Metabolomic adjustments in the orchid mycorrhizal fungus Tulasnella calospora during symbiosis with Serapis vomeracea

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1744155 since 2021-01-23T19:39:54Z

Published version:
DOI:10.1111/nph.16812

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
Metabolomic adjustments in the orchid mycorrhizal fungus *Tulasnella calospora* during symbiosis with *Serapis vomeracea*

Andrea Ghirardo\(^1\)†, Valeria Fochi\(^{2,3}\)†, Birgit Lange\(^1\), Michael Witting\(^4\), Jörg-Peter Schnitzler\(^1\), Silvia Perotto\(^{2,3}\)*, Raffaella Balestrini\(^3\)*

\(^1\)Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.

\(^2\)Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Torino, Italy.

\(^3\)National Research Council, Institute for Sustainable Plant Protection, Viale Mattioli 25, 10125, Torino, Italy.

\(^4\)Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.

†These authors contributed equally to this work

*Corresponding authors:

Raffaella Balestrini

Tel: +39 011 6502927

Email: raffaella.balestrini@ipsp.cnr.it

Silvia Perotto

Tel: +39 011 6705987

Email: silvia.perotto@unito.it

Concise and informative title:

Metabolomic adjustments during orchid mycorrhizal symbiosis
SUMMARY

All orchids rely on mycorrhizal fungi for organic carbon, at least during early development. Orchid seed germination leads in fact to the formation of a protocorm, a heterotrophic postembryonic structure colonized by intracellular fungal coils, thought to be the site for nutrients transfer. The molecular mechanisms underlying mycorrhizal interactions and metabolic changes induced by this peculiar symbiosis in both partners remain mostly unknown.

We studied plant-fungus interactions in the mycorrhizal association between the Mediterranean orchid *Serapias vomeracea* and the basidiomycete *Tulasnella calospora* using non-targeted metabolomics. Plant and fungal metabolomes obtained from symbiotic structures were compared with those obtained under asymbiotic conditions.

Symbiosis induced profound metabolomic alterations in both partners. In particular, structural and signaling lipid compounds sharply increased in the external fungal mycelium growing near the symbiotic protocorms, whereas chito-oligosaccharides were identified uniquely in symbiotic protocorms.

This work represents the first description of metabolic changes occurring in orchid mycorrhiza. These results - supported by transcriptomic data - provide novel insights on the mechanisms underlying the orchid mycorrhizal association and open intriguing questions on the role of fungal lipids in this symbiosis.

Keywords: metabolomics, orchid mycorrhiza, *Serapias*, symbiosis, transcriptomics, *Tulasnella calospora*
INTRODUCTION

In nature, most land plants associate with symbiotic fungi to form mycorrhizae. Depending on the morphology of the association and the taxonomic position of the symbiotic partners, four major mycorrhizal types are formed, namely arbuscular, ecto-, ericoid and orchid mycorrhiza. Mycorrhizal fungi increase the host plant’s ability to acquire mineral nutrients and to tolerate biotic and abiotic stresses. In exchange, the fungal partner receives photosynthesis-derived carbon (C) as energy source and takes advantage of a protected niche (Smith & Read, 2008). Orchids are peculiar because their minute seeds lack an endosperm and the symbiotic fungus provides the germinating seed and developing embryo with organic C, a strategy termed myco-heterotrophy (Leake, 1994), as well as other nutrients such as N and P (Cameron et al., 2006, 2007, 2008; Dearnaley & Cameron, 2017). Symbiotic seed germination leads to the formation of a heterotrophic orchid structure called protocorm (Rasmussen, 1995), in which intracellular hyphal coils (or pelotons) are formed and are thought to be responsible for the transfer of nutrients from the fungus to the host plant (Peterson & Farquhar, 1994).

In the last years, the molecular bases underlying such peculiar plant-microbe interaction have been investigated (Yeh et al., 2019). Gene expression profiling has identified fungal and plant genes putatively involved in signaling, symbiotic seed germination, mycoheterotrophy and plant defense (Zhao et al., 2013; Perotto et al., 2014; Kohler et al., 2015b; Miura et al., 2018; Lallemand et al., 2019). Additionally, labeling experiments with stable isotopes (Cameron et al., 2008; Kuga et al., 2014) and molecular analyses (Zhao et al., 2013; Fochi et al., 2017a) have focused on the nutrient exchanges between the symbionts.

Metabolomics is an alternative approach to investigate metabolic changes in symbiosis. Through the determination of the low-molecular-weight complement of biological systems (Kluger et al., 2015), metabolomics provides direct information on the biochemical status of cells. Although little is known on metabolite alterations in orchid mycorrhiza (OM), some plant secondary metabolites may play a role in the interaction. For example, the amount of lusianthrin, an antifungal stilbenoid initially identified in the orchid Lusia indivisa (Majumder & Lahiri, 1990), was found to be strongly increased in protocorm-like bodies of Cypripedium macranthos colonized by the mycorrhizal fungus, suggesting a role in plant defense (Shimura et al., 2007). Similarly, symbiotic Anacamptis morio protocorms showed a higher concentration of the phytoalexin orchinol as compared to non-mycorrhizal protocorms (Beyrle et al., 1995). Chang & Chou (2007) found that the content of some metabolites (i.e., flavonoids, polyphenols, ascorbic acids, and polysaccharides) increased in mycorrhizal orchids, as compared to non-mycorrhizal plants.
Non-targeted metabolomics - i.e., a hypothesis-free analysis that aims to investigate the entire metabolome - represents a powerful tool to profile thousands of metabolites, especially in combination with pathway analyses (Fiehn et al., 2000; Aharoni et al., 2002; Schliemann et al., 2008; Kårlund et al., 2015). It has already been used to investigate plant-microbe interactions in legume root nodules (Zhang et al., 2012), ectomycorrhizae (Tschaplinski et al., 2014) and arbuscular mycorrhizae (Schliemann et al., 2008; Laparre et al., 2014; Rivero et al., 2015). Here, we employed non-targeted metabolomics to investigate in vitro the mycorrhizal association between the Mediterranean orchid *Serapias vomeracea* and the basidiomycete *Tulasnella calospora* (Cantharellales). In particular, *S. vomeracea* seeds and *T. calospora* mycelium were grown together to form mycorrhizal orchid protocorms, and plant and fungal metabolite profiles were compared to those obtained when plant and fungus were cultivated separately as asymbiotic protocorms and free-living mycelium. We integrated metabolomic analyses with genomic information available for *T. calospora* (Kohler et al., 2015a) and our published transcriptomic data (Fochi et al., 2017a). In addition to differences in the metabolite profiles of symbiotic and asymbiotic protocorms, the results revealed intriguing and unexpected differences in the lipid content of free-living and symbiotic *T. calospora* mycelium.

MATERIAL AND METHODS

Biological materials

Free-living mycelium of *T. calospora*

Tulasnella calospora (AL13 isolate) mycelium was originally isolated from mycorrhizal roots of the terrestrial orchid species *Anacamptis laxiflora* in Northern Italy (Girlanda et al., 2011) and was grown on solid 2% Malt Extract Agar (MEA) at 25°C for 20 days before use. Three plugs (6 mm diameter) of actively growing *T. calospora* mycelium were transferred onto a sterilized cellophane membrane placed on top of Oat Agar (OA, 0.3% milled oats, 1% agar; Fig. 1a, d), the same used for symbiotic seed germination, in 11 cm Petri dishes (Schumann et al., 2013). After 20 days at 25°C, the free-living mycelium (FLM) was collected, immediately frozen in liquid N₂ and stored at -80°C.

Symbiotic and asymbiotic germination of *Serapias vomeracea* seeds
Symbiotic seed germination was obtained by co-inoculation of mycorrhizal fungus and orchid seeds in 9 cm Petri dishes, as previously described in Ercole et al. (2015). After surface sterilization, seeds were resuspended in sterile water and dropped on strips of autoclaved filter paper (1.5 x 3 cm) positioned on solid oat medium (0.3% (w/v) milled oats, 1% (w/v) agar). A plug of actively growing *T. calospora* mycelium was then placed in the center of each Petri dish and plates were incubated at 20°C in full darkness for 30 days (Fig. 1b). Asymbiotic germination was obtained by placing surface-sterilized seeds directly on modified BM1 culture medium (Van Waes & Debergh, 1986) at 20°C in darkness. Symbiotic protocorms (SYMB) were collected 30 days post-inoculation (dpi) and asymbiotic protocorms (ASYMB) 120 dpi. Symbiotic germination was performed by placing the mycelial plug on autoclaved cellophane membrane, in order to collect the fungal mycelium (MYC) growing near to the protocorms (Fig. 1c-d). MYC samples were harvested by carefully scraping the mycelium with a spatula. All samples were flash-freezed in liquid N₂ and stored at -80°C.

Sample preparation for metabolomic analysis

S. vomeracea symbiotic and asymbiotic protocorms and *T. calospora* mycelium were disrupted with TissueLyser (18Hz, 2 min, twice). Frozen powder samples (100 mg) were extracted with 1 ml of methanol:isopropanol:water (1:1:1, v/v) for 1 h at 4°C in constant shaking. Successively, the solution was centrifuged at 14,000 rpm for 15 min at 4°C and the supernatant was recovered, dried in a centrifugal evaporator (SpeedVac, Savant Inc, USA) and stored at -80°C. Before metabolomic analysis, the dried samples were dissolved in 200 µl of 50% acetonitrile in water and centrifuged at 14,000 rpm at 4°C for 10 min.

UPLC-UHR-QqToF-MS measurements

Ultra Performance Liquid Chromatography (UPLC) Ultra-High Resolution (UHR) tandem quadrupole/Time-Of-Flight (QqToF) mass spectrometry (MS) measurements were performed on an Ultimate 3000RS (ThermoFisher, Bremen, Germany) coupled to a Bruker Impact II with Apollo II source (ESI source) (Bruker Daltonic, Bremen, Germany). Chromatographic separation was achieved on a C₁₈ column (100 mm x 2.1 mm inner diameter with 1.7 µm particles, Fortis Technologies - Clayhill Industrial Park Neston Cheshire, UK). Eluent A was water with 0.1% of formic acid and eluent B was acetonitrile with 0.1% of formic acid. Gradient elution started with an initial isocratic hold of 0.5% B for 1 min, followed by an increase to 30% B in 15 min and a further increase to 80% B for 5 min. During the last 3 min, the initial conditions of 0.5% B were restored. The flowrate was 400 µl min⁻¹ and the column
temperature was continuously maintained at 40°C. The auto-sampler temperature was set to 4°C. For each sample, two technical replicates were measured in both positive (+) and negative (-) ionization modes. Prior to sample analyses, quality control (QC) samples prepared from the aliquots of the different samples were injected for column conditioning. Mass calibration was achieved with 50 ml of water, 50 ml isopropanol, 1 ml sodium hydroxide, and 200 µl formic acid. The MS was operated under the following conditions: the nebulizer pressure was set to 2 bar, dry gas flow was 10 l min\(^{-1}\), dry gas temperature was 220°C, a capillary voltage was set to 4000 V for the (+) and 3000 V for the (-) ionization mode and the endplate offset was 500 V. Mass spectra were acquired in a mass range of 50-1300 m/z in both (±) modes.

Non-targeted metabolomic analysis

Each MS spectrum file was separately imported into the GeneData Expressionist for MS software v13.5 (München, Germany) for peak peaking and alignment. The spectra were pre-processed by the following steps: i) chemical noise reduction, ii) retention time (RT) alignment, iii) identification of m/z features using the summed-peak-detection feature implemented in the GeneData software, iv) peaks not present in at least 10% of the mass spectra were discarded for isotope clustering, v) singletons (clusters with only one member) were discarded. The resulting peak matrix was exported, both (±) modes were combined, and the average peak intensity of both technical replicates was calculated and further used for statistical and annotation analyses. Mass features (m.f.) appearing in less than 75% of the biological replicate were removed from the data matrix. The resulting peak list was further used for annotation and statistical analysis. Metabolic annotation was achieved as before (Way *et al.*, 2013; Kersten *et al.*, 2013) using the portal MassTRIX3 (http://masstrix3.helmholtzmuench.de/masstrix3/). Compared to MassTRIX (Suhre & Schmitt-Kopplin, 2008; Wägele *et al.*, 2012), the updated version of MassTRIX3 contains all metabolites of KEGG (http://www.genome.jp/kegg/), the Human Metabolome Database (HMDB - http://www.hmdb.ca), ChemSpider (http://www.chemspider.com.), KNApSAcK (http://kanaya.naist.jp/KNAPSAcK/), Lipidmaps (http://www.lipidmaps.org/) and PubChem (https://pubchem.ncbi.nlm.nih.gov/). Log2 ratios of m.f. intensities (log2) were calculated for SYMB/ASYMB, SYMB/MYC, SYMB/FLM, and MYC/FLM to visualize metabolic up- or down-regulation. Putative molecular formulas were calculated from all m.f. using 4 ppm as a threshold. Molecular formulas were used to calculate H/C, O/C, N/C, P/C, S/C, N/P ratios for
the production of van Krevelen diagrams and for the multidimensional stoichiometric compound classification (MSCC) (Rivas-Ubach et al., 2018).

Pathway and Functional analyses
Pathway analysis was performed by using the Pathway Omics Dashboard tools of BioCyc (https://biocyc.org/) (Paley et al., 2017) on annotated metabolites, the concentrations of which changed significantly in MYC/FLM. We used MetaCyc v23.1 (https://MetaCyc.org) as reference database (Caspi et al., 2018). The biological function of the up/downregulated annotated metabolites in MYC/FLM were obtained from the KEGG, HMDB and Lipid Maps databases.

Transcriptomic data
Symbiotic and asymbiotic growth conditions used for these metabolomic studies were the same previously investigated by transcriptomics in Fochi et al. (2017a). Transcriptomic data are, however, missing for the MYC samples. The complete series of fungal and plant transcripts are available at GEO (GSE86968 and GSE87120, respectively).

Statistical analysis
Experiments were performed using four independent biological replicates. Metabolomic data were analyzed using Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Regression (OPLSR) (SIMCA-P v13, Umetrics, Umeå, Sweden). The pre-processing of the data followed established procedures (Ghirardo et al., 2005, 2012, 2016). Discriminant masses (Kaling et al., 2015) between the different mycelia (MYC and FLM) and the protocorms (SYMB and ASYMB) were further tested for statistical significance using a false discovery rate (FDR) of 5% as previously described (Way et al., 2013).

RESULTS
Impact of symbiosis on plant and fungal metabolomes
The metabolome of symbiotic protocorms (SYMB) and T. calospora mycelium (MYC) collected near the symbiotic protocorms (Fig. 1a-b) were compared with asymbiotic protocorms (ASYMB) and free-living mycelium (FLM) grown in pure culture on the same medium used for symbiotic seed germination (Fig. 1c-d). We revealed a total of 24818 metabolite-related mass features (m.f.), with the plant metabolome being more complex
The number of common and specific m.f. in symbiotic and asymbiotic plant samples and mycelia is visualized in the Venn diagram (Fig. 2). The 521 m.f. common to all samples are most likely related to a “core metabolome” composed of primary metabolites found in both partners (Fig. 2). A relatively high number of m.f. (1265) was found in MYC samples but not in FLM ones, indicating accumulation of distinct metabolites in the fungal hyphae close to (but outside) the host plant. We found an overlapping metabolome composed of 8583 m.f. in SYMB and ASYMB orchid protocorms, but not in MYC or FLM samples, likely representing plant metabolites involved in general plant functions. Several m.f. were unique to symbiotic (SYMB, 3977) or asymbiotic (ASYMB, 5433) orchid protocorms. Although some of these unique m.f. likely represent plant metabolites regulated by symbiosis, some may be due to the different culture media required to obtain symbiotic and asymbiotic protocorms.

Metabolites uniquely found in MYC and SYMB samples (291 m.f.) or in MYC, SYMB, and FLM samples (315 m.f.) likely represent fungus-specific compounds, as they were not found in ASYMB samples. In addition, some unique metabolites in SYMB samples could originate from the mycorrhizal fungal partner colonizing symbiotic protocorm tissues. Indeed, fungal metabolites uniquely produced in symbiosis would group together with the SYMB-specific metabolites (Fig. 2).

In addition to unique and shared plant and fungal metabolites, the symbiotic plant-fungus interaction likely resulted in up- and downregulation of a broader set of metabolites. PCA of all m.f. abundances comprehensively visualized changes in metabolite levels and showed a highly diverse metabolic profile among samples (Fig. 3). Not surprisingly, the most considerable distance (46%), as seen by the first component (PC1), was between plant protocorms (ASYMB/SYMB) and fungal mycelium (MYC/FLM). A further and significant distance among data was described by PC2 (34%), which clearly separated SYMB from ASYMB samples and, to a lesser extent, by PC3 (7%), MYC from FLM samples.

To gain insights into metabolites and metabolic pathways altered in the symbiosis, we performed an OPLSR analysis on the m.f., followed by database annotation of the discriminant masses (Kersten et al., 2013). By doing so, we putatively annotated the m.f. that characterized the following sample pairs: SYMB/ASYMB, SYMB/MYC, SYMB/FLM, and MYC/FLM (Table S1). Additionally, we classified compounds based on their elemental compositions using the very recently developed multidimensional stoichiometric compound
classification (MSCC) approach (Rivas-Ubach et al., 2018). This method avoids the limitations of actual database coverage, especially for less described organisms. Using MSCC in combination with van Kreveln diagrams, we visualized the significant global metabolic changes of the main compound categories (i.e., lipids, protein-related, amino sugars, carbohydrates, nucleotides, and phytochemical compounds) up/downregulated during plant-fungus symbiosis (Fig. 4). MSCC analysis highlighted the high abundance of lipids in MYC samples, as compared to FLM samples (Fig. 4a). The increased levels of lipids in MYC samples can also be seen in the van Krevelen diagram, where compounds with H/C ratio ≥1.32 and O/C ratio ≤0.6 were strongly upregulated (Fig. 4c). Conversely, phytochemical compounds were downregulated in the MYC/FLM comparison (Fig. 4a). Importantly, carbohydrates (O/C ratio ≥0.8 and 1.65 ≤H/C<2.7) were lower in MYC samples, indicating either a shift from carbohydrate metabolism to, for instance, lipid metabolism, or perhaps C transfer towards the mycorrhizal plant protocorms. The latter hypothesis would agree with the carbohydrates increase in SYMB protocorms (Fig. 4b, d).

Functional enrichment analysis in T. calospora

Metabolic changes caused by symbiosis were clearly detected in the external hyphae of *T. calospora* (Fig. 4a) and represent an aspect of the interaction so far unexplored. We first used the Pathway Omics Dashboard tool of MetaCyc as unbiased analysis to visualize the overall metabolic changes of this fungus during its symbiotic interaction with the plant. When compared to FLM, the MYC metabolome was highly enriched in compounds involved in the synthesis of lipids, followed by cell-structures, hormones, carbohydrates, or compounds involved in metabolic regulation (Fig. 5). Conversely, cumulative changes in metabolites involved in secondary metabolism were found to be strongly downregulated in MYC samples, as compared to FLM.

Since MetaCyc was unable to classify ~70% of the annotated metabolites, we additionally investigated the chemical taxonomy and functions of regulated metabolites using data from the literature or available databases. This in-depth analysis showed that several compounds related to cell-structure and signaling were increased in MYC samples (Fig. 6, Table S1). ‘Lipids’ were still the most upregulated compounds in the external mycelium of *T. calospora*. Notable changes were also observed in several nitrogen-, oxygen- and sulfur-containing compounds (Fig. 6a). With respect to functions, symbiosis caused an overall increase in the amount of structural, signaling, and energy-related compounds in MYC samples, as compared to FLM samples, mainly related to lipids (Fig. 5-6b, Table S1). Among lipids (120
metabolites), the glycerophospholipids (68), fatty acyls (FA) (14) and isoprenoids (pre
lipids) (13) were strongly upregulated in MYC samples ($\log_2{10}$) (Table S1). Some
nitrogen-containing organic compounds (29), organosulfur compounds (8), and
phytochemical metabolites (14) involved in defense were also highly upregulated in MYC
samples. On the other hand, fewer lipids (48) (FA, 10; isoprenoids, 9), but more nitrogen-
containing organic compounds (41), organosulfur compounds (17), and, among
phytochemical compounds (17), alkaloids (14) were significantly downregulated (Fig. 6).

The external mycelium of T. calospora showed specific changes in lipid content
The sharpest metabolomic differences between MYC and FLM samples were in the levels
and compositions of lipids, in particular glycerophospholipids (GPL) and sphingolipids (Fig.
6, S1, Table S1). Among 81 significantly upregulated GPL in MYC samples, the most
upregulated GPL ($\log_2{21.4}$) was putatively annotated as lysophosphatidylethanolamine
(LysoPE), a lipid metabolite involved in signaling. Notably, 18 glycerophosphoserines (GPS)
were found to be strongly ($\log_2{>10}$) upregulated, as compared to only one being
downregulated, and the abundance of the GPL precursor palmitic acid was consistently
increased ($\log_2{9.1}$). Among GPL, 13 phosphatidylcholines (PCs) and 9 phosphoinositides
(PIs) were more abundant ($\log_2{>10}$) in MYC samples than in FLM samples. Also, a
glycerophosphocholine, putatively annotated as 1-palmitoyl-sn-glycero-3-phosphocholine
(LPC(16:0)) was upregulated ($\log_2{14.4}$) in MYC samples. An essential intermediate in the
biosynthesis of both triacylglycerols and GPL, and therefore involved in energy (storage and
source) and structural metabolism, was the GPL phosphatidic acid PA(22:0/14:1(9Z)), also
upregulated ($\log_2{12.9}$) in MYC samples. Highly upregulated in MYC samples were also the
FA derivative of hydroxyeicosatetraenoic acid, 15-HETE ($\log_2{21}$), and the 8-
hydroxyoctadeca-9Z,12Z-dienoic acid (8-HODE or laetisaric acid) ($\log_2{13.85}$), a FA having
allelochemical functions. Moreover, the strong accumulation of sphingosine ($\log_2{13.58}$) and
PI-Cer(d20:0/16:0) ($\log_2{12.58}$) indicate an increase in sphingolipid biosynthesis in MYC
samples.

Direct integration of metabolomic and transcriptomic data was unfortunately not possible
because previous transcriptomic analyses (Perotto et al., 2014; Fochi et al., 2017a) did not
investigate the MYC condition. However, significant changes in the expression of fungal
genes involved in lipid metabolisms (Table S2) were observed between SYMB and FLM
samples. Among the annotated fungal genes most upregulated in symbiosis (fold change,
‘FC’>10) were two members of the Ca^{2+}-independent phospholipase A$_2$ (Protein ID (#)
and a myo-inositol-1-phosphate synthase (#72491), an essential enzyme for the biosynthesis of inositol containing phospholipids (PIs) and certain sphingolipid signaling molecules. Two fungal genes corresponding to phosphoinositide kinases (FC=4.6, # 26793, FC=2.4, # 28485) and three sphingosine N-acyltransferases, a key enzyme involved in sphingolipid biosynthesis, were upregulated in symbiosis (#18228, #79587, #18227) (Table S2). Conversely, a glucosylceramidase (#33445) was strongly downregulated. Several genes involved in FA metabolism through the Acyl-CoA coenzyme were also affected (Table S2), including two down-regulated genes coding for thiolases (#16280, #131995).

Finally, we observed large changes of 29 isoprenoids in the MYC/FLM comparison (Table S1). Eight triterpenoids, one diterpene, and one tetraterpene were strongly upregulated (log2 >10). Although transcriptional information on the MYC condition is not available, 5 T. calospora genes encoding terpenoid synthases were significantly upregulated in symbiotic protocorms (Table S2), two of them with FC >20 (#70959, #22905).

Nitrogen-containing fungal compounds

Nitrogen-containing (non-phospholipids) compounds were the second group of metabolites significantly affected in T. calospora, with a high proportion downregulated in MYC samples, as compared to FLM (Fig. 6a, Table S1). Although most of these compounds could not be reliably annotated due to the constraints of the available databases, they indicate sharp changes in nitrogen metabolism in the fungus during symbiosis. Two of the few identified compounds with increased levels in MYC samples, as compared with FLM, were UDP-N-acetyl-D-glucosamine (UDP-GlcNAc) (log2=9.52) and dolichyl-N-acetyl-alpha-D-glucosaminyl-phosphate (log2=11.47), N-containing compounds essential for the biosynthesis of N-linked glycans, glycosylphosphatidylinositol (GPI)-anchored proteins, sphingolipids and glycolipids. UDP-GlcNAc can be polymerized to form chitin, a major component of the fungal cell wall. Short oligomers of chitin and chitosan, its deacetylated form, were found similarly enriched (log2 from 11.9 to 13.6) in SYMB when compared with either the MYC or the FLM samples, whereas no differences were observed between MYC and FLM samples (Table S1). Chitosan is produced through the activity of chitin deacetylase, and 3 chitin deacetylase genes (#174258, #26855, #107589), out of the 9 present in the T. calospora genome, were significantly upregulated in SYMB with respect to FLM (Table S2). By contrast, a single chitin synthase (#31299) was slightly upregulated in symbiosis (Table S2).

Short chitin oligomers can be important signals in symbiosis and could also be generated from long chitin polymers by the activity of chitinases. The expression of both fungal and
plant chitinases was modified by symbiosis (Tables S2-3), some plant chitinases being strongly upregulated in symbiotic protocorms (TRINITY Contig Names: DN77284_c0_g1_i3, DN5745_c0_g1_i1, DN66370_c0_g1_i1, DN62020_c0_g1_i1).

Comparing symbiotic and asymbiotic conditions, another primary class of regulated nitrogen-containing compounds was involved in amino acid metabolisms (Table S1). Accumulation of N-L-argininosuccinate was found in SYMB when compared to all other samples (log2 = 3.8 with ASYMB; log2 = 13.3 with MYC and FLM). This compound is involved in arginine biosynthesis and fumarate formation, an essential intermediate of the TCA cycle.

Unfortunately, the metabolomic study of symbiotic tissues (SYMB) is not an easy task because they contain both plant and fungal metabolites and assignment of most mass features to the symbionts is uncertain. Therefore, most amino acids and amino acid derivatives could not be assigned to the fungus or to the plant, with few exceptions. One was the putatively annotated ergothioneine, a naturally occurring metabolite of histidine exclusively found in some fungi and bacteria (Cumming et al., 2018). The levels of ergothioneine were much higher in SYMB (log2=11.35) than in MYC or FLM. The levels of hercynine, another fungal-specific and histidine related compound, were by contrast low (log2=-10.31) in the SYMB vs MYC comparison. Transcriptomic evidence points to an important role of T. calospora in histidine biosynthesis during symbiosis, with three biosynthetic genes (#108905, #73648, #141375) being significantly upregulated in SYMB samples (Table S2).

Organosulfur compounds

Significant changes in sulfur-containing compounds were observed in T. calospora (Table S1), with 14 compounds being upregulated (Log2>10) and 18 downregulated (log2<-10) in MYC samples, as compared to FLM. Similar to nitrogen-containing compounds, many organosulfur compounds could not be reliably annotated. An exception was S-adenosylmethioninamine, a decarboxylated derivative of S-adenosylmethionine (SAM) involved in polyamine biosynthesis (Pegg et al., 1998). Notably, the amount of S-adenosylmethioninamine in MYC samples was sharply reduced (log2 = -11.05), as compared to FLM, whereas SAM amount was sharply increased (log2= 8.9). SAM is a major source of methyl groups for reactions involving methylation. The substantial SAM accumulation in MYC samples (Table S1) suggests a role in symbiosis. Although SAM levels were similar in SYMB, MYC or FLM samples, transcriptomics revealed that the T. calospora SAM synthetase gene was upregulated (FC=4.29, #72837) in symbiosis (Table S2). Metabolomic
data further indicate a significantly lower (log2=-10.3) SAM content in SYMB as compared to ASYMB (Table S1), suggesting down-regulation of the plant SAM in symbiosis.

DISCUSSION

Transcriptomics is the most common approach to indirectly investigate metabolic changes in symbiotic organisms because it reveals the contributions of both partners through changes in their gene expression. This approach was successfully used to investigate orchid mycorrhizal (OM) protocorms, symbiotic structures that contain a mixture of plant and fungal molecules that cannot be separated before molecular or biochemical analyses (Zhao et al., 2013; Fochi et al., 2017a; Miura et al., 2018). However, although gene regulation is indicative of activation or repression of distinct biosynthetic pathways, transcriptional regulation of genes encoding enzymes does not necessarily reflect the final enzymatic activity, and there may be no direct association between metabolites and transcripts (Cavill et al., 2016). Therefore, we used a non-targeted metabolomic approach to investigate metabolic changes in OM, and transcriptomic data were only used to corroborate metabolomic results. Metabolomics yielded particularly interesting results when the external mycelium of the OM fungus *T. calospora* growing near to symbiotic *S. vomeracea* protocorms (MYC) was compared with the free-living mycelium. All organic nutrients needed by the developing mycoheterotrophic protocorms are thought to be provided by the symbiotic fungus in the OM symbiosis. Thus, the metabolites identified in the MYC samples are most likely produced by *T. calospora* and differentially accumulated in the presence of the plant.

Symbiosis caused profound changes in the lipid content of T. calospora

Lipids were the most prominent upregulated metabolites in the external *T. calospora* mycelium, as compared to asymbiotically-grown mycelium. Besides being major structural components of cell membranes, lipids provide critical biological functions as energy and carbon storage, in signaling, stress response and plant-microbe interactions (Siebers et al., 2016). Lipids have recently become an important topic in mycorrhizal research because a substantial increase in the amount of lipids was discovered in the hyphae of arbuscular mycorrhizal (AM) fungi during symbiosis (Keymer et al., 2017). AM fungi are obligate biotrophs that fail in the de novo biosynthesis of fatty acids but become enriched thanks to lipid transfer from the plant. This is unlikely the case for OM fungi because the *T. calospora* genome contains the genetic machinery for lipid biosynthesis, and the increased lipid content in the external *T. calospora* hyphae more likely reflects endogenous lipid biosynthesis.
Phospholipids and sphingolipids are vital components of cell membranes and play key roles in signaling, cytoskeletal rearrangement, and in membrane trafficking (Meijer & Munnik, 2003; Michell, 2008; Fyrst & Saba, 2010; Balla, 2013; Hou et al., 2016; Singh & Del Poeta, 2016; Hannun & Obeid, 2018; Blunsom & Cockcroft, 2020). In fungi, sphingolipids are important for hyphae formation (Oura & Kajiwara, 2010), regulating cell growth and differentiation (Obeid et al., 2002), and cell division (Epstein et al., 2012). In addition, lipid-derived molecules are essential for intra- and extra-cellular signaling and for defense against the proliferation of undesired microbes (Hou et al., 2016; Siebers et al., 2016; Singh & Del Poeta, 2016; Wang et al., 2020). Lipid peroxidation of free fatty acids, acyl groups of triacylglycerols or galactolipids, is commonly activated to induce defense against pathogens. For instance, oxylipins are essential in signal transduction and in both induced systemic resistance (Wang et al., 2020) and systemic acquired resistance (Siebers et al., 2016).

Overall, we observed a generally increased level of several structural lipid constituents of cell membranes, such as glycerophospholipids (GPL), fatty acyls (FA), glycerolipids, saccharolipids and some of their metabolic precursors (e.g. palmitic acid and UDP-GlcNAc). Palmitic acid is one of the most common saturated fatty acids found in animals, plants and microorganisms, and the first fatty acid produced during lipogenesis (Sidorov et al., 2014; Carta et al., 2017). UDP-GlcNAc, an essential precursor of the fungal cell wall chitin, is also involved in the biosynthesis of sphingolipids and sulfolipids (Bowman & Free, 2006; Furo et al., 2015; Ebert et al., 2018). The most represented lipids upregulated in the external mycelium of T. calospora were GPL. Particularly, phosphatidylserines (PS) represented ca. 41% of the up-regulated GPL compounds. PS are mostly restricted to the cytoplasmic membrane leaflet, and the covalent attachment of serine to the phosphate group creates a negative charge essential for targeting and functioning of several intracellular signaling proteins and for the activation of specific kinases, such as protein kinase C (Kay & Grinstein, 2011). Sphingosine and PI-Cer(d20:0/16:0) are precursors of sphingolipids, also important components of fungal cell membranes (Meijer & Munnik, 2003; Hou et al., 2016; Singh & Del Poeta, 2016). These compounds and other 9 PIs were strongly upregulated in the external T. calospora mycelium, likely reflecting the upregulation in symbiosis of phosphoinositide phosphatases and serine/threonine protein kinases, key enzymes involved in the biosynthesis of sphingolipids and glycerophosphoinositols (Balla, 2013; Hou et al., 2016; Hannun & Obeid, 2018; Blunsom & Cockcroft, 2020).
Some membrane GPL also play essential roles in pathogenic and mutualistic interactions. For example, changes in membrane lipid compositions of rhizobia, including PS and PE, prevented the formation of nitrogen-fixing legume nodules (Vences-Guzmán et al., 2008). In fungi, PS and PE have been correlated with Candida albicans virulence (Cassily & Reynolds, 2018), and an increase in PS was observed during fungal differentiation in the phytopathogenic Rhizoctonia solanii (Hu et al., 2017). Sphingolipids are also involved in plant-fungal interactions, and early intermediates of sphingolipid biosynthesis were found to be essential for normal appressoria development and pathogenicity of Magnapothe oryzae (Liu et al., 2019).

In addition to structural membrane components, we found a strongly increased amount of lipids involved in signaling and defense in the external mycelium of T. calospora. The 1-18:1-lysophosphatidylethanolamine (LysoPE) belongs to the class of lysophospholipids, which serve essential signaling functions in plants and act as plant growth regulators (Meijer & Munnik, 2003; Cowan, 2006; Hou et al., 2016). The FA 8-HODE (or laetisaric acid) originates from linoleic acid and is a bioactive oxylipin acting as a communication signal in plant-fungus interactions (Brodhun & Feussner, 2011; Christensen & Kolomiets, 2011). 8-HODE was first discovered in the basidiomycete Laetisaria arvalis as an allelochemical that suppresses growth of phytopathogenic fungi (Bowers et al., 1986). 15-HETE, the hydroxylated fatty acid substrate for the oxylipin biosynthesis, is an intermediate of sophorolipids, extracellular glycolipids apparently necessary for signaling. The strong upregulation of 8-HODE (log2=13.8) and 15-HETE (log2=21) in MYC samples, as compared to FLM, indicates that the signaling apparatus in MYC samples is highly active during symbiosis. Interestingly, some Ca²⁺ independent phospholipase A2 were among the most upregulated T. calospora genes (Table S2). This enzyme family plays important functions in membrane homeostasis, signal transduction, and virulence (Valentín-Berrios et al., 2009).

Although we could hypothesize that the increased amount of structural membrane lipids in the fungal hyphae outside the mycorrhizal protocorm may simply reflect a stimulation of hyphal growth and a need for membrane biogenesis following symbiosis, the increase in potential membrane signaling molecules is intriguing. Also, several upregulated lipids in T. calospora contained phosphate, and it has been suggested by Plassard et al. (2019) that organic phosphate released by membrane lipids may be transferred to the plant in AM symbiosis. However, although organic phosphate transporters were identified in the genome of mycorrhizal fungi, including OM fungi (Plassard et al., 2019), their occurrence in plants is to our knowledge unknown.
Nitrogen- and sulfur-containing organic compounds in the external T. calospora mycelium

Compared to lipids (see above), more difficult to explain is the large percentage of nitrogen and sulfur-containing compounds downregulated in the same MYC samples (Fig. 6). In our system, the OM fungus likely provides the host with organic nitrogen, as suggested by the strong upregulation of some plant amino acid transporters in the mycorrhizal protocorms cells (Fochi et al., 2017a,b). We could, therefore, speculate that depletion of some nitrogen-containing compounds in the external MYC mycelium may be the result of N transfer to the host. It is also possible that some of those non-annotated upregulated compounds are simply involved in the metabolism of nitrogen-containing lipids, such as glycerophospholipids and sphingolipids.

About sulfur, there is currently no information on its transfer to the host plant in OM. Among the few sulfur-containing compounds that could be reliably identified, S-adenosyl-l-methionine (SAM) was upregulated in MYC samples. SAM is the major methyl group donor for the methylation of DNA, RNA, proteins, metabolites, or phospholipids (Mato et al., 1997). Overexpression of SAM synthetase gene in Aspergillus nidulans had a substantial impact on development and secondary metabolism (Gerke et al., 2012). Given the wide variety of target substrates of methyltransferases that use SAM as a methyl group donor, it is currently impossible to identify such targets in T. calospora.

Another notable sulfur and nitrogen-containing compound was ergothioneine (EGT) (Sheridan et al., 2016). EGT occurs primarily in fungi, and no biosynthesis was detected so far in plants. Thus, it was possible to trace this compound in symbiotic protocorms, where it was highly induced (log2=11.35) as compared to external or free-living mycelium. Ergothioneine exhibits powerful antioxidant properties, and biosynthetic deficiency in A. fumigatus mutants indicates a role for growth at elevated oxidative stress conditions (Sheridan et al., 2016). Its accumulation in the symbiotic protocorm suggests that T. calospora is experiencing an oxidative environment and responds with the accumulation of antioxidants.

Chitin and chitin-derived metabolites in symbiosis

Chitin is the main structural component of the fungal cell wall (Bowman & Free, 2006) and contains nitrogen in the form of N-acetyl glucosamine residues, joined by beta-(1,4) linkages. In addition to a structural role, chitin is a source of signaling molecules that regulate plant-microbe interactions (Sánchez-Vallet et al., 2015). Chito-oligosaccharides with a degree of
polymerization of 6 to 8 act as signal molecules and are strong inducers of plant defense responses against pathogenic fungi because they are recognized by chitin-specific plant receptors (Pusztahelyi, 2018). The chitin oligomers accumulated in symbiotic *S. vomeracea* protocorms, as compared with MYC and FLM samples, were much smaller, with a degree of polymerization of 3 (chitotriose, log2=13.6) and 2 (chitobiose, log2=11.9). Chitin oligomers may originate by either a biosynthetic process or cleavage of a longer chitin polymer. Bacterial and fungal plant mutualists can synthesize chitin-derived signaling molecules to prepare their hosts for colonization (Sánchez-Vallet *et al*., 2015). Alternatively, chitosan oligosaccharides can be released from chitin by fungal and plant chitinases. Plant chitinases are involved in defense against fungal pathogens because they hydrolyze fungal cell wall chitinous components and release chitin oligomers that trigger the plant immune responses (Fukamizo & Shinya, 2019). Most plant chitinases are endochitinases that cleave randomly at internal sites in the chitin polymer, generating low molecular mass glucosamine multimers (Rathore & Gupta, 2015). Although we do not have direct evidence of the origin of the chitotriose and chitobiose compounds in *S. vomeracea* symbiotic protocorms, transcriptomic data support the hypothesis that they are generated by the activity of plant chitinases. In fact, only one of the two *T. calospora* chitin synthase genes expressed in symbiotic protocorms was slightly upregulated (FC=2, Table S2). Conversely, transcripts corresponding to plant chitinases belonging to GH18 and GH19 families were strongly upregulated in symbiotic protocorms (Table S3), in agreement with previous observations showing increased chitinase expression in symbiotic protocorms (Zhao *et al*., 2013; Perotto *et al*., 2014). Although plants produce endochitinases in response to phytopathogenic attacks (Kumar *et al*., 2018), a role for chitinases in root symbioses has already been reported for AM and nodule symbioses. In AM roots, the strong expression of chitinases in arbusculated cells, mainly belonging to class III (GH family 18), is thought to reduce the amount of chitin elicitors released by the wall of a compatible symbiotic fungus (Kasprzewska, 2003; Hogekamp *et al*., 2011; Grover, 2012). Interestingly, short oligomers of 2 to 5 N-acetyl glucosamine residues, similar to those found in this work, have been reported to actively promote AM colonization (Volpe *et al*., 2020). Further studies are required to elucidate the involvement of *S. vomeracea* chitinases during the OM symbiosis.

Chitosan oligomers were also abundant in the SYMB samples. Chitosan is the deacetylated form of chitin and is not abundant in the cell wall of Basidiomycetes (Di Mario *et al*. 2008). It was therefore intriguing to find a similar enrichment of chitin and chitosan oligomers (log2 from 12.0 to 13.5) in symbiotic protocorms (Table S1), when compared with either the MYC
or the FLM samples. Chitosan is produced through the activity of chitin deacetylase and three
T. calospora chitin deacetylase genes were significantly upregulated in the symbiotic
protocorms, as compared with FLM (Table S2), supporting the hypothesis that chitin
deacetylation is increased in symbiosis. Chitin deacetylase inactivates the elicitor activity of
chitin oligomers because it converts them to ligand-inactive chitosan. Chitin deacetylation has
been reported as a strategy of endophytic fungi and soil-borne pathogens to prevent chitin-
triggered plant immunity (Cord-Landwehr et al., 2016; Gao et al., 2019). Also, chitin
decetylases are regulated during the interaction with plants in both ECM and AM fungi
(Balestrini & Bonfante, 2014), suggesting a role during symbiosis establishment and
functioning.

Current challenges of metabolomic studies of poorly described organisms
Metabolomics is a powerful tool to investigate biological systems. Here, it provided a global
profiling of the metabolites and it allowed the study of orchid mycorrhiza. We demonstrated a
rearrangement of the metabolome and changes in compounds possibly related to structural,
signaling, defense, and nutrient functions.
However, the metabolomic approach also showed some limitations. For example, several
mass-features could not be annotated in the available database. This uncharacterized “dark
matter” is surely an interesting chemical signature that contains crucial information. For
instance, from the 291 and 315 mass-features uniquely found in MYC-SYMB or in MYC-
SYMB-FLM (Fig. 2), respectively representing symbiosis-specific and constitutive fungal
compounds, none could be reasonably matched in databases. Overall, there is still a severe
limitation in metabolite annotation in non-targeted metabolomics study: only ~2% of spectra
is currently found in databases (da Silva et al., 2015). This is much less than for genomic
studies, where annotation can reach ~80%. Further difficulties of metabolomic studies arise
from the fact that metabolomics reports are usually focused on model organisms, hampering
functional enrichment analysis of non-model organisms such as T. calospora and S.
vomeracea. Orchids and the symbiotic fungus T. calospora are evolutionary distant to those
organisms found in the database and, in the case of orchids, rich of yet unknown secondary
metabolites (Sut et al., 2017). For the current study, we used MetaCyc, the largest curated
collection of metabolic pathways, and the most comprehensive reference database of
metabolic pathways from all domains of life (Caspi et al., 2018). It contains the experimental
evidence of 457 pathways in a member of the taxonomic group fungi, from >54,000
publications (Caspi et al., 2019; Karp et al., 2019). However, even when using such extensive
collection, 451 metabolites in the comparison MYC/FLM could not be matched to objects in the database, pointing to the abovementioned limitation in the reconstruction of the biochemical pathways of *S. vomeracea* and *T. calospora*. Nevertheless, despite the severe limitations in metabolite annotation and functional analysis, we could estimate the elemental formulas of detected mass features. Using an ultra-high mass resolution and following the “seven golden rules” (Kind & Fiehn, 2007), we could accurately measure the mass-to-charge ratios of the metabolome fingerprint and produce an excellent estimation of the metabolite elemental formula with a high probability (Kim *et al*., 2006, probability of 98%). Atom ratios of compound elemental formulas can be visualized using van Krevelen diagrams for rough compound identification in chemical classes, although the limits defining those classes are overlapping among the compound categories. To overcome this issue, we employed the very recently developed multidimensional stoichiometric compound classification (MSCC) approach (Rivas-Ubach *et al*., 2018). In this way, we successfully classified almost entirely the significant mass-features discriminant for the separation of MYC/FLM, MYC/SYMB, SYMB/ASYMB and overcame constrains of actual database.

In conclusion, we revealed profound changes in metabolite profiles in orchid mycorrhiza. The most interesting finding was the sharp adjustment of the lipid metabolism in the fungus *T. calospora* to the symbiosis. Although further and more sensitive targeted analyses are needed to elucidate the significance of these metabolic changes in symbiosis, our study demonstrates that the cross-link between metabolomic and transcriptomic data can pave the way for a more comprehensive understanding of the metabolic networks underlying orchid-fungus interactions.

ACKNOWLEDGMENTS

The orchid mycorrhizal genome and transcriptomes were sequenced at the US Department of Energy Joint Genome Institute within the framework of the Mycorrhizal Genomics Initiative (CSP#305, Exploring the Genome Diversity of Mycorrhizal Fungi to Understand the Evolution and Functioning of Symbiosis in Woody Shrubs and Trees) coordinated by Francis Martin (INRA, Nancy, France).

AUTHOR CONTRIBUTIONS
S.P., R.B. and J.P.S. conceived and designed the research. A.G., V.F. and B.L. conducted all wet lab experiments. A.G., J.P.S. and M.W. conducted data analyses. A.G., S.P., R.B. wrote the manuscript. All authors read and approved the manuscript.

REFERENCES

variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the
wintergreen meadow orchid _Anacamptis morio_. *New Phytologist* **205**: 1308–1319.

Ercole E, Rodda M, Girlanda M, Perotto S. 2015b. Establishment of a symbiotic in vitro

Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. 2000.

**Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW,
Girlanda M, Grigoriev I V., Martin F, et al. 2017a.** Fungal and plant gene expression in the
Tulasnella calospora – _Serapis vomeracea_ symbiosis provides clues about nitrogen

Fochi V, Falla N, Girlanda M, Perotto S, Balestrini R. 2017b. Cell-specific expression of

Fukamizo T, Shinya S. 2019. Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe

Furo K, Nozaki M, Murashige H, Sato Y. 2015. Identification of an _N_-acetylglucosamine
kinase essential for UDP-_N_-acetylglucosamine salvage synthesis in Arabidopsis. *FEBS

Fyrst H, Saba JD. 2010. An update on sphingosine-1-phosphate and other sphingolipid

2019.** Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens.

Gerke J, Bayram Ö, Braus GH. 2012. Fungal S-adenosylmethionine synthetase and the
control of development and secondary metabolism in _Aspergillus nidulans_. *Fungal Genetics
and Biology* **49**: 443–454.

Ghirardo A, Heller W, Fladung M, Schnitzler J-P, Schroeder H. 2012. Function of
defensive volatiles in pedunculate oak (_Quercus robur_) is tricked by the moth _Tortrix

Ghirardo A, Sørensen HA, Petersen M, Jacobsen S, Søndergaard I. 2005. Early
prediction of wheat quality: analysis during grain development using mass spectrometry and

Function in Magnaporthe oryzae. *American Society For Microbiology* **10**: 1–18.

Figure 1: (a) Schematic representation of the in vitro symbiotic germination system of *Serapias vomeracea* seeds with the orchid mycorrhizal fungus *Tulasnella calospora* (redrawn from Ercole et al., 2015b). (b) Symbiotic seed germination in Petri dishes; Mycorrhizal symbiotic protocorms (SYMB) of *S. vomeracea* (red box) and fungal mycelium (MYC) growing near the symbiotic protocorms (blue box) after 30 days of co-incubation. (c) Asymbiotic protocorms (ASYMB) grown on BM1 medium 120 days after sowing. (d) Free-living mycelium (FLM) of *T. calospora* grown on oat medium (OA) at 20 dpi.
Figure 2: Venn diagram of specific and shared mass features (m.f.) occurring and overlapping in symbiotic (SYMB) and asymbiotic (ASYMB) S. vomeracea protocorms, T. calospora free-living mycelium (FLM) and mycelium growing near symbiotic protocorms (MYC).
Figure 3: Score plots of principal components analysis (PCA) of all mass features detected by non-targeted metabolomics. (a) Principal component (PC) 1 vs. PC2 shows the metabolic distances between *T. calospora* AL13 growing as free-living mycelium (FLM) or collected near the symbiotic protocorms (MYC) and between *S. vomeracea* symbiotic (SYMB) and asymbiotic (ASYMB) protocorms. (b) PC3 depicts metabolic differences between MYC and FLM. The variances explained by each PC are given in parentheses. Ellipses denote the Hotelling's T^2 confidence interval of 95%. N = 4 biologically independent replicates. FLM, red circles; MYC, black circles; ASYMB, green square; SYMB, grey square.
Figure 4: (a-b), Multidimensional stoichiometric compound classification (MSCC), and van Krevelen diagrams (c-j) showing all metabolites (in grey) and statistically up- (in red) or down- (in blue) regulated metabolites in asymbiotic and symbiotic conditions. Abbr. MYC, fungal mycelium growing near the mycorrhizal protocorms; FLM, asymbiotic free-living mycelium; SYMB, symbiotic orchid protocorms; ASYMB, asymbiotic orchid protocorms. The magnitude of up- and down-regulated metabolites are depicted in (c-j) with different symbol sizes (larger symbols represent stronger up/downregulation), using $\sqrt{(\log_2(x))/2}$ for upregulated and $\sqrt{(-\log_2(x))/2}$ for downregulated metabolites, where x is MYC/FLM (in c, e, g, i) or SYMB/ASYMB (in d, f, h, j).
Figure 5: Cumulative changes of significantly differently produced compounds on the metabolisms of MYC samples, compared to FLM. MYC, fungal mycelium growing near the mycorrhizal protocorms; FLM, asymbiotic free-living mycelium. The functional classes are based on the MetaCyc pathway ontology (https://metacyc.org/) and the graph constructed using the Omics Dashboard (Paley et al., 2017).
Figure 6: Changes of metabolites in the *T. calospora* mycelium. The number of metabolites grouped according to their (a) chemical taxonomy and (b) the biological functions of the up- (in red) and downregulated (in blue) metabolites in MYC samples, as compared to FLM. A comprehensive list is given in Table S1. The classification is based on KEGG, HMDB and Lipid Maps databases. Unknown organic compounds were classified based on the following priority of their atom compositions: S>P>N>O. For multifunction metabolites, the functions were added to different groups.
Supporting Information

Article title: Metabolomic adjustments in the orchid mycorrhizal fungus *Tulasnella calospora* during symbiosis with *Serapis vomeracea*

Authors: Andrea Ghirardo, Valeria Fochi, Birgit Lange, Michael Witting, Jörg-Peter Schnitzler, Silvia Perotto, Raffaella Balestrini

The following Supporting Information is available for this article:

Fig. S1 Cumulative changes in lipid biosynthesis on the metabolisms of fungal mycelium (MYC) compared to free-living mycelium (FLM).

Table S1 Metabolomic annotation. *(attached)*

Table S2 Gene expression in *Tulasnella calospora*.

Table S3 Gene expression in *Serapis vomeracea*.
Fig. S1 Cumulative changes of significantly differently produced compounds involved in lipid biosynthesis on the metabolisms of MYC samples, compared to FLM. MYC, fungal mycelium growing near the mycorrhizal protocorms; FLM, asymbiotic free-living mycelium. The functional classes are based on the MetaCyc pathway ontology (https://metacyc.org/) and the graph constructed using the Omics Dashboard (Paley et al., 2017).
Table S1 Excel file containing all the significant annotated molecular formulas of LC-MS measurements. (online material)
Table S2 Gene expression in *Tulasnella calospora* (Fochi et al., 2017a). Only genes significantly upregulated (FC>2, p-value<0.05) or downregulated (FC<0.5, p-value<0.05) in the comparison between symbiotic and asymbiotic conditions are reported.

<table>
<thead>
<tr>
<th>Metabolism</th>
<th>Protein ID</th>
<th>Mean Read Count</th>
<th>SYMB/FLM comparison</th>
<th>Protein definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SYMB/F LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLM</td>
<td>SYMB</td>
<td>Fold</td>
</tr>
<tr>
<td>Glycerophospholipid /FA metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53822</td>
<td>0.76</td>
<td>21.15</td>
<td>27.83</td>
<td>9.47E-09 Ca2+-independent phospholipase A2</td>
</tr>
<tr>
<td>72491</td>
<td>10.37</td>
<td>185.29</td>
<td>17.87</td>
<td>4.07E-69 Myo-inositol-1-phosphate synthase</td>
</tr>
<tr>
<td>25657</td>
<td>1.26</td>
<td>20.38</td>
<td>16.17</td>
<td>6.76E-08 Ca2+-independent phospholipase A2</td>
</tr>
<tr>
<td>223254</td>
<td>5.91</td>
<td>33.53</td>
<td>5.67</td>
<td>4.22E-09 Lipid phosphate phosphatase</td>
</tr>
<tr>
<td>244232</td>
<td>1.53</td>
<td>7.54</td>
<td>4.93</td>
<td>0.029349 Ca2+-independent phospholipase A2</td>
</tr>
<tr>
<td>235323</td>
<td>46.03</td>
<td>222.55</td>
<td>4.85</td>
<td>1.45E-52 Lipid phosphate phosphatase</td>
</tr>
<tr>
<td>69758</td>
<td>23.18</td>
<td>93.42</td>
<td>4.05</td>
<td>3.5E-11 Lysophospholipase</td>
</tr>
<tr>
<td>113249</td>
<td>2.25</td>
<td>8.69</td>
<td>3.86</td>
<td>0.020451 Phosphate acyltransferase</td>
</tr>
<tr>
<td>24893</td>
<td>19.26</td>
<td>56.86</td>
<td>2.95</td>
<td>6.86E-09 Lipid phosphate phosphatase</td>
</tr>
<tr>
<td>34211</td>
<td>45.10</td>
<td>129.35</td>
<td>2.87</td>
<td>1.67E-08 Acyl-CoA synthetase</td>
</tr>
<tr>
<td>25656</td>
<td>25.32</td>
<td>66.37</td>
<td>2.62</td>
<td>7.91E-09 Ca2+-independent phospholipase A2</td>
</tr>
<tr>
<td>63963</td>
<td>14.25</td>
<td>33.85</td>
<td>2.38</td>
<td>0.000603 Predicted lipase</td>
</tr>
<tr>
<td>241659</td>
<td>12.18</td>
<td>27.88</td>
<td>2.29</td>
<td>0.001902 Lysophosphatidic acid acyltransferase</td>
</tr>
<tr>
<td>48469</td>
<td>83.70</td>
<td>185.09</td>
<td>2.21</td>
<td>1.03E-17 Acyl-CoA synthetase</td>
</tr>
<tr>
<td>12116</td>
<td>30.59</td>
<td>66.71</td>
<td>2.18</td>
<td>1.27E-06 Phosphatidylinositol transfer protein</td>
</tr>
<tr>
<td>65651</td>
<td>44.02</td>
<td>20.76</td>
<td>0.47</td>
<td>1.4E-05 Putative phosphoinositide phosphatase</td>
</tr>
<tr>
<td>55914</td>
<td>42.26</td>
<td>19.11</td>
<td>0.45</td>
<td>8.4E-06 Predicted phospholipase</td>
</tr>
<tr>
<td>16280</td>
<td>30.48</td>
<td>13.67</td>
<td>0.45</td>
<td>0.00304 3-oxoacyl CoA thiolase</td>
</tr>
<tr>
<td>79164</td>
<td>64.39</td>
<td>28.44</td>
<td>0.44</td>
<td>8.25E-09 Peroxisomal long-chain acyl-CoA transporter</td>
</tr>
<tr>
<td>218567</td>
<td>77.64</td>
<td>33.27</td>
<td>0.43</td>
<td>4.74E-11 Very-long-chain acyl-CoA dehydrogenase</td>
</tr>
<tr>
<td>245357</td>
<td>31.93</td>
<td>13.53</td>
<td>0.42</td>
<td>0.000157 Enoyl-CoA hydratase</td>
</tr>
<tr>
<td>227101</td>
<td>10.18</td>
<td>4.26</td>
<td>0.42</td>
<td>0.035275 Long chain fatty acid acyl-CoA ligase</td>
</tr>
<tr>
<td>245109</td>
<td>11.19</td>
<td>4.30</td>
<td>0.38</td>
<td>0.015401 Enoyl-CoA hydratase</td>
</tr>
<tr>
<td>131995</td>
<td>244.62</td>
<td>94.03</td>
<td>0.38</td>
<td>8.86E-10 3-oxoacyl CoA thiolase</td>
</tr>
<tr>
<td>25831</td>
<td>75.79</td>
<td>27.28</td>
<td>0.36</td>
<td>3.33E-06 Enoyl-CoA isomerase</td>
</tr>
<tr>
<td>244385</td>
<td>17.74</td>
<td>6.20</td>
<td>0.35</td>
<td>0.000882 Mitochondrial/plastidial beta-ketoacyl-ACP reductase</td>
</tr>
<tr>
<td>240381</td>
<td>135.39</td>
<td>46.56</td>
<td>0.34</td>
<td>2.66E-14 Peroxisomal multifunctional beta-oxidation protein</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Log2FoldChange</td>
<td>Log10垫倍</td>
<td>p-value</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>243150</td>
<td>183.98</td>
<td>61.97</td>
<td>0.34</td>
<td>Lipid phosphate phosphatase</td>
</tr>
<tr>
<td>222821</td>
<td>49.06</td>
<td>16.50</td>
<td>0.34</td>
<td>Triglyceride lipase-cholesterol esterase</td>
</tr>
<tr>
<td>14918</td>
<td>52.55</td>
<td>16.97</td>
<td>0.32</td>
<td>Acyl-CoA:diacylglycerol acyl-Coenzyme (DGAT)</td>
</tr>
<tr>
<td>234265</td>
<td>85.95</td>
<td>27.57</td>
<td>0.32</td>
<td>Peroxisomal long-chain acyl-CoA transporter</td>
</tr>
<tr>
<td>72780</td>
<td>62.38</td>
<td>15.32</td>
<td>0.25</td>
<td>Ca2+-independent phospholipase A2</td>
</tr>
<tr>
<td>243148</td>
<td>69.94</td>
<td>12.78</td>
<td>0.18</td>
<td>Lipid phosphate phosphatase</td>
</tr>
<tr>
<td>191699</td>
<td>109.84</td>
<td>15.95</td>
<td>0.15</td>
<td>Predicted lipase</td>
</tr>
<tr>
<td>244713</td>
<td>106.19</td>
<td>11.89</td>
<td>0.11</td>
<td>Acyl-CoA:diacylglycerol acyltransfer (DGAT)</td>
</tr>
<tr>
<td>47248</td>
<td>465.71</td>
<td>29.63</td>
<td>0.06</td>
<td>Phosphatidylserine deacylase</td>
</tr>
<tr>
<td>18228</td>
<td>2.62</td>
<td>18.56</td>
<td>7.06</td>
<td>Sphingosine N-acetyltransferase.</td>
</tr>
<tr>
<td>79587</td>
<td>12.31</td>
<td>52.25</td>
<td>4.24</td>
<td>Sphingosine N-acetyltransferase.</td>
</tr>
<tr>
<td>18227</td>
<td>19.67</td>
<td>40.03</td>
<td>2.04</td>
<td>Sphingosine N-acetyltransferase.</td>
</tr>
<tr>
<td>33445</td>
<td>40.84</td>
<td>4.17</td>
<td>0.10</td>
<td>Glucosylceramidase.</td>
</tr>
<tr>
<td>27319</td>
<td>0.16</td>
<td>6.70</td>
<td>41.88</td>
<td>17 beta-hydroxysteroid dehydrogenase type 3. HSD17B3</td>
</tr>
<tr>
<td>112707</td>
<td>0.61</td>
<td>22.49</td>
<td>36.87</td>
<td>17 beta-hydroxysteroid dehydrogenase type 3. HSD17B3</td>
</tr>
<tr>
<td>15520</td>
<td>5.31</td>
<td>66.76</td>
<td>12.57</td>
<td>C-4 sterol methyl oxidase</td>
</tr>
<tr>
<td>15617</td>
<td>7.84</td>
<td>84.02</td>
<td>10.72</td>
<td>C-4 sterol methyl oxidase</td>
</tr>
<tr>
<td>227917</td>
<td>3.01</td>
<td>23.74</td>
<td>7.89</td>
<td>Hydroxymethylglutaryl-CoA reductase (NADPH).</td>
</tr>
<tr>
<td>13385</td>
<td>18.94</td>
<td>104.95</td>
<td>5.54</td>
<td>Sterol C5 desaturase</td>
</tr>
<tr>
<td>97990</td>
<td>7.50</td>
<td>22.58</td>
<td>3.01</td>
<td>C-8.7 sterol isomerase</td>
</tr>
<tr>
<td>37203</td>
<td>11.20</td>
<td>29.36</td>
<td>2.62</td>
<td>Hydroxymethylglutaryl-CoA reductase (NADPH).</td>
</tr>
<tr>
<td>242907</td>
<td>22.80</td>
<td>57.27</td>
<td>2.51</td>
<td>3-oxo-5-alpha-steroid 4-dehydrogenase.</td>
</tr>
<tr>
<td>228549</td>
<td>13.32</td>
<td>29.56</td>
<td>2.22</td>
<td>3-keto sterol reductase</td>
</tr>
<tr>
<td>245385</td>
<td>40.68</td>
<td>83.47</td>
<td>2.05</td>
<td>C-8.7 sterol isomerase</td>
</tr>
<tr>
<td>20568</td>
<td>117.07</td>
<td>52.51</td>
<td>0.45</td>
<td>START domain-containing proteins involved in</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>steroidogenesis/phosphatidylcholine transfer</td>
</tr>
<tr>
<td>76927</td>
<td>26.93</td>
<td>5.47</td>
<td>0.20</td>
<td>Steroid reductase</td>
</tr>
<tr>
<td>113659</td>
<td>122.22</td>
<td>22.29</td>
<td>0.18</td>
<td>Steroid reductase</td>
</tr>
<tr>
<td>70959</td>
<td>1.95</td>
<td>52.49</td>
<td>26.92</td>
<td>1.74E-11</td>
</tr>
<tr>
<td>22905</td>
<td>4.72</td>
<td>105.71</td>
<td>22.40</td>
<td>Terpenoid synthase</td>
</tr>
<tr>
<td>23789</td>
<td>3.16</td>
<td>29.45</td>
<td>9.32</td>
<td>Terpenoid synthase</td>
</tr>
<tr>
<td>145950</td>
<td>14.53</td>
<td>128.65</td>
<td>8.85</td>
<td>Terpenoid synthase</td>
</tr>
<tr>
<td>240449</td>
<td>8.90</td>
<td>27.97</td>
<td>3.14</td>
<td>Cis-prenyltransferase</td>
</tr>
<tr>
<td>214286</td>
<td>18.16</td>
<td>44.90</td>
<td>2.47</td>
<td>0.005619</td>
</tr>
<tr>
<td>119731</td>
<td>15.07</td>
<td>31.99</td>
<td>2.12</td>
<td>Phytoene dehydrogenase-related protein</td>
</tr>
<tr>
<td>19151</td>
<td>66.18</td>
<td>29.56</td>
<td>0.45</td>
<td>Prenyltransferase/squalene oxidase</td>
</tr>
<tr>
<td>27794</td>
<td>11.86</td>
<td>4.01</td>
<td>0.34</td>
<td>Peroxisomal phytanoyl-CoA hydroxylase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peroxisomal phytanoyl-CoA hydroxylase</td>
</tr>
<tr>
<td>S-adenosyl-L-methionine metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27796</td>
<td>137.39</td>
<td>45.42</td>
<td>0.33</td>
<td>0</td>
</tr>
<tr>
<td>214327</td>
<td>41.06</td>
<td>7.31</td>
<td>0.18</td>
<td>6.86E-15</td>
</tr>
<tr>
<td>228858</td>
<td>2.92</td>
<td>44.79</td>
<td>15.34</td>
<td>0.001399</td>
</tr>
<tr>
<td>244998</td>
<td>32.75</td>
<td>166.80</td>
<td>5.09</td>
<td>7.45E-41</td>
</tr>
<tr>
<td>72837</td>
<td>215.01</td>
<td>922.27</td>
<td>4.28</td>
<td>2.94E-39</td>
</tr>
<tr>
<td>21107</td>
<td>2.84</td>
<td>8.71</td>
<td>3.06</td>
<td>0.045065</td>
</tr>
<tr>
<td>174258</td>
<td>1.32</td>
<td>27.07</td>
<td>20.51</td>
<td>1.76E-05</td>
</tr>
<tr>
<td>26855</td>
<td>4.78</td>
<td>63.15</td>
<td>13.21</td>
<td>5.78E-12</td>
</tr>
<tr>
<td>107589</td>
<td>29.31</td>
<td>109.37</td>
<td>3.75</td>
<td>2.86E-18</td>
</tr>
<tr>
<td>31299</td>
<td>11.46</td>
<td>23.48</td>
<td>2.05</td>
<td>0.0142</td>
</tr>
<tr>
<td>33089</td>
<td>14.53</td>
<td>6.95</td>
<td>0.48</td>
<td>0.0257</td>
</tr>
<tr>
<td>108905</td>
<td>17.67</td>
<td>144.87</td>
<td>8.201</td>
<td>5.7E-42</td>
</tr>
<tr>
<td>73648</td>
<td>15.20</td>
<td>70.89</td>
<td>4.663</td>
<td>1.77E-09</td>
</tr>
<tr>
<td>141375</td>
<td>12.16</td>
<td>39.12</td>
<td>3.217</td>
<td>5.88E-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAM-dependent methyltransferases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAM-dependent methyltransferases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S-adenosylmethionine synthetase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAM-dependent methyltransferases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAM-dependent methyltransferases</td>
</tr>
<tr>
<td>Chitin metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chitin deacetylase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chitin deacetylase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chitin deacetylase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chitin synthase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chitin deacetylase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATP phosphoribosyltransferase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Histidinol dehydrogenase</td>
</tr>
<tr>
<td>Histidine biosynthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphoribosylformimino-5-aminoimidazole carboxamide ribonucleotide (ProFAR) isomerase</td>
</tr>
</tbody>
</table>

* P-value = 0 indicates values <1E-70
Table S3 Expression of S. vomeracea contigs in symbiotic (SYM) and asymbiotic (ASYMB) protocorms. Contigs obtained in the *de novo* assembly were annotated by BlastX against the *A. thaliana* proteome.

<table>
<thead>
<tr>
<th>Metabolism</th>
<th>Trinity Contig Name</th>
<th>Mean read count</th>
<th>SYMB/ASYMB B comparison</th>
<th>A. thaliana Gene Id</th>
<th>Putative function in A. thaliana</th>
<th>score</th>
<th>e-value</th>
<th>percent identity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SYMB</td>
<td>ASYMB</td>
<td>Fold Change</td>
<td>P-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitin metabolism</td>
<td>TRINITY_DN77284_c0_g1_i3</td>
<td>226.85</td>
<td>0.00</td>
<td>SYM* 1.58E-07</td>
<td>AT5G24090.1</td>
<td>Chitinase A</td>
<td>203</td>
<td>2.00E-20</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN5745_c0_g1_i1</td>
<td>26.04</td>
<td>0.00</td>
<td>SYM* 0.015799</td>
<td>AT1G02360.1</td>
<td>Chitinase family protein</td>
<td>263</td>
<td>1.00E-28</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN66370_c0_g1_i1</td>
<td>17.42</td>
<td>0.18</td>
<td>95.70 1.62E-06</td>
<td>AT5G24090.1</td>
<td>Chitinase A</td>
<td>786</td>
<td>5.00E-103</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN62020_c0_g1_i1</td>
<td>45.79</td>
<td>1.40</td>
<td>32.60 1.21E-10</td>
<td>AT1G02360.1</td>
<td>Chitinase family protein</td>
<td>715</td>
<td>2.00E-92</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN95258_c0_g1_i1</td>
<td>10.59</td>
<td>0.03</td>
<td>343.40 0.005566</td>
<td>AT5G66430.1</td>
<td>SAM-dependent methyltransferases</td>
<td>369</td>
<td>3.00E-42</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN44325_c0_g1_i1</td>
<td>21.46</td>
<td>0.62</td>
<td>34.79 4.62E-12</td>
<td>AT5G04370.2</td>
<td>SAM-dependent methyltransferases</td>
<td>103</td>
<td>2.00E-06</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN75761_c2_g1_i1</td>
<td>19.99</td>
<td>0.98</td>
<td>20.45 1.42E-10</td>
<td>AT2G14060.1</td>
<td>SAM-dependent methyltransferases</td>
<td>287</td>
<td>8.00E-30</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN67911_c0_g1_i2</td>
<td>93.74</td>
<td>5.30</td>
<td>17.68 3.2E-22</td>
<td>AT4G34050.1</td>
<td>SAM-dependent methyltransferases</td>
<td>639</td>
<td>2.00E-80</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN75761_c1_g1_i1</td>
<td>5.52</td>
<td>0.43</td>
<td>12.77 0.014476</td>
<td>AT5G38020.1</td>
<td>SAM-dependent methyltransferases</td>
<td>292</td>
<td>6.00E-30</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN75761_c0_g1_i3</td>
<td>16.36</td>
<td>1.43</td>
<td>11.44 5.58E-07</td>
<td>AT3G11480.1</td>
<td>SAM-dependent methyltransferases</td>
<td>273</td>
<td>4.00E-29</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN75761_c2_g7_i1</td>
<td>11.85</td>
<td>1.09</td>
<td>10.82 2.8E-05</td>
<td>AT5G04370.2</td>
<td>SAM-dependent methyltransferases</td>
<td>120</td>
<td>4.00E-08</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN75761_c1_g1_i3</td>
<td>16.55</td>
<td>2.62</td>
<td>6.31 0.001078</td>
<td>AT5G38020.1</td>
<td>SAM-dependent methyltransferases</td>
<td>298</td>
<td>1.00E-30</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN67911_c0_g1_i1</td>
<td>86.46</td>
<td>17.49</td>
<td>4.94 2.52E-15</td>
<td>AT4G34050.1</td>
<td>SAM-dependent methyltransferases</td>
<td>635</td>
<td>1.00E-80</td>
</tr>
<tr>
<td></td>
<td>TRINITY_DN75761_c2_g6_i1</td>
<td>8.50</td>
<td>1.87</td>
<td>4.55 0.041527</td>
<td>AT5G04370.1</td>
<td>SAM-dependent methyltransferases</td>
<td>123</td>
<td>2.00E-08</td>
</tr>
</tbody>
</table>

41
<table>
<thead>
<tr>
<th>TRINITY_DN69539_c1_g2_i2</th>
<th>29.21</th>
<th>8.28</th>
<th>3.53</th>
<th>0.001477</th>
<th>AT5G19530.1</th>
<th>SAM-dependent methyltransferases</th>
<th>1226</th>
<th>5.00E-167</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRINITY_DN76586_c0_g1_i2</td>
<td>12.57</td>
<td>3.88</td>
<td>3.24</td>
<td>0.024737</td>
<td>AT2G43940.1</td>
<td>SAM-dependent methyltransferases</td>
<td>727</td>
<td>2.00E-93</td>
<td>61.8</td>
</tr>
<tr>
<td>TRINITY_DN77952_c0_g2_i1</td>
<td>28.17</td>
<td>9.65</td>
<td>2.92</td>
<td>7.06E-05</td>
<td>AT4G00750.1</td>
<td>SAM-dependent methyltransferases</td>
<td>2064</td>
<td>0</td>
<td>63</td>
</tr>
<tr>
<td>TRINITY_DN73756_c1_g13_i1</td>
<td>25.50</td>
<td>9.85</td>
<td>2.59</td>
<td>0.001217</td>
<td>AT4G10440.1</td>
<td>SAM-dependent methyltransferases</td>
<td>2293</td>
<td>0</td>
<td>68.6</td>
</tr>
<tr>
<td>TRINITY_DN74865_c4_g1_i1</td>
<td>17.96</td>
<td>7.01</td>
<td>2.56</td>
<td>0.01841</td>
<td>AT5G64030.1</td>
<td>SAM-dependent methyltransferases</td>
<td>2213</td>
<td>0</td>
<td>66.2</td>
</tr>
<tr>
<td>TRINITY_DN75661_c0_g2_i3</td>
<td>23.33</td>
<td>9.96</td>
<td>2.34</td>
<td>0.041245</td>
<td>AT4G26220.1</td>
<td>SAM-dependent methyltransferases</td>
<td>177</td>
<td>9.00E-17</td>
<td>67.4</td>
</tr>
<tr>
<td>TRINITY_DN75699_c0_g12_i1</td>
<td>4.43</td>
<td>16.55</td>
<td>0.27</td>
<td>0.000675</td>
<td>AT2G32170.1</td>
<td>SAM-dependent methyltransferases</td>
<td>159</td>
<td>1.00E-13</td>
<td>61.9</td>
</tr>
<tr>
<td>TRINITY_DN77162_c3_g1_i3</td>
<td>4.74</td>
<td>30.85</td>
<td>0.15</td>
<td>2.12E-12</td>
<td>AT4G00750.1</td>
<td>SAM-dependent methyltransferases</td>
<td>1078</td>
<td>3.00E-140</td>
<td>56.5</td>
</tr>
<tr>
<td>TRINITY_DN76265_c0_g7_i1</td>
<td>0.74</td>
<td>6.63</td>
<td>0.11</td>
<td>0.007444</td>
<td>AT1G23360.1</td>
<td>SAM-dependent methyltransferases</td>
<td>101</td>
<td>3.00E-06</td>
<td>94.7</td>
</tr>
</tbody>
</table>

Note: SYM, uniquely expressed in symbiotic conditions.*