously degraded over number of cycles up to 100 cycles.¹³⁻¹⁴

Finally, Ichikawa discussed the question of interaction of lithium with metal hydrides for application as anode material for lithium ion batteries. Metal hydride can react with lithium according to the following reaction:

$$
MH_2 + 2Li \rightarrow M + 2LiH
$$
 (3)

The equilibrium voltage can be deduced from the free energy (FE) written by:

$$
2FE = \Delta H^0_{ab.} - T(\Delta S^0_{ab.} + \Delta S^0(H_2)) - 2\Delta H^0(LiH) + 2TS(LiH) - 2TS(Li)
$$
 (4)

Because $\Delta S^0(H_2)$, $\Delta H^0(LiH)$, S(LiH), and S(Li) are known, information on hydrogen absorption enthalpy and entropy changes can be obtained from equilibrium voltage measurements. TiH₂, MgH2, and VH2 were investigated as anode materials. As a result, quite good relationship between thermodynamics of hydrogen absorption and reaction voltage (V *vs. Li⁺/Li*) has been obtained for these three hydrides.¹⁵⁻¹⁷

In the current context of sustainable, clean and safe energy, the development of novel solid-state hydrogen storage materials, with high-hydrogen density, capacities and good reversibility, is stringently required, as stated by Claudia Zlotea (CNRS-ICMPE, Thiais, France) in her presentation on "Multi-Principal-Element Alloys based on refractory elements for hydrogen storage". She presented recent progress in hydrogen absorption in novel Multi-Principal-Element Alloys (MPEAs) based on refractory elements. These materials belong to a new metallurgical paradigm, based on the alloying of four or more elements with equal concentrations (Fig. 1a).¹⁸ Most of reports concerning these alloys describe their structure, microstructure and mechanical properties, 19 whereas functional properties, such as hydrogen sorption, are scarcely investigated.²⁰ Among all multi-principal-element effects, the development of large lattice strain distortions due to the atomic size mismatch among different component elements is particularly interesting for hydrogen storage (Fig. 1b). This parameter is defined as $\delta = \sqrt{\sum_i c_i \cdot (1 - \frac{r_i}{\bar{r}})^2}$, where c_i and r_i are the atomic fraction and the atomic radius, respectively, of element *i* and $\bar{r} = \sum_i c_i \cdot r_i$. The creation of large interstitial sites might be beneficial for the insertion of large amount of hydrogen.

One of the most promising MPEA with improved hydrogen storage performances is the *bcc* TiVZrNbHf alloy.²¹ The hydrogenation of this alloy is a single step reaction, with a storage capacity as high as 2.5 H/*M* (2.7 wt.%), which is larger than that for conventional transition metal hydrides ($H/M = 2.0$) and unexpectedly comparable to that of rare-earth metal hydrides ($H/M > 1$ 2.3). Based on these results, the quaternary TiVZrNb alloy, as well as quinary TiVZrNbTa and TiZrNbHfTa alloys, have been synthesized by classical melting methods or by mechano-synthesis under inert atmosphere.²²⁻²³ To directly produce hydrides, researchers at the Zlotea's group have employed the reactive ball milling under hydrogen gas, starting from the pure metal powders (Fig. 1b). The TiVZrNb and TiVZrNbTa alloys are single-phase *bcc* and undergo a one-step reaction with hydrogen, forming a dihydride phase (H/M = 2). On the contrary, the TiZrNbHfTa MPEA behaves as the conventional *bcc* metals, with two distinct phase transitions at different pressures, forming the monohydride and then the dihydride phases. She suggested that the lattice distortion, δ , might play an important role: larger δ would favor a single-step reaction, whereas small δ values would favour a two-steps transformation, as encountered for conventional *bcc* alloys. The hydrogen absorption/desorption in TiVZrNb and TiVZrNbTa alloys is completely reversible and the capacities varies between 2 and 3 wt.%. Despite a fading of the capacity for the first cycle, the reversible capacity of these materials stabilized around 2 wt.% (for at least 10 cycles), without disproportionation or irreversible segregation during hydrogenation. In summary, Zlotea said this new research topic is only at the beginning, but holds promise of interesting fundamental findings for hydrogen storage. However, large research efforts are required to rationalize the reaction with hydrogen due to countless number of elemental combinations, playing with chemical composition, elemental concentration, valence electron concentration, lattice distortion, etc.

Figure 1. (a) Idealistic illustration of the concept of MPEAs (left); atomic size mismatch among different component elements in MPEAs (right). Adapted with permission from ref 19. Copyright 2016 Elsevier. (b) Hydrogen uptake profile during reactive ball milling of TiVZrNb under H2 atmosphere (left) and the XRD patterns after 10, 20, 60 and 120 minutes of milling process (right)

(corresponding to the stars in the left figure). Adapted with permission from ref 22. Copyright 2019 MDPI.

Erika M. Dematteis (CNRS-ICMPE, Thiais, France) gave a presentation on "Hydrogen storage properties of Mn and Cu substituted TiFe intermetallic compounds" towards the development of these materials for large scale stationary application in the frame of the HyCARE project.⁶ The project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under grant agreement No 826352, in the frame of the Horizon 2020 research and innovation programme. As introduction, she highlighted the fact that the increase of air pollution and global temperatures demonstrates how essential it is to look for alternatives to fossil fuels. The efficient storage of renewable energy would enable the transition towards CO2-free energy. In this scenario, hydrogen can be produced from renewable sources and, as an efficient energy carrier, it can be stored for a long period. Metal hydrides are safe materials for solid-state hydrogen storage under mild conditions and with high volumetric densities. TiFe is a low-cost and efficient intermetallic compound for hydrogen storage. It crystallizes in the CsCl-type cubic structure. Upon hydrogen absorption, the consecutive formation of monohydride, β-TiFeH, and dihydride, γ-TiFeH2, occurs, with a total volume expansion of 18 % and a maximum gravimetric capacity of 1.86 wt.% H_2 .²⁴ However, TiFe exhibits some drawbacks and particular features as hydrogen storage material. Firstly, it is difficult to activate towards hydrogen absorption. Secondly, Pressure-Composition-Isotherms are characterized by two subsequent plateau pressures. All these properties are at the origin of controversial results concerning the crystal structure of TiFe hydrides/deuterides.²⁴ Elemental substitutions in TiFe intermetallic compound can change significantly activation processes and hydrogen storage properties. Activation process is also significantly influenced by the presence of secondary or oxide phases. Interestingly, it has been shown that the compound TiFe0.90 requires almost no activation process for the first hydrogenation.25 Partial substitution of Fe by Mn is also reported to reduce the need of alloy activation and, moreover, promotes lower equilibrium pressures at room temperature.²⁶ Thus, substituted $Ti(Fe_{1-x}Mn_x)_{0.9}$ alloys combine easy activation and low plateau pressures, being good candidates for hydrogen storage applications. The influence of stoichiometry and Mn/Cu-to-Fe substitution in TiFe-type alloys on structural properties during reversible hydrogen loading have been investigated evidencing a very tailorable system as a function of compositions. The Mn and Cu substitution in TiFe intermetallic compounds enables remarkable understanding on hydrogen storage, basic structural knowledge and support to the industrial application of these alloys for the development of an integrated hydrogen tank. The goal is the development of an optimised composition as a function of the thermodynamic window $(i.e.$ temperature and pressure boundaries) defined by the HyCARE project, ⁶ which aims at storing 50 kg of hydrogen by developing a storage tank with use of a solid-state TiFe-based material in large scale. The tank will be based on an innovative concept, linking hydrogen and heat storage in phase change materials to improve energy efficiency and to reduce the footprint of the whole system. It will be connected to a 20 kW Proton Exchange Membrane (PEM) electrolyser as hydrogen provider and to a 10 kW PEM fuel cell as hydrogen user. In 2021, the tank will be installed in the site of ENGIE Lab CRIGEN, a research and operational expertise centre dedicated to gas, new energy sources and emerging technologies.

Metal-organic frameworks (MOFs) are crystalline materials and have high and regular porosity. They boast of topological and chemical tuneability.²⁷ They are therefore promising materials for supporting (sub)nano-objects within their pores, $28-31$ for instance for applications in hydrogenmetal interactions and heterogeneous catalysis. Accordingly, Petra Ágota Szilágyi (Queen Mary

University of London) presented the recent progress in this field and research works carried out at the School of Materials Science and Engineering in the presentation entitled "Metal-Organic Frameworks: Templates, Supports, and Surface Functionalization of Pd Nanoclusters". They were able to demonstrate that both nanoclusters and single atoms of Pd may be immobilized and stabilized on functionalized MOFs in a combined experimental-theoretical approach (Fig. 2).³²⁻³³ Their newest research, revealed that by the adequate matching of linker functionality and guest materials, mostly based in transition metals, may allow for the controlled formation of nanoclusters, 34 based on a powerful combination of experimental and modelling approach. She emphasized that, in this size regime, the properties of materials display a higher size than chemistry dependence, therefore this approach seems to unlock the opportunity of the synthesis and eventual design of nano-composites with unprecedented properties.

Figure 2. Illustration of the immobilisation of single 'naked' atoms of Pd on NH2-MIL-101(Cr) and the interaction of the single atoms with H2 molecules. Reprinted with permission from ref 33. Copyright 2017 The Royal Society of Chemistry.

Wojciech Grochala (Center of New Technologies, Univ. of Warsaw, Poland) attracted the attention on the importance of "Waste materials from thermal decomposition of hydrogen storage materials– the case of BN synthesis from (NH4)3Mg(BH4)5 precursor". One typical requirement underlying the use of chemical hydrogen storage materials in the solid state is related to reversibility of hydrogen desorption which should either be fast enough to permit charging of the vessel at the hydrogen filling station, or at least be so easy that the chemical transformations of material recovered from replaceable "cartridge" are possible at chemical factory.³⁵ However, in many cases reversibility of H₂ desorption is bleak, as evidenced by a large number of protonichydridic materials. In such case, the thermally decomposed chemical hydride constitutes a waste. In his presentation, he showed that a "waste", albeit useless for hydrogen reloading, may actually consists of technologically useful material. For instance, the case of $(NH₄)₃Mg(BH₄)₅$ was described which – upon pyrolysis – yields amorphous BN as shown in figure 3 (mostly quasihexagonal but also some quasi-cubic).³⁶ BN is a very important ultra-hard and refractory material which finds numerous uses. This synthetic pathway provides indeed for the formation of a-BN already at 220 °C, thus at temperature at least 1000 °C lower than the current commercial protocols.

Figure 3. SEM image of amorphous BN obtained from pyrolysis of (NH_4) ₃Mg(BH₄)₅ precursor. Reprinted with permission from ref 36. Copyright 2020 The Royal Society of Chemistry.

2.2. Metal hydrides for electrochemical energy storage

Michael Heere (IAM-ESS, Karlsruhe Institute of Technology, Germany) presented a talk on "Dynamics and structural evolution in a solid-state Mg-ion conductor" based on magnesium tetrahydroborate, colloquially referred to as magnesium borohydride, and its dynamics with a comprehensive overview given in ref 37. The development of the field of [complex] metal hydrides has been enormous in the last 10 years, and Mohtadi and Orimo stated that the present research on complex metal hydrides is experiencing a "renaissance as energy materials".³⁸ For the success of future complex metal hydride-based research, the development of highly conductive electrolytes and electrodes is one of the main requirements for a successor of the Li-ion battery.³⁹ A first Mgion conductor based on complex metal hydrides was reported in 2012. Mohtadi *et al.*⁴⁰ demonstrated the possibility to employ magnesium borohydride, Mg(BH4)2, dissolved in 1,2 dimethoxy ethane (DME) in a rechargeable magnesium battery. Recently, new compounds synthesized from $Mg(BH_4)$ ₂ and organic complexes, such as ethylenediamine (C₂H₈N₂, abbreviation "en"), and digylme $\text{(CH}_3\text{OCH}_2\text{CH}_2\text{OCH}_2\text{OCH}_3)$, $4^{1.42}$ were reported to have exceptionally high magnesium ion conductivity. The reported values were conductivities of $\sigma = 6$ \times 10⁻⁵ S cm⁻¹ at 70 °C in the solid state for Mg(en)_{1.0}(BH₄)₂ and of σ = 2 × 10⁻⁵ S cm⁻¹ at 77 °C for $Mg(BH_4)_{2}$ -diglyme_{0.5}. Nevertheless, the mechanochemical synthesis tends to form X-ray amorphous Mg(BH4)2 and it was postulated by all authors that the latter is beneficial for the conductivity in Mg-ion conductors*.* In the ongoing studies, Heere is employing total scattering to elaborate the local structure, electrochemical impedance spectroscopy for ionic conductivities measurements and quasi-elastic neutron scattering (QENS) studies were employed to investigate the dynamics of porous and amorphous $Mg(BH_4)_2$. QENS of $Mg(BH_4)_2$ shows that the low energy excitation spectrum strongly depends on the local (crystal or X-ray amorphous) structure as can be seen by the comparison of as-received γ -Mg(BH₄)₂ and ball milled, amorphous compound. While as-received γ -Mg(BH₄)₂ shows almost no quasi-elastic scattering up to 37 °C, the amorphous sample clearly shows a different low energy excitation spectrum with a higher rotational mobility of the [BH4] tetrahedra. A high rotational mobility is proposed to be a fundamental necessity for high Mg-ion conductivity. This is supported by an almost two orders of magnitude higher conductivity in the ball milled sample compared to as-received γ -Mg(BH₄)₂ at 80 °C. Recently, le Ruyet *et al.*⁴³ reported the same correlation of an amorphous phase found in a Mg–B–N–H system by NMR with a high conductivity of 3×10^{-6} S cm⁻¹ at 373 K for a solidstate Mg conductor based on Mg(BH4)(NH2). In general, the work on Mg−B−N−H systems and exploration for instance of dihydrogen bonds seems to increase.⁴⁴ Heere evidenced particularly the neutrons source as a unique probe for non-destructive structural and dynamical studies of energy materials, especially for future investigation by fast measurements,45 and for the development of highly conductive solid state Mg electrolyte. He stated that neutrons are one of the main requirements for successful post-Li battery research. With these very suitable conductivities in mind, $Mg(BH_4)$ ₂ is very promising as a precursor with organic ligands in solid state Mg electrolytes, and while the structure of $Mg(\text{en})_{1.0}(BH_4)$ has not yet been reported. For general information on borohydrides, he referred to the refs 46-47.

The University of Glasgow (UK) was represented by Siobhan C. Stevenson (The Gregory research group), who provided a presentation on "Mixed borohydride-halides as potential solidstate electrolytes". She investigated the complex lithium-sodium borohydride-halides as a new class of $Li⁺$ conductor with the potential for application as solid-state electrolytes in Li-ion batteries. The structure, stability and ionic conductivity of these new materials were studied as a function of both metal and non-metal composition and compared with the behavior of the known phases of LiBH4 (Fig. 4). This study considered the viability of solid solutions of the form LiyNa1 $y(BH_4)1-zX_z$, where X = halide and where X, y and z could be varied independently. The extent of the metal solubility (y) was explored for fixed values of X and z. Similarly, the limits of borohydride solubility (1-z) were determined for fixed y (e.g. $y = 0.5$) and $X = I$. Within the experimentally defined solubility ranges, certain judicious substitutions were discovered to stabilize cubic rock salt borohydride phases; a structure, which is otherwise, only observed for LiBH₄ at high pressure.⁴⁸ The NaCl-type unit cells expand (linearly) with increasing z for $X = I$. No solid solution was found for either $z = 0$ or $z = 1$. Solid solution members with fixed metal content, $y = 1$ are isostructural to HT-LiBH₄ itself and all exhibit superionic Li-ion conductivity.⁴⁹⁻ 50 She demonstrated that high conductivity is also prevalent in the mixed ion HP phases.

Figure 4. Crystal structures of the polymorphs of LiBH₄. (a) The "Low temperature" LT phase (orthorhombic *Pnma*) (b) The "high temperature" HT phase (hexagonal *P*63*mc*) (c) The "high pressure" HP phase (cubic *Fm*-3*m*).

Jean-Pierre Bonnet (LRCS, Amiens, France / Hiroshima University, Japan), in close collaboration with Takayuki Ichikawa (mentioned above), delivered a talk on recent research works entitled "CaH2-LiBH4 as negative electrode for solid state lithium-ion batteries: an unexpected electrochemical behavior". The work was carried out during his sabbatical leave at the Graduate School of Engineering (Hiroshima University). Metal Hydrides were introduced by Bonnet's group in France more than 10 years ago as prospective lithium-ion batteries negative electrode materials. Binary, ternary and complex metal hydrides can be employed, working as conversion materials, giving metal(s) and LiH during reduction.51-52 Owing to a very low working potential of about 0.5 V *vs*. Li⁺/Li^o, very small polarization (< 0.2 V) and a large reversible capacity

of 1480 mAh∙g-1, MgH2 constitutes herein one of the most investigated metal hydride for electrochemical applications. However, metal hydrides suffer of unwelcome drawbacks which are constrained electrochemical reversibility and slow kinetics in usual liquid electrolytes. In 2015, Ichikawa *et al.*15 made a major breakthrough with the use of a solid-state electrolyte (LiBH4) with MgH₂ anode, obtaining a high reversible capacity of 1650 mAh⋅g⁻¹ with an extremely low polarization of 0.05 V and durable cyclability. The purpose of Bonnet's work is to study the electrochemical behavior of an anode composite CaH2/LiBH4 /Acetylene Black *vs.* Li, using LiBH₄ as electrolyte. An unexpected large plateau (> 1500 mAh⋅g⁻¹) at about 0.18 V is observed and tentative explanations were given, with the help of study on composites involving $Ca(BH₄)₂$, CaB6 and SrH2 in place of CaH2. It seems here that both CaH2 and LiBH4 (with theo. capacities of 1274 and 4992 mAh∙g-1, respectively) are involved in the conversion reaction.

In the same context, Abdel El Kharbachi (Helmholtz Institute Ulm, Germany) talked about the "Optimization of metal hydride anodes and LiBH4-based electrolytes for all solid-state lithium ion batteries". The work was carried out during his research stay in the Hauback' group (IFE, Norway). The first part deals with the mechanistic properties of MgH2 anode as function of milling conditions, particle size, cyclability and electrolyte type (liquid or solid).⁵³⁻⁵⁴ The effect of an electrochemically "active" oxide such as CoO on the cycling performance of MgH2 anode was shown in a solid-state battery, using LiBH4 solid electrolyte at 120 °C (Fig. 5). The addition of CoO seems to improve the cyclability, thanks the reduced diffusion pathways and less polarized electrodes.55 The findings pointed to a means of guided formation of MgH2-CoO nanocomposites, acting as conversion-type electrode for all-solid-state Li-ion batteries. The second part of his talk focused on optimizing the ionic conductivity of LiBH4 based electrolytes with addition of amorphous halide-sulfide system. LiBH4 is a good Li-ion conductor only above its solid state phase

transition temperature ($T_{tr} \sim 110$ °C). The high-*T* phase can be stabilized by partly substituting BH₄ with halides, e.g. Li(BH₄)_{0.75}I_{0.25}, thus suppressing the phase transition and preserving high ionic conductivity on cooling down to *RT*. El Kharbachi presented further their approach of investigation of the properties of the Li(BH₄)_{1-y}X_y (X = Cl, Br, I) phases when embedded in a $0.75Li_2S \cdot 0.25P_2S_5$ amorphous matrix for application in all-solid-state lithium batteries.⁵⁶ It has been found that LiBH4-based system improves the ductility and conductivity of the composite electrolyte, which is a priori important for the engineering of the cells. Although, structural details need to be studied further, the electrochemical performance and cycling stability were shown to be suitable for application in secondary lithium batteries.

Figure 5. Electrochemical cycling of the cell 75MgH2-25CoO/ LiBH4│LiBH4│Li disc and illustration of the different phase transformations leading to nanocomposite electrode. Adapted with permission from ref 55. Copyright 2018 The Royal Society of Chemistry

2.3. Metal hydride thin films for optical hydrogen sensors

Lars J. Bannenberg (Faculty of Applied Sciences, Delft University of Technology) presented recent progress on "Metal hydride based optical hydrogen sensors beyond palladium". As hydrogen is playing a key role in the transition to a sustainable economy and hydrogen-air mixtures are highly explosive, hydrogen detection in a fast, reliable and accurate manner is crucial to ensure its safe handling. Thin film metal hydride based optical hydrogen sensors provide an attractive option to sense hydrogen in a variety of conditions and have an attractive safety benefit over other methods of detection. In fact, they do not require the presence of electrical leads near the sensing area. These sensors rely on a change of the optical properties arising from a change in the hydrogenation of the metal hydride sensing layer in response to a different partial hydrogen pressure in the environment of the sensor.⁵⁷ The metal hydride most considered so far as a sensing layer is palladium: it can readily dissociate hydrogen at room temperature and has a suitable optical contrast. However, apart from hysteresis, palladium-based thin films suffer from a limited operating range and are only able to monitor hydrogen at relatively high partial pressures. To circumvent the undesirable hysteresis arising from the first-order metal-to-metal hydride transition, one can e.g. alloy palladium with gold, which can, for high enough Au concentrations, eliminate the first-order transition. However, unlike e.g. nanoparticles, these continuous thin films of Pd_{1-y}Au_y still feature a hysteresis resulting from the clamping of the Pd_{1-y}Au_y thin film to the substrate. Together with the markedly different hydrogen solubility of nanoparticles and thin films, it indicates that different ways of nanostructuring can have a profound impact on the response of a metal hydride to hydrogen.58 Another approach to design effective hydrogen sensors is to separate the hydrogen dissociation and sensing functionality. Both palladium-capped tantalum and hafnium thin films offer a stable and hysteresis-free optical response to hydrogen over an exceptionally large pressures of at least six orders (Fig. 6a). Remarkably, *in-situ* neutron reflectometry shows that the hydrogen content in both cases proves to be linear with the optical signal (Fig. 6b). In a wider perspective, the results on tantalum and hafnium illustrate that palladium-capped transition metals provide ample opportunities to design optical hydrogen sensors with desirable properties. $59-60$

Figure 6. (a) Comparison of the sensing range and optical contrast for a Pd capped 40 nm hafnium thin film (120 °C), a Pd-capped 40 nm tantalum thin film with a 4 nm Ti adhesion layer (120 °C) and a 40 nm $Pd_{0.7}Au_{0.3}$ thin film with a 4 nm Ti adhesion layer (28 °C). The white-light transmission *T* was measured relative to that of the dehydrogenated reference state *Tref* ; (b) the hydrogen-to-metal ratio *H/M* as a function of the optical contrast as determined using *in-situ* neutron reflectometry. Adapted with permission from ref 60. Copyright 2019 Elsevier.

3. SUMMARY AND OUTLOOK

As the importance of producing $CO₂$ -free energy, so is the motivation to develop efficient storage of renewable energies for mobile and stationary applications. There is no doubt that metal hydrides continue to attract the overall materials science community, and it is not only restrained to a specialized hydrogen field. This is mainly the case when it is the matter of coupled technologies with other systems such as fuel cells, heat management, and batteries.

Hydrogen is considered as an energy carrier and its chemical energy can be converted into electricity through a chemical reaction with oxygen from a fuel cell. Therefore, coupling energy storage systems with renewable energy sources through an electrolyser, that can transform electric energy into hydrogen chemical energy, is considered as a high sustainable process of production and exploitation of renewable energies. Integrated systems are constituted by a metal hydride tank and a PEM fuel cell, in which the waste heat generated in the fuel cell is used to supply the necessary heat required for desorption of hydrogen from the tank. The field of application of the integrated power system is in combination with renewable sources: the hydrogen can be produced by electrolysis of water using the energy from a renewable source (e.g. photovoltaic); it is then stored and converted into electric energy by the proposed integrated power system, that allows to store energy in the form of hydrogen and then to reuse it when the renewable source is not available, for example at night if solar power is exploited. The developed power system could replace batteries and could be applied in case of a production plant not connected to the power grid, such as in remote areas. As an example, an integrated power system, showing a total energy production of 4.8 kW h, over more than 6 h of working activity, is reported in ref.⁴ In the SSH2S (Fuel Cell Coupled Solid State Hydrogen Storage Tank) project, a solid state hydrogen storage tank based on complex hydrides has been developed and it was fully integrated with a High Temperature Proton Exchange Membrane (HT-PEM) fuel cell stack. The hydrogen storage tank was designed to feed a 1 kW HT-PEM stack for 2 h to be used for an Auxiliary Power Unit $(APU).⁶¹$

With respect to batteries, hydrides can be utilized as anodes with high capacity (e.g. 2 Ah∙g-1 for MgH2). A lot of efforts have been done to improve the cyclability, and significant results have been reached in a solid-state battery with LiBH4 solid electrolyte. Demonstration of high energy density full cells with suitable cathode will be the challenge of the next coming research studies.⁶²⁻ 63 As mentioned for the beneficial contribution of electrodes, solid-state electrolytes based on borohydrides are a typical example that battery community is now taken seriously along the popular garnet-type solid electrolytes.⁶⁴⁻⁶⁵ It has been demonstrated that the ionic conductivity is

a pre-requisite for application in batteries, but unfortunately it is not win; in fact other important issues need to be tackled, such as chemical compatibility, interfaces, heterogeneity and mechanical properties, so important for the cell engineering and design, in addition to the structural and volumetric changes during cycling. At first, borohydrides meet some of these criteria regarding conductivity and ductility, (thermo)chemistry and low density materials. The future research might be directed to the understanding and assessment of interfaces, physical and mechanical properties of the selected solid-electrolyte and electrodes. The specificity of the application may become a determining aspect in the selection of the suitable configuration. Substantial research efforts are being conducted to study new approaches towards the utilisation of borohydrides and *closo*-type complex hydrides in composites.⁶⁶⁻⁶⁷ Thanks to their ductility and ionic conductivity, borohydrides can be also employed as additives for binder-free solid-state batteries. Since the demonstration of $LiBH₄$ -thin film growth,⁶⁸ this could be considered for mitigating the formation of dendrite and oxidation layers on the surface of lithium metal. Another direction is focused on the development of Mg^{2+} conducting solid-electrolytes for application in Mg batteries which offer higher volumetric capacity compared to lithium at low cost. At present, the technology can be only possible at high-*T* owing to the low ionic conductivity and Mg^{2+} ions mobility.⁶⁹ In addition, metal hydrides can be utilized as optical hydrogen sensors for the detection of hydrogen at low pressure levels according to change in the optical properties, which is a step forward regarding the increase of the safety for advanced hydrogen-based systems.

Lastly, compared to the traditional conferences for hydrogen community (MH, E-MRS, Gordon, etc.) there no doubt that IRSEC is a particular place to meet scientists and experts in the African context undergoing full energy boom. The $8th$ edition of IRSEC will continue the tradition of drawing the best scientist in the field of sustainable energy, which will be held in Tangier (Morocco), Nov. 25-28, 2020. We thank the local organizers and students, the participants and the speakers of this Special Session for their excellent contributions.

AUTHOR INFORMATION

Corresponding Author

*E-mail: abdel.el-kharbachi@uni-ulm.de (A.E.-K.)

ACKNOWLEDGMENT

AEK and BCH acknowledge the Research Council of Norway (Grant agreement LiMBAT-

244054) for financial support. This work contributes to the research performed at CELEST (Center

for Electrochemical Energy Storage Ulm-Karlsruhe).

REFERENCES

(1) Belmonte, N.; Girgenti, V.; Florian, P.; Peano, C.; Luetto, C.; Rizzi, P.; Baricco, M. A Comparison of Energy Storage from Renewable Sources through Batteries and Fuel Cells: A Case Study in Turin, Italy. *Int. J. Hydrogen Energy* **2016**, *41*, 21427-21438.

(2) Rahman, M. W.; Castellero, A.; Enzo, S.; Livraghi, S.; Giamello, E.; Baricco, M. Effect of Mg– Nb Oxides Addition on Hydrogen Sorption in Mgh2. *J. Alloys Compd.* **2011**, *509*, S438-S443.

(3) Pinatel, E. R.; Palumbo, M.; Massimino, F.; Rizzi, P.; Baricco, M. Hydrogen Sorption in the Lani5-Xalx-H System (0 ≤ x ≤ 1). *Intermetallics* **2015**, *62*, 7-16.

(4) Rizzi, P.; Pinatel, E.; Luetto, C.; Florian, P.; Graizzaro, A.; Gagliano, S.; Baricco, M. Integration of a Pem Fuel Cell with a Metal Hydride Tank for Stationary Applications. *J. Alloys Compd.* **2015**, *645*, S338-S342.

(5) Poletti, M. G.; Battezzati, L. Electronic and Thermodynamic Criteria for the Occurrence of High Entropy Alloys in Metallic Systems. *Acta Mater.* **2014**, *75*, 297-306.

(6) Hycare Project. www.hycare-project.eu (accessed Feb 17, 2020).

(7) Fuel Cells and Hydrogen Joint Undertaking. www.fch.europa.eu (accessed Feb 17, 2020).

(8) Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. *Sustainability* **2018**, *10*, 191.

(9) Yavari, A. R.; LeMoulec, A.; de Castro, F. R.; Deledda, S.; Friedrichs, O.; Botta, W. J.; Vaughan, G.; Klassen, T.; Fernandez, A.; Kvick, Å. Improvement in H-Sorption Kinetics of Mgh2 Powders by Using Fe Nanoparticles Generated by Reactive Fef3 Addition. *Scripta Mater.* **2005**, *52*, 719- 724.

(10) Barkhordarian, G.; Klassen, T.; Bormann, R. Fast Hydrogen Sorption Kinetics of Nanocrystalline Mg Using Nb2o5 as Catalyst. *Scripta Mater.* **2003**, *49*, 213-217.

(11) Hanada, N.; Ichikawa, T.; Hino, S.; Fujii, H. Remarkable Improvement of Hydrogen Sorption Kinetics in Magnesium Catalyzed with Nb2o5. *J. Alloys Compd.* **2006**, *420*, 46-49.

(12) Shinzato, K.; Hamamoto, S.; Miyaoka, H.; Ichikawa, T. Room-Temperature Hydrogen Absorption of Titanium with Surface Modification by Organic Solvents. *J. Phys. Chem. C* **2019**, *123*, 19269-19274.

(13) Tsurui, N.; Goshome, K.; Hino, S.; Endo, N.; Maeda, T.; Miyaoka, H.; Ichikawa, T. Hydrogen Desorption Isobar Properties of Ti_{1.1}Crmn at High Temperatures and Pressures. *Mater. Trans.* **2018**, *59*, 855-857.

(14) Selvaraj, S.; Jain, A.; Kumar, S.; Zhang, T.; Isobe, S.; Miyaoka, H.; Kojima, Y.; Ichikawa, T. Study of Cyclic Performance of V-Ti-Cr Alloys Employed for Hydrogen Compressor. *Int. J. Hydrogen Energy* **2018**, *43*, 2881-2889.

(15) Zeng, L.; Kawahito, K.; Ikeda, S.; Ichikawa, T.; Miyaoka, H.; Kojima, Y. Metal Hydride-Based Materials Towards High Performance Negative Electrodes for All-Solid-State Lithium-Ion Batteries. *Chem. Commun.* **2015**, *51*, 9773-9776.

(16) Kawahito, K.; Zeng, L.; Ichikawa, T.; Miyaoka, H.; Kojima, Y. Electrochemical Performance of Titanium Hydride for Bulk-Type All-Solid-State Lithium-Ion Batteries. *Mater. Trans.* **2016**, *57*, 755-757.

(17) Matsumura, Y.; Takagishi, K.; Miyaoka, H.; Ichikawa, T. Vanadium Hydride as Conversion Type Negative Electrode for All-Solid-State Lithium-Ion-Battery. *Mater. Trans.* **2019**, *60*, 2183- 2187.

(18) Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. *Adv. Eng. Mater.* **2004**, *6*, 299-303.

(19) Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-Entropy Alloy: Challenges and Prospects. *Mater. Today* **2016**, *19*, 349-362.

(20) Gao, M. C.; Miracle, D. B.; Maurice, D.; Yan, X.; Zhang, Y.; Hawk, J. A. High-Entropy Functional Materials. *J. Mater. Res.* **2018**, *33*, 3138-3155.

(21) Sahlberg, M.; Karlsson, D.; Zlotea, C.; Jansson, U. Superior Hydrogen Storage in High Entropy Alloys. *Sci. Rep.* **2016**, *6*, 36770.

(22) Montero, J.; Zlotea, C.; Ek, G.; Crivello, J.-C.; Laversenne, L.; Sahlberg, M. Tivzrnb Multi-Principal-Element Alloy: Synthesis Optimization, Structural, and Hydrogen Sorption Properties. *Molecules* **2019**, *24*, 2799.

(23) Zlotea, C.; Sow, M. A.; Ek, G.; Couzinié, J. P.; Perrière, L.; Guillot, I.; Bourgon, J.; Møller, K. T.; Jensen, T. R.; Akiba, E.; et al. Hydrogen Sorption in Tizrnbhfta High Entropy Alloy. *J. Alloys Compd.* **2019**, *775*, 667-674.

(24) Cuevas, F., *Ab* Compounds. In *Hydrogen Storage Materials*, Burzo, E., Ed. Springer-Verlag Berlin Heidelberg: 2018; Vol. 8, pp 40-72.

(25) Guéguen, A.; Latroche, M. Influence of the Addition of Vanadium on the Hydrogenation Properties of the Compounds Tife0.9vx and Tife0.8mn0.1vx (X=0, 0.05 and 0.1). *J. Alloys Compd.* **2011**, *509*, 5562-5566.

(26) Challet, S.; Latroche, M.; Heurtaux, F. Hydrogen Storage in Tife0.70+Xmn0.20-X ($0 \le X \le$

0.15) and Tife0.70mn0.20-Yniy (0 ≤ Y ≤ 0.08) Metallic Alloys. *Mater. Sci. Technol.* **2005**, *3*, 13- 21.

(27) Xiang, Z.; Cao, D.; Lan, J.; Wang, W.; Broom, D. P. Multiscale Simulation and Modelling of Adsorptive Processes for Energy Gas Storage and Carbon Dioxide Capture in Porous Coordination Frameworks. *Energy Environ. Sci.* **2010**, *3*, 1469-1487.

(28) Moon, H. R.; Lim, D.-W.; Suh, M. P. Fabrication of Metal Nanoparticles in Metal–Organic Frameworks. *Chem. Soc. Rev.* **2013**, *42*, 1807-1824.

(29) Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R. A. Metals@Mofs – Loading Mofs with Metal Nanoparticles for Hybrid Functions. *Eur. J. Inorg. Chem.* **2010**, *2010*, 3701-3714.

(30) Rösler, C.; Fischer, R. A. Metal–Organic Frameworks as Hosts for Nanoparticles. *CrystEngComm* **2015**, *17*, 199-217.

(31) Juan-Alcañiz, J.; Gascon, J.; Kapteijn, F. Metal–Organic Frameworks as Scaffolds for the Encapsulation of Active Species: State of the Art and Future Perspectives. *J. Mater. Chem. A* **2012**, *22*, 10102-10118.

(32) Coupry, D. E.; Butson, J.; Petkov, P. S.; Saunders, M.; O'Donnell, K.; Kim, H.; Buckley, C.; Addicoat, M.; Heine, T.; Szilágyi, P. Á. Controlling Embedment and Surface Chemistry of Nanoclusters in Metal–Organic Frameworks. *Chem. Commun.* **2016**, *52*, 5175-5178.

(33) Szilágyi, P. Á.; Rogers, D. M.; Zaiser, I.; Callini, E.; Turner, S.; Borgschulte, A.; Züttel, A.; Geerlings, H.; Hirscher, M.; Dam, B. Functionalised Metal–Organic Frameworks: A Novel Approach to Stabilising Single Metal Atoms. *J. Mater. Chem. A* **2017**, *5*, 15559-15566.

(34) King, J.; Zhang, L.; Doszczeczko, S.; Sambalova, O.; Luo, H.; Rohman, F.; Phillips, O.; Borgschulte, A.; Hirscher, M.; Addicoat, M.; et al. How to Functionalise Metal–Organic Frameworks to Enable Guest Nanocluster Embedment. *J. Mater. Chem. A* **2020**, *https://doi.org/10.1039/C9TA12837A*.

(35) Grochala, W.; Edwards, P. P. Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. *Chem. Rev.* **2004**, *104*, 1283-1316.

(36) Wegner, W.; Fijalkowski, K. J.; Grochala, W. A Low Temperature Pyrolytic Route to Amorphous Quasi-Hexagonal Boron Nitride from Hydrogen Rich (Nh4)3mg(Bh4)5. *Dalton Trans.* **2020**, *49*, 336-342.

(37) Lohstroh, W.; Heere, M. Structure and Dynamics of Borohydrides Studied by Neutron Scattering Techniques: A Review. *J. Phys. Soc. Jpn.* **2020**, *89*, 051011.

(38) Mohtadi, R.; Orimo, S.-i. The Renaissance of Hydrides as Energy Materials. *Nat. Rev. Mater.* **2016**, *2*, 16091.

(39) Hadjixenophontos, E.; Dematteis, E. M.; Berti, N.; Wołczyk, A. R.; Huen, P.; Brighi, M.; Le, T. T.; Santoru, A.; Payandeh, S.; Peru, F.; et al. A Review of the Msca Itn Ecostore—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity. *Inorganics* **2020**, *8*, 17.

(40) Mohtadi, R.; Matsui, M.; Arthur, T. S.; Hwang, S.-J. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery. *Angew. Chem. Int. Ed.* **2012**, *51*, 9780-9783.

(41) Roedern, E.; Kühnel, R.-S.; Remhof, A.; Battaglia, C. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries. *Sci. Rep.* **2017**, *7*, 46189.

(42) Burankova, T.; Roedern, E.; Maniadaki, A. E.; Hagemann, H.; Rentsch, D.; Łodziana, Z.; Battaglia, C.; Remhof, A.; Embs, J. P. Dynamics of the Coordination Complexes in a Solid-State Mg Electrolyte. *J. Phys. Chem. Lett.* **2018**, *9*, 6450-6455.

(43) Le Ruyet, R.; Berthelot, R.; Salager, E.; Florian, P.; Fleutot, B.; Janot, R. Investigation of Mg(Bh4)(Nh2)-Based Composite Materials with Enhanced Mg2+ Ionic Conductivity. *J. Phys. Chem. C* **2019**, *123*, 10756-10763.

(44) Filippov, S.; Grinderslev, J. B.; Andersson, M. S.; Armstrong, J.; Karlsson, M.; Jensen, T. R.; Klarbring, J.; Simak, S. I.; Häussermann, U. Analysis of Dihydrogen Bonding in Ammonium Borohydride. *J. Phys. Chem. C* **2019**, *123*, 28631-28639.

(45) Heere, M.; Muhlbauer, M. J.; Schokel, A.; Knapp, M.; Ehrenberg, H.; Senyshyn, A. Energy Research with Neutrons (Erwin) and Installation of a Fast Neutron Powder Diffraction Option at the Mlz, Germany. *J. Appl. Crystallogr.* **2018**, *51*, 591-595.

(46) Frommen, C.; Sørby, M.; Heere, M.; Humphries, T.; Olsen, J.; Hauback, B. Rare Earth Borohydrides—Crystal Structures and Thermal Properties. *Energies* **2017**, *10*, 2115.

(47) Paskevicius, M.; Jepsen, L. H.; Schouwink, P.; Černý, R.; Ravnsbæk, D. B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T. R. Metal Borohydrides and Derivatives – Synthesis, Structure and Properties. *Chem. Soc. Rev.* **2017**, *46*, 1565-1634.

(48) Filinchuk, Y.; Chernyshov, D.; Nevidomskyy, A.; Dmitriev, V. High-Pressure Polymorphism as a Step Towards Destabilization of Libh4. *Angew. Chem. Int. Ed.* **2008**, *47*, 529-532.

(49) Cascallana-Matias, I.; Keen, D. A.; Cussen, E. J.; Gregory, D. H. Phase Behavior in the Libh4– Libr System and Structure of the Anion-Stabilized Fast Ionic, High Temperature Phase. *Chem. Mater.* **2015**, *27*, 7780-7787.

(50) Matsuo, M.; Nakamori, Y.; Orimo, S.-i.; Maekawa, H.; Takamura, H. Lithium Superionic Conduction in Lithium Borohydride Accompanied by Structural Transition. *Appl. Phys. Lett.* **2007**, *91*, 224103.

(51) Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal Hydrides for Lithium-Ion Batteries. *Nat. Mater.* **2008**, *7*, 916-921.

(52) Aymard, L.; Oumellal, Y.; Bonnet, J.-P. Metal Hydrides: An Innovative and Challenging Conversion Reaction Anode for Lithium-Ion Batteries. *Beilstein J. Nanotechnol.* **2015**, *6*, 1821- 1839.

(53) El kharbachi, A.; Hu, Y.; Sørby, M. H.; Vullum, P. E.; Mæhlen, J. P.; Fjellvåg, H.; Hauback, B. C. Understanding Capacity Fading of Mgh2 Conversion-Type Anodes Via Structural Morphology Changes and Electrochemical Impedance. *J. Phys. Chem. C* **2018**, *122*, 8750-8759.

(54) El kharbachi, A.; Hu, Y.; Sørby, M. H.; Mæhlen, J. P.; Vullum, P. E.; Fjellvåg, H.; Hauback, B. C. Reversibility of Metal-Hydride Anodes in All-Solid-State Lithium Secondary Battery Operating at Room Temperature. *Solid State Ionics* **2018**, *317*, 263-267.

(55) El Kharbachi, A.; Uesato, H.; Kawai, H.; Wenner, S.; Miyaoka, H.; Sørby, M. H.; Fjellvåg, H.; Ichikawa, T.; Hauback, B. C. Mgh2–Coo: A Conversion-Type Composite Electrode for Libh4- Based All-Solid-State Lithium Ion Batteries. *RSC Adv.* **2018**, *8*, 23468-23474.

(56) El kharbachi, A.; Hu, Y.; Yoshida, K.; Vajeeston, P.; Kim, S.; Sørby, M. H.; Orimo, S.-i.; Fjellvåg, H.; Hauback, B. C. Lithium Ionic Conduction in Composites of Li(Bh4)0.75i0.25 and Amorphous 0.75li2sꞏ0.25p2s5 for Battery Applications. *Electrochim. Acta* **2018**, *278*, 332-339.

(57) Bannenberg, L. J.; Boelsma, C.; Asano, K.; Schreuders, H.; Dam, B. Metal Hydride Based Optical Hydrogen Sensors. *J. Phys. Soc. Jpn.* **2020**, *89*, 051003.

(58) Bannenberg, L. J.; Nugroho, F. A. A.; Schreuders, H.; Norder, B.; Trinh, T. T.; Steinke, N.-J.; van Well, A. A.; Langhammer, C.; Dam, B. Direct Comparison of Pdau Alloy Thin Films and Nanoparticles Upon Hydrogen Exposure. *ACS Appl. Mater. Interfaces* **2019**, *11*, 15489-15497.

(59) Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N. J.; van Well, A. A.; Dam, B. Hafnium—an Optical Hydrogen Sensor Spanning Six Orders in Pressure. *Nat. Commun.* **2017**, *8*, 15718.

(60) Bannenberg, L. J.; Boelsma, C.; Schreuders, H.; Francke, S.; Steinke, N. J.; van Well, A. A.; Dam, B. Optical Hydrogen Sensing Beyond Palladium: Hafnium and Tantalum as Effective Sensing Materials. *Sens. Actuators B Chem.* **2019**, *283*, 538-548.

(61) Baricco, M.; Bang, M.; Fichtner, M.; Hauback, B.; Linder, M.; Luetto, C.; Moretto, P.; Sgroi, M. Ssh2s: Hydrogen Storage in Complex Hydrides for an Auxiliary Power Unit Based on High Temperature Proton Exchange Membrane Fuel Cells. *J. Power Sources* **2017**, *342*, 853-860.

(62) Latroche, M.; Blanchard, D.; Cuevas, F.; El Kharbachi, A.; Hauback, B. C.; Jensen, T. R.; de Jongh, P. E.; Kim, S.; Nazer, N. S.; Ngene, P.; et al. Full-Cell Hydride-Based Solid-State Li Batteries for Energy Storage. *Int. J. Hydrogen Energy* **2019**, *44*, 7875-7887.

(63) El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M. Exploits, Advances and Challenges Benefiting Beyond Li-Ion Battery Technologies. *J. Alloys Compd.* **2020**, *817*, 153261.

(64) Liu, Z.; Xiang, M.; Zhang, Y.; Shao, H.; Zhu, Y.; Guo, X.; Li, L.; Wang, H.; Liu, W. Lithium Migration Pathways at the Composite Interface of Libh4 and Two-Dimensional Mos2 Enabling Superior Ionic Conductivity at Room Temperature. *Phys. Chem. Chem. Phys.* **2020**, *22*, 4096-4105. (65) Zettl, R.; de Kort, L.; Gombotz, M.; Wilkening, H. M. R.; de Jongh, P. E.; Ngene, P. Combined Effects of Anion Substitution and Nanoconfinement on the Ionic Conductivity of Li-Based Complex Hydrides. *J. Phys. Chem. C* **2020**, *124*, 2806-2816.

(66) Lefevr, J.; Cervini, L.; Griffin, J. M.; Blanchard, D. Lithium Conductivity and Ions Dynamics in Libh4/Sio2 Solid Electrolytes Studied by Solid-State Nmr and Quasi-Elastic Neutron Scattering and Applied in Lithium–Sulfur Batteries. *J. Phys. Chem. C* **2018**, *122*, 15264-15275.

(67) Kim, S.; Oguchi, H.; Toyama, N.; Sato, T.; Takagi, S.; Otomo, T.; Arunkumar, D.; Kuwata, N.; Kawamura, J.; Orimo, S.-i. A Complex Hydride Lithium Superionic Conductor for High-Energy-Density All-Solid-State Lithium Metal Batteries. *Nat. Commun.* **2019**, *10*, 1081.

(68) Oguchi, H.; Kim, S.; Maruyama, S.; Horisawa, Y.; Takagi, S.; Sato, T.; Shimizu, R.; Matsumoto, Y.; Hitosugi, T.; Orimo, S.-i. Epitaxial Film Growth of Libh4 Via Molecular Unit Evaporation. *ACS Appl. Electron. Mater.* **2019**, *1*, 1792-1796.

(69) Zavorotynska, O.; El-Kharbachi, A.; Deledda, S.; Hauback, B. C. Recent Progress in Magnesium Borohydride Mg(Bh4)2: Fundamentals and Applications for Energy Storage. *Int. J. Hydrogen Energy* **2016**, *41*, 14387-14403.

