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Abstract 

Epigenetic age acceleration (AA) has been associated with adverse environmental exposures 

and many chronic conditions. We estimated, in the NINFEA birth cohort, infant saliva 

epigenetic age, and investigated whether parental socioeconomic position (SEP) and 

pregnancy outcomes are associated with infant epigenetic AA. A total of 139 saliva samples 

collected at on average 10.8 (range 7-17) months were used to estimate Horvath’s DNA 

methylation age. Epigenetic AA was defined as the residual from a linear regression of 

epigenetic age on chronological age. Linear regression models were used to test the 

associations of parental SEP and pregnancy outcomes with saliva epigenetic AA. A moderate 

positive association was found between DNA methylation age and chronological age, with the 

median absolute difference of 6.8 months (standard deviation 3.9). The evidence of the 

association between the indicators of low SEP and epigenetic AA was weak; infants born to 

unemployed mothers or with low education had on average 1 month higher epigenetic age 

compared with infants of mothers with high education and employment (coefficient 0.78 

months, 95% confidence intervals (CI): -0.79, 2.34 for low/medium education; 0.96, 95% CI:-

1.81, 3.73 for unemployment). There was no evidence for association of gestational age, 

birthweight or caesarean section with infant epigenetic AA. Using the Horvath’s method, DNA 

methylation age can be fairly accurately predicted from saliva samples already in the first 

months of life. This study did not reveal clear associations between either pregnancy 

outcomes or parental socioeconomic characteristics and infant saliva epigenetic AA.  

Key Words: Epigenetic age, epigenetic age acceleration, saliva, DNA methylation, birth cohort 
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Introduction 

A person’s chronological age is not always closely related to his/her biological age. Biological 

ageing occurs predominantly at cellular level as a result of accumulating cellular damages, 

caused by several molecular mechanisms, including mitochondrial dysfunction, oxidative 

stress, accumulation of aberrant proteins, somatic mutations, DNA damage and telomere 

shortening.1,2 These mechanisms are strongly regulated by the defence and repair systems, 

which maintain the cellular balance and functionality.3 Impairment of cellular maintenance 

pathways or increased accumulation of cellular damage due to extrinsic hazards compromise 

the cell function, leading to an increased velocity of biological ageing.1 

Chronological age is the strongest unmodifiable risk factor for mortality and major non-

communicable diseases, including cancer, cardiovascular and neurodegenerative diseases.4 

Evidence on environmental influences on the rate of accumulation of cellular damage, and 

therefore, biological ageing suggests that some of the adverse effects of aging could be, at least 

partially, modified.5 To date, numerous biomarkers to predict the biological age have been 

developed, starting from physical functions and anthropometric measurements to molecular 

and DNA-based biomarkers.6,7 Two of the most promising DNA-based age biomarkers are 

DNA methylation and telomere length, and several different methods to quantify the 

biological age using these biomarkers have been developed.7-10 

Horvath’s multi-tissue DNA methylation clock8 is the most widely used age biomarker in 

humans, with a strong correlation with chronological age (Pearson rho > 0.90 in studies with 

a wide age range). The epigenetic age acceleration (AA), i.e. the difference between epigenetic 

and chronological age, has been consistently associated with overall mortality and many 

chronic conditions, including cardiovascular diseases and cancer.11-14 Although the molecular 

mechanisms behind the epigenetic AA are largely unknown, epigenetic AA is one of the most 

popular measures of biological ageing. 
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Early life programming, induced by environmental factors at different stages of prenatal and 

early postnatal life, likely involves life-long alterations in the epigenetic programming and the 

regulation of gene transcription.15 In fact, emerging evidence supports the role of 

environmentally induced epigenetic variations in linking early life exposures to long-term 

outcomes. Epigenetic age and gestational age accelerations at birth and in childhood have 

been associated with both early life environment, including maternal characteristics, socio-

economic conditions and perinatal outcomes,16-20 and with numerous childhood health 

outcomes.20-24 

Socio-economic differences in health have been widely documented, and low socioeconomic 

position (SEP) is known to be one of the most important risk factors for ageing-related 

chronic diseases. Although parental SEP, early life and current socio-economic disadvantage 

have been reported to leave epigenetic signatures at birth,25 during childhood and in 

adulthood,25-27 findings on epigenetic AA are less consistent. For example, epigenetic AA has 

been associated with a low educational level in adulthood in a multi-cohort study,28 but not 

with low SEP in two UK cohorts of adult women17 and in two studies based on children from 

the UK ALSPAC birth cohort.16,20 

In addition to SEP, adverse pregnancy outcomes, such as low birthweight, preterm birth and 

delivery by caesarean section, are known to leave long-term health effects, and are found to 

be associated with specific epigenetic marks.29-31 The ALSPAC study, in their cord blood 

analysis,  reported epigenetic AA associated with caesarean delivery, but not with birthweight 

and gestational age.20 In the same study, peripheral blood epigenetic AA in childhood and 

adolescence was associated with birthweight, but with the opposite direction of the 

association. Also, gestational AA of the offspring at birth in a Finnish study of 814 mother-

newborn pairs was associated with several maternal risk factors and birth outcomes, 

including lower birth size and 1-min Apgar score.18 On the contrary, another study conducted 
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within the ALSPAC cohort (N=863) found greater cord blood gestational AA to be associated 

with larger birth size.16 

As few studies used biological samples other than blood to estimate epigenetic age in infancy, 

and given conflicting findings on the associations of SEP and pregnancy outcomes with early 

life epigenetic AA, we estimated, in the NINFEA (Nascita ed INFanzia: gli Effetti dell'Ambiente) 

birth cohort, saliva epigenetic age in children aged 7-17 months, and then, investigated 

whether parental socioeconomic status, pregnancy outcomes and caesarean section are 

associated with infant saliva epigenetic AA.  

Method 

Study population 

Data were taken from an epigenome-wide case-control study on early childhood wheezing, 

nested within the NINFEA birth cohort.32 The NINFEA study is an Italian web-based birth 

cohort that, during the period 2005-2016, recruited approximately 7500 pregnant women 

who had access to the Internet, enough knowledge of Italian to complete online 

questionnaires, and volunteered to participate (https://www.progettoninfea.it).33 Women 

completed the baseline questionnaire at enrolment, and children are currently followed up 

with six questionnaires completed by mothers 6 and 18 months after delivery, and when 

children turn 4, 7, 10 and 13 years of age. At the end of the 6‐month questionnaire, 

participating mothers were invited to collect their and their child's saliva samples, using the 

OrageneTM DNA self-collection kit (Infant Sponge Kit, CS-1, and OG-250, DNA Genotek, Inc., 

Ottawa, Ontario, Canada). Mothers who did not respond to this initial invitation were invited 

again at the end of the 18‐month and 4‐year questionnaire. Only children with saliva samples 

collected between 7 and 17 months of age were considered in this study. 
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The original case-control study was conducted within the subset of the NINFEA children who 

met the following criteria: i) singleton child, ii) saliva sample collected between 6 and 18 

months after birth, iii) residence in the Province of Turin, and iv) born to mother who did not 

have asthma during the index pregnancy. A total of 72 cases with at least one reported 

episode of wheezing between 6 and 18 months of age were matched to 72 controls by sex, age 

at sampling and seasonality/calendar year of sampling. Although information on children 

ethnic background was not available in the NINFEA cohort, almost the entire study population 

has both parents born in Italy, and only few study children have one of the parents born in 

other European countries. Therefore, the ethnic background of the children included in the 

study is, if not entirely, largely European. 

Saliva DNA methylation 

Saliva samples are stored in a biobank at -80°C. Genomic DNA was extracted from the selected 

144 saliva sponge samples by using the OrageneTM Purifier Solution (DNA Genotek, Inc., 

Ottawa, Ontario, Canada). Genomic DNA was bisulphite-converted using the EZ DNA 

Methylation-GoldTM Kit (Zymo Research, CA, USA) following the manufacturer’s protocol. The 

methylation status of over 485,000 probes was measured using the Infinium 

HumanMethylation450 BeadChip array (Illumina, Inc., San Diego, CA). The matched pairs 

were placed on the same chip to minimize confounding by batch. DNA methylation for each 

probe was expressed as beta-value (ratio of methylated probe intensity to overall intensity, 

representing 0 to 100% methylation at each probe). Pre-processing steps and quality control 

were described before.32,34 After quality control checks and probes filtering three samples 

with more than 1% of the CpGs with detection p-value>0.01 were excluded, resulting in a 

total of 141 samples and 421,782 probes included in this study. 

Saliva is known to have a heterogeneous cellular composition, mostly composed of buccal 

epithelial cells and leucocytes.35,36 In the absence of saliva reference methylomes, we used the 
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Houseman’s reference free method (RefFreeEWAS package in R)37 to estimate proportions of 

putative cell types based on their underlying methylomes. From the 10,000 most variable 

CpGs, we identified two latent variables as the optimal number of surrogates for cell-type 

mixture, which is in accordance with previously reported saliva cell heterogeneity profiles in 

older children.35,36 We then used the 421,782 CpGs to estimate the proportion of the two cell 

types per sample. 

Exposures 

We analysed the following socioeconomic factors: parental educational level (low—primary 

school or less / medium—secondary school, and high—university degree), parental 

unemployment (employed and unemployed) at the time of conception, family size (including 

the index child; 2 members, 3-4 members, and 5 and more members), maternal age at 

delivery and an indicator of the equivalised total disposable household income at birth (the 

highest three quintiles vs. the lowest two quintiles of the entire NINFEA cohort distribution). 

The equivalised total disposable household income indicator at birth has been developed 

within the European Horizon 2020 LifeCycle project and it uses external data from the pan-

European surveys “European Union Statistics on Income and Living Conditions” (EUSILC) and 

internal household and parental characteristics available within cohorts.38 For the NINFEA 

cohort, the income indicator has been constructed using the following parental and household 

baseline characteristics: cohabitation with partner, family size (number of children and adults 

in the household), dwelling type, number of rooms in the house, maternal age and country of 

birth, parental education and occupation and maternal job coded using the ISCO-88 

(International Standard Classification of Occupations) classification.38  

Pregnancy outcomes included birthweight (grams), gestational age (weeks), size for 

gestational age (small, appropriate and large for gestational age, based on the 10th and the 90th 

percentile of the World Health Organization birthweight for sex and gestational age charts),39 
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and mode of delivery (vaginal delivery vs. caesarean section). All variables were measured 

through questionnaires completed by mothers either during pregnancy (socioeconomic 

factors) or six months after delivery (pregnancy outcomes). 

Statistical analysis 

We estimated DNA methylation age for each infant saliva sample by applying the Horvath’s 

method to raw beta-values.8 Horvath used 8000 samples from 82 Illumina DNA methylation 

array data sets, across an extensive range of ages and tissue samples, to identity 353 DNA 

methylation sites predictive of chronological age.8 Two outliers in the NINFEA dataset were 

removed as their predicted epigenetic age estimates were 4 standard deviations above the 

sample mean, which resulted in a total of 139 samples for the subsequent analyses.  

As the Horvath’s age estimation method was developed using samples across wide age ranges, 

a new method for measuring DNA methylation age in children, named the Pediatric-Buccal-

Epigenetic (PedBE) clock, has been recently developed.40 This method was developed using 

buccal samples of individuals between 0 and 20 years of age, and it uses weighted DNA 

methylation values at 94 CpG sites to predict chronological age.40 Given the large 

predominance of buccal epithelial cells in saliva samples, especially in young children,35,36 we 

additionally estimated DNA methylation age using the PedBE clock, but decided to present 

these results only as a supplementary analysis (Supplementary Table S1, Supplementary 

Figure S1), as in the NINFEA dataset there was an extremely high correlation between the age 

estimated using the PedBE clock and the cell type proportions estimated using the 

Houseman’s reference free method (Supplementary Figure S2), Thus, studying the 

epigenetic age would have been the same as studying the proportion of buccal cells in the 

saliva. 
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The Pearson’s correlation, the R2 and the median absolute difference (”median error”) 

between the predicted and chronological age were used to assess the performance of the 

Horvath’s age predictor. The individual epigenetic AA was defined as the residual from the 

linear regression of epigenetic age on chronological age. This measure of AA is independent of 

chronological age, with, relative to the chorological age, positive values indicating epigenetic 

age acceleration and negative values indicating epigenetic age deceleration. 

Using linear regression models, we tested the associations of parental SEP and pregnancy 

outcomes with the epigenetic AA (in months). For all analyses we fitted two models for each 

independent variable: i) Model 1 adjusted for child’s sex, technical batch (chip), the two 

estimated saliva cell type proportions, and child wheezing at age 6 to 18 months, as the 

indicator of being a case or a control in the original case-control study; and ii) Model 2 

additionally adjusted for maternal age and parity in the analyses of socio-economic factors, 

and for maternal age, parity, maternal education and pre-pregnancy body mass index (BMI) in 

the analyses of pregnancy outcomes. The Model 2 for maternal age at delivery was adjusted 

for maternal education, occupation, parity and pre-pregnancy BMI. Birthweight and 

gestational age were also mutually adjusted in Model 2. In the NINFEA cohort an equivalised 

total disposable household income indicator was predicted using, as one of the predictors, 

maternal age, so we excluded maternal age from the adjusted model of household income. 

Although maternal smoking during pregnancy is strongly associated with pregnancy 

outcomes and with offspring DNA methylation, the prevalence of smoking in our sample was 

rather low (N=3; 2.2%), so we did not adjust for maternal smoking in our analyses.  

Finally, to assess the relative contribution of individual CpG sites from the Horvath’s DNA 

methylation predictor to infant saliva epigenetic age estimates we ranked all 353 CpG sites 

according to their weight metric (%) calculated by multiplying each CpG interquartile range 

with the absolute value of the Horvath’s training coefficient for that CpG site. We compared 
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the top ranked CpG sites with those reported in another epigenetic age study based on 

newborn saliva samples.41 

All the analyses were performed using the computing environment R version 3.6.1 (R 

Development Core Team, 2019). 

Results 

The characteristics of the 139 children included in the analyses are shown in Table 1. The 

mothers were on average 34.5 years old at delivery, the two thirds were nulliparous and 

14.5% were obese or overweight before pregnancy. In the study sample 72.5% of the mothers 

were highly educated (University degree or higher), more than 90% of the mothers and 

almost all the fathers (97.8%) were employed, while the average predicted equivalised total 

disposable household income was 1768.6 euros per month. Among children, the mean 

gestational age at delivery was 39.5 weeks, the mean birthweight was 3241 grams, and 36.7% 

were delivered by caesarean section.  

The mean age at saliva sampling was 10.8 months (standard deviation (SD) 2.2; range 7-17), 

while the mean Horvath’s DNA methylation age was 17.5 months (SD 4.4; range 7.3-34.3) 

(Table 2). There was a positive association between chronological age and DNA methylation 

age (Pearson’s r=0.32, p-value = 0.0001, Figure 1). The correlation was moderate compared 

with the one reported in the original Horvath’s study (r >0.90 in most of the tissues and cell 

types)8 due to the much narrower chronological age range of our sample (7-17 months). 

Several studies with restricted sample age ranges reported analogous correlations between 

the estimated Horvath’s epigenetic age and chronological age.17,19,21-23 The median absolute 

difference (median error) between DNA methylation age and chronological age was 6.8 

months (mean 6.9; SD 3.9). 
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Using the weighting metric described in Methods, the twenty top ranked CpG sites, i.e. the 

strongest CpG predictors from the Horvath’s epigenetic clock in our study, contributed 

collectively to the 25.9% of the total weight metric. Among these, eleven CpGs overlapped 

with the twenty most influential CpG sites in the newborn saliva study by Phang et al,41 

adding to 14.9% of the total weight in our study and 21.0% in the study by Phang et al. The 

eleven overlapping CpG in studies on newborn/infant saliva map to the following genes: 

NHLRC1, CSNK1D, PPP1R14A, FZD9, FXN, RASSF4, BCMO1, SCGN, PAWR, RXRA and DPP8. 

The complete list of CpG sites, with their rankings and functional characteristics are shown in 

Supplementary Table S2. 

In the NINFEA saliva samples, the PedBE clock had weaker correlation with chronological age 

compared with Horvath’s epigenetic clock (Pearson’s r=0.24 for PedBE clock,  r=0.32 for 

Horvath’s epigenetic clock), and showed slightly higher saliva epigenetic age compared with 

Horvath’s epigenetic age method (Supplementary Table S1, Supplementary Figure S1).  

Parental socioeconomic characteristics, pregnancy outcomes and offspring saliva epigenetic AA 

The associations of parental socioeconomic characteristics and pregnancy outcomes with the 

offspring epigenetic AA are shown in Table 3 and Figure 2. Overall, there was a suggestion of 

an association between the indicators of low SEP and epigenetic AA, but the evidence for each 

indicator was weak, also due to large confidence intervals and low SEP-associated 

heterogeneity in the study sample. In particular, infants born to unemployed mothers or 

mothers with low or medium educational level had on average 1 month higher epigenetic age 

compared with infants of mothers with high education and employment (coefficient 0.78 

months, 95% confidence intervals (CI): -0.79, 2.34 for maternal low/medium educational 

level, and coefficient 0.96, 95%CI: -1.81, 3.73 for maternal unemployment). Similar estimates 

were also found for a low total household income (1st and 2nd quintile compared with the 

highest three quintiles 0.74, 95%CI: -0.95, 2.43) and large family size (>4 members compared 
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with 3-4 members 0.86; 95% CI: -2.02, 3.75). The estimate observed for paternal 

unemployment status (2.82 months; 95% CI: -2.23, 7.88) should be interpreted with caution 

as in our sample only three children had fathers who were unemployed (Table 1).  

In our study, there was no evidence for associations of gestational age, birthweight or delivery 

by caesarean section with infant saliva epigenetic AA estimated using Horvath’s epigenetic 

clock (Table 3, Figure 2).  

Similarly, we found no association of parental SEP or pregnancy outcomes with infant PedBE 

AA (data not shown). 

Discussion 

Using saliva samples from 139 infants of the NINFEA birth cohort study we examined 

epigenetic DNA methylation age, its correlation with chronological age and the associations of 

parental socioeconomic characteristics and pregnancy outcomes with epigenetic age 

acceleration/deceleration. We found a moderate association between epigenetic and 

chronological age in the first 1.5 years of life, and only an indication of an accelerated 

epigenetic aging in infants from lower socio-economic backgrounds. This study did not 

identify associations of gestational age, birthweight or delivery by caesarean section with the 

rate of early life epigenetic AA. 

The sample analysed in our study had a quite narrow age range (7-17 months, SD 2.2 

months), so the correlation between the estimated epigenetic and chronological age was 

moderate (Pearson’s r= 0.32), with the mean difference between epigenetic and chronological 

age of approximately six months. This is, however, expected and in line with other studies that 

analysed samples with low standard deviations in chronological age.8,17,19,21-23  

Most of the previous studies focused on the effects and causes of accelerated/decelerated 

epigenetic age in adult populations,42 and some studies reported that a difference between 
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DNA methylation age and chronological age may already occur at birth as a consequence of 

unfavourable prenatal environment.16,18,19 To our knowledge no studies looked at these 

changes in infancy. We showed that Horvath’s epigenetic clock predicts the chronological age 

in the first months of life, with a similar performance of studies based on saliva samples 

collected at later ages,22,43 and can be used to explore epigenetic AA in infancy.  

Previous findings on socio-economic status and epigenetic ageing are conflicting. An 

accelerated epigenetic ageing has been found in adults with early life or current socio-

economic disadvantage,27,28 but not all studies confirmed these associations,17,44 and no such 

epigenetic signatures were observed at birth or in childhood.16,20,45 We used several maternal, 

paternal and household SEP measures, as well as the predicted equivalised total disposable 

household income, which captures yet another dimension of SEP, namely the material 

property in the country-specific context. Our findings support previous findings of no strong 

association between parental SEP and the rate of offspring epigenetic ageing in the first years 

of life. Nevertheless, the direction of the association observed in our and other studies based 

on children may indicate that the changes observed in adults may initiate early in life and that 

these small effects may then accumulate as a result of life-long deprivation. It should be, 

however, acknowledged that despite the existing contrast between medium and high 

socioeconomic level in our sample, few children came from very low socioeconomic 

background, and therefore, the effect of severe early childhood deprivation might not have 

been captured in this study.  

The lack of association between gestational age and epigenetic AA is consistent with previous 

studies that assessed epigenetic AA either at birth from cord blood or later in childhood from 

peripheral blood samples, where there was nearly no association between Horvath’s 

epigenetic AA and gestational age.18,20 Horvath’s DNA methylation age was designed to 

estimate chronological age and its consistent weak association with gestational age could 
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reflect different postnatal age-specific changes unrelated to prenatal development. In fact, 

several tissue-specific gestational age predictors have been developed using DNA methylation 

from umbilical cord blood or blood spot samples,46,47 but only few CpG sites from these 

predictors overlap with the Horvath’s epigenetic age predictor. Despite these differences, 

gestational epigenetic age acceleration and deceleration have also been associated with some 

of the maternal characteristics and pregnancy and birth outcomes.16,18 In particular, the 

directions of the associations were mixed for birthweight, where a negative association with 

gestational AA was observed in a Finish study,18 while a positive association was reported in a 

UK study.16 Inconsistent findings on birthweight were also found using the Horvath’s method 

in another UK study based on the same cohort, where birthweight was not associated with 

epigenetic AA at birth, while the association was in the opposite direction in the analyses 

carried out in childhood compared to those conducted in adolescence.20 Similarly, we found 

no association between birthweight and saliva epigenetic age acceleration in infancy. 

In contrast with two previous studies,16,20 we did not find an accelerated epigenetic age in 

children born by caesarean section. It should be, however, noted that in both previous studies 

there was only a marginal positive association with caesarean delivery at birth, and that it 

disappeared later in childhood.  

Epigenetic AA can be seen as a proxy of adverse environmental exposures and a mechanism 

through which these exposures influence later disease risk, or as a consequence of adverse 

health outcomes. In fact, it has been associated both with prenatal and early postnatal 

environmental adversity and with later health outcomes, such as high BMI, asthma and 

mortality.11-14, 16-28 Despite mainly weak associations, epigenetic AA has been linked with 

multiple exposures and outcomes, which makes complicated the understanding of what is 

actually measured with DNA methylation clock. It could be seen as an overall epigenetic 

shifting in response to adverse events, not exclusive of any specific insult, but an intrinsic 
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response of an organism to unfavourable environment in general. If so, it is not unexpected 

that the associations reported so far with single adverse factors operating early in life are 

relatively small in magnitude and often inconsistent. However, even small‐magnitude effect 

sizes are important and could have functional relevance for later childhood and adulthood 

health. 

The lack of associations with parental SEP and pregnancy outcomes in our study may be due 

to several factors. First, most of the previous studies that found associations with these two 

groups of exposures estimated DNA methylation age using cord or peripheral blood samples. 

It is well-established that epigenetic mechanisms are cell type specific, so it might be well 

possible that pregnancy outcomes and SEP-related changes in epigenetic AA are not present 

in all tissues and cell types. Second, the potential epigenetics marks of prenatal exposures that 

are present at birth may be reversible (or, conversely, might further accumulate) postnatally. 

Due to the extensive growth and development in the first months of life, it is expected that the 

dynamic of epigenetic changes is particularly rapid in infancy, and thus the epigenetic marks 

of prenatal exposures might have already disappeared by the first year of life. Third, some of 

the characteristics analysed in our study, e.g. paternal unemployment, small family size and 

large for gestational age, had less than ten exposed children available for the analyses. The 

sample size was thus relatively small, and our results should be seen in the overall context of 

the available and the future literature rather than a single ultimate study with high statistical 

power.  

Conclusions 

We have provided evidence that, using the Horvath’s method, DNA methylation age can be 

fairly accurately predicted from saliva samples already in the first months of life. This is 

important as saliva represents one of the most easily accessible non-invasive biological 

samples for DNA methylation analyses in large population studies, especially at young ages. 
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Horvath’s epigenetic clock indicates only a suggestion of an accelerated epigenetic aging in 

infants from lower socio-economic backgrounds, and no evidence of association between 

epigenetic AA and pregnancy outcomes, including gestational age, birthweight and mode of 

delivery. 
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Table 1. Characteristics of the study population (N=139) 
 

Maternal characteristic N (%) or Mean 

(SD)   
Maternal age (years) 34.5 (4.0) 
Maternal parity  

Nulliparous 90 (66.7) 
≥1 previous pregnancies 45 (33.3) 

Missing 4 
Maternal pre-pregnancy BMI (kg/m2)  

Underweight 11 (8.0) 
Normal 107 (77.5) 

Overweight/Obese 17 (14.5) 
Missing 1 

Smoking during pregnancy  
No 136 (97.8) 

Yes 3 (2.2) 
  Parental socio-economic characteristics  

  Maternal educational level  
High 100 (72.5)  

Medium 36 (26.1) 
Low 2 (1.4) 

Missing 1 
Maternal employment status  

Employed 125 (90.6) 
Unemployed 13 (9.1) 

Missing 1 
Paternal educational level  

High 64 (46.4) 
Medium 54 (39.1) 

Low 20 (14.5) 
Missing 1 

Paternal unemployment status  
Employed 136 (97.8) 

Unemployed 3 (2.2) 
Predicted equivalised total disposable household income  

Euros 1768.6 (303.86) 
The NINFEA cohort quintiles  

1st quintile 9 (7.1) 
2nd quintile 

 

29 (22.8) 
3rd quintile 24 (18.9) 
4th quintile 32 (25.2) 
5th quintile 33 (26.0) 

Missing 12 
Family size (including the index child)  

2 members 4 (2.9) 
3 members 83 (59.7) 
4 members 41 (29.5) 

≥ 5 members 11 (7.9) 
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Pregnancy outcomes  
  Gestational age at delivery (weeks) 39.5 (1.5) 
Birthweight (grams) 3241 (450.1) 
Size for gestational age  

Small for gestational age 22 (15.8) 
Appropriate for gestational age 110 (79.2) 

Large for gestational age 7 (5.0) 
Mode of delivery  

Vaginal delivery 88 (63.3) 
Caesarean section 51 (36.7) 

  Matching variables  
  Case (child wheezing 6-18 months)  

No 68 (48.9) 
Yes 71 (51.1) 

Child sex  
Females 60 (43.2) 

Males 79 (56.8) 
Season of saliva sampling  

Spring or summer 75 (54.0) 
Autumn or winter 64 (46.0) 

Age at saliva sampling (months) 10.8 (2.2) 
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Table 2. Chronological age and predicted Horvath’s DNA methylation age in the NINFEA 
sample  
 

Epigenetic and chronological age measures 
Mean 

(SD) 
Range  

    Chronological age (months) 10.8 (2.2) 7.0, 17.0  
DNA methylation age (months) 17.5 (4.4) 7.3, 34.3  
Difference between epigenetic and chronological age    

Difference (months) 6.7 (4.3) -4.1, 19.2  
Absolute difference (months) 6.9 (3.9) 0.0, 19.2  

Median absolute difference (median error; months) 6.8 /  

Epigenetic age acceleration 
 

Coef. s.e. R2 

    
Epigenetic age ~ chronological age 

 
0.64 0.16 0.09 

Residuals (months) 
 

   
Mean; SD; Range 0.0  4.2 -10.5, 14.1 

Epigenetic age ~ chronological age + chip + cellular 
types 

0.75 0.17 0.20 

SD –Standard deviation 
Coef. – Linear regression coefficient  
s.e. – Standard error 
R2 – Coefficient of determination 
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Table 3. Associations of familial socio-economic status and pregnancy outcomes with 
saliva epigenetic AA in infants 
 

Familial socio-economic characteristics 
Epigenetic age acceleration (months)a 

Coef.b 
(95% CI) 

Adjusted coef.c  
(95% CI) 

Maternal age at delivery (per 5 years) 0.20 (-0.68, 1.08) 0.17 (-0.82; 1.17)d 
Maternal educational level   

High Reference Reference 
Medium / Low 0.60 (-0.92, 2.12) 0.78 (-0.79, 2.34) 

Maternal employment status   
Employed Reference Reference 

Unemployed 0.84 (-1.66, 3.35) 0.96 (-1.81, 3.73) 
Paternal educational level   

High Reference Reference 
Medium / Low 0.06 (-1.33, 1.45) 0.11 (-1.31, 1.53) 

Paternal employment status   
Employed Reference Reference 

Unemployed 2.76 (-2.22, 7.73) 2.82 (-2.23, 7.88) 
Predicted equivalised total disposable 
household income (quintiles of Euros) 

  

≥3rd quintile Reference Reference 
1st and 2nd quintile 0.81 (-0.85, 2.47) 0.74 (-0.95, 2.43)e 

Family size (including the index child)   
2 members -0.43 (-4.54, 3.67) -0.34 (-4.57, 3.89) 

3-4 members Reference Reference 
≥ 5 members 1.20 (-1.34, 3.74) 0.86 (-2.02, 3.75)  

Pregnancy outcomes 
Coef.b 

(95% CI) 
Adjusted coef.f  

(95% CI) 
Gestational age at delivery (weeks) 0.21 (-0.26, 0.69) 0.06 (-0.52, 0.64)g 
Birthweight (per 100 grams) 0.11 (-0.06, 0.27) 0.05 (-0.16, 0.26)g 
Size for gestational age   

Small 0.22 (-1.67, 2.10) 0.63 (-1.35, 2.60) 
Appropriate Reference Reference 

Large 1.77 (-1.75, 5.29) 0.80 (-3.09, 4.69) 
Mode of delivery   

Vaginal delivery Reference Reference 
Caesarean section 0.01 (-1.46, 1.49) 0.14 (-1.36, 1.65) 

Coef. – Regression coefficient; CI – Confidence Intervals 
a Unstandardized residual regressing DNA methylation age on chronological age 
b Adjusted for child sex, technical batch (chip), estimated saliva cell count types, and child wheezing. 
c Adjusted as b and additionally adjusted for maternal age and parity. 
d Adjusted as b and additionally adjusted for maternal education, occupation, parity, and pre-pregnancy 
body mass index (BMI) 
e Adjusted as b and additionally adjusted for maternal parity. 
f Adjusted as b and additionally adjusted for maternal age, parity, maternal education and maternal BMI. 
g Gestational age and birthweight were mutually adjusted. 
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Figure 1 A scatterplot with a smoothed regression line and 95% confidence intervals 
showing associations between saliva DNA methylation age and chronological age in 
infants from the NINFEA birth cohort 
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Figure 2 Coefficient estimates with 95% confidence intervals for the association of 
parental and familial socioeconomic characteristics and pregnancy outcomes with 
infant saliva epigenetic age acceleration (months). Reference groups: parental high 
education (University or higher), parental employment, high income (ranked to ≥3rd quintile), 
3-4 family members in the household, vaginal delivery. Model 1 adjustment (red): child’s sex, 
technical batch (chip), estimated saliva cell count types, and child wheezing as a selection 
factor; Model 2 adjustment (blue): as Model 1 and additional adjustment for maternal age and 
parity in analyses of socioeconomic characteristics, and for maternal age, parity, maternal 
education and maternal pre-pregnancy body mass index (BMI) in analyses of pregnancy 
outcomes. Gestational age and birthweight were mutually adjusted in Model 2. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



29 
 

Determination of saliva epigenetic age in infancy,  
and its association with parental socioeconomic characteristics  

and pregnancy outcomes 

 
 
 

Supplementary Material 
 
 
 
 
 
 
 

Supplementary Table S1……………………………………………………………..………………………………..2 

Supplementary Figure S1……………………………………………………………………………….……………3 

Supplementary Figure S2………………………………………………………………………………………………4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



30 
 

Supplementary Table S1. Chronological age and the predicted pediatric buccal 
epigenetic age (PedBE clock) in the NINFEA sample (N=139; two samples with more 
than 4SD in PedBE clock were removed) 
 

Epigenetic and chronological age measures 
Mean 

(SD) 
Range  

    Chronological age (months) 10.8 (2.2) 7.0, 17.0  
Pediatric buccal epigenetic age (months) 18.3 (7.6) 8.3, 47.2  

Correlation between epigenetic and chronological age Pearson r p-value  

Pediatric buccal epigenetic age (months) 0.24 0.005  

Difference between epigenetic and chronological age Mean 

(SD) 
Range  

Pediatric buccal epigenetic age (months)    

Difference (months) 7.5 (7.4) -2.7, 33.6  
Absolute difference (months) 7.6 (7.2) 0.1, 33.6  

Regression epigenetic age ~ chronological age Coef. s.e. R2 

Pediatric buccal epigenetic age (months)    

Epigenetic age ~ chronological age 
 

0.82 0.29 0.05 
Epigenetic age ~ chronological age + chip 

 + chip) 
1.00 0.32 0.04 

Epigenetic age ~ chronological age + chip + cell type 1 + cell 
type 2 

 

0.58 0.11 0.89 
SD – Standard deviation 
Pearson r – Pearson correlation coefficient 
Coef. – Regression Coefficient 
s.e. – Standard error 
R2 – Coefficient of determination 
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Supplementary Figure S1. Scatterplot with smoothed regression line and 95% 
confidence intervals showing association of chronological age with Pediatric Buccal 
Epigenetic Clock estimated in infant saliva samples in the NINFEA birth cohort.  
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Supplementary Figure S2. Scatterplot with smoothed regression line and 95% 
confidence intervals showing association of Pediatric Buccal Epigenetic Clock 
estimated in infant saliva samples with the two saliva cell type proportions estimated 
using Houseman’s reference-free method. 
 
 

0.0 0.2 0.4 0.6 0.8 1.0

1
0

2
0

3
0

4
0

A. Houseman's cell type 1: Pearson's r=0.93, p-value<2.2e-16      

Cell type 1

P
e
d
B

e
 c

lo
c
k
 (

m
o
n
th

s
)

0.0 0.2 0.4 0.6 0.8 1.0

1
0

2
0

3
0

4
0

B. Houseman's cell type 2: Pearson's r=-0.93, p-value<2.2e-16      

Cell type 2

P
e
d
B

e
 c

lo
c
k
 (

m
o
n
th

s
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


