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In precision agriculture, autonomous ground and aerial vehicles can lead to favourable

improvements in field operations, extending crop scouting to large fields and performing

field tasks in a timely and effective way. However, automated navigation and operations

within a complex scenarios require specific and robust path planning and navigation

control. Thus, in addition to proper knowledge of their instantaneous position, robotic

vehicles and machines require an accurate spatial description of their environment. An

innovative modelling framework is presented to semantically interpret 3D point clouds of

vineyards and to generate low complexity 3D mesh models of vine rows. The proposed

methodology, based on a combination of convex hull filtration and minimum area c-gon

design, reduces the amount of instances required to describe the spatial layout and shape

of vine canopies allowing the amount of data to be reduced without losing relevant crop

shape information. The algorithm is not hindered by complex scenarios, such as non-

linear vine rows, as it is able to automatically process non uniform vineyards. Results

demonstrated a data reduction of about 98%; from the 500 Mb ha�1 required to store the

original dataset to 7.6 Mb ha�1 for the low complexity 3D mesh. Reducing the amount of

data is crucial to reducing computational times for large original datasets, thus enabling

the exploitation of 3D point cloud information in real-time during field operations. When

considering scenarios involving cooperating machines and robots, data reduction will

allow rapid communication and data exchange between in field actors.

© 2020 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

).
1. Introduction

Precision agriculture has proven to be effective in increasing

field productivity and product quality by optimising the
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efficiency of agricultural and management operations

(Gebbers & Adamchuk, 2010; Tenhunen et al., 2019). This is

achieved by the timelymonitoring of crops and by performing

site-specific operations (Comba et al., 2020; Khaliq et al., 2019;
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Nomenclature

a Dimensions of vine row section Sk along xk axis

[m] (model parameter)

b Distance between two sequential vine row

sections Sk and Skþ1[m] (model parameter)

c Number of vertices of c-gon Pc (model parameterÞ
Rk Complexity reduction index of 3D mesh M
Ck Set of points representing the kth canopy section

(Ck ¼ C�k ∪Cþk )
C2D Two-dimensional projection of C on the plane x ¼

0
~C2D Outlier-filtered C2D set of points

Fk;kþ1 Set of triangular faces of the generated model

mesh, between vertices Vk and Vkþ1

Gk Good-modelling index of 3D mesh M
hk Peak location of Hz

HyðSk; sÞ Normalised frequencies distribution histogramof

points pi2Sk along yk axes

HzðSk; tÞ Normalised frequencies distribution histogram of

points pi2Sk along zk axes

H Convex hull of points set C2D
K Set of all the considered vine row section Sk

L
0
k and L0

0
k Lines defining plane §k

M Low complexity 3D triangulated mesh of vine

rows

NC Set of points C cardinality

NH Cardinality of vertices U2D of the convex hull H
NPC Cardinality of point-cloud PC
Ok Over-modelling index of 3D mesh M
OfWGS84g

LOCk
Origin of local reference frame LOCk in WGS84

coordinates

Pc c-gon containing the point set ~C2D with vertices

P½Vc*� Minimum area c-gon containing the point set ~C2D
PC 3D point cloud of vineyard

§þ
k Plane defined by two lines L

0
k and L

00
k

Qk Model Mk quality score

sy Bin of the histogram Hy

sz Bin of the histogram Hz

Sk Subset of points representing a section of vine row

Sþ
k and S�

k Two sides of vine row section Sk with y � 0 and

y< 0 respectively

ui ith vertex of convex hull H
Uk under-modelling index of 3D mesh M
U2D set of vertices of the convex hullH in the 2D plane

x ¼ 0

vi ith vertex of c-gon Pc in the 2D plane x ¼ 0

vi ith vertex of c-gon Pc in the 3D space and of the 3D

mesh M
V2D Set of vertices of c-gon (polygon) Pc in the 2D plane

x ¼ 0

Vref Ck envelope volume

Vk Set of vertices of c-gon (polygon)Pc in the 3D space

wk Peak location of Hy

xk x axis of the fLOCg, tangent to the local wine row

direction wk

yk y axis of the fLOCg
yk;max Greatest value of y coordinates of points in Sk

Yk Bins set of the histogram Hy

zk z vertical axis of the fLOCg
zk;max Greatest value of z coordinates of points in Sk

Zk Bins set of the histogram Hz

Greek letters

fi Latitude coordinates of the i th point of the 3D

point cloud [�]
li Longitude coordinates of the i th point of the 3D

point cloud [�]
ei Elevation coordinates of the i th point of the 3D

point cloud [�]
wk Local vine row orientation [�]
dk Local inter row spacing along yk axis [m]

ds Bin width of histograms Hy and Hz

g Vine row centre line

Acronyms

2D Two-dimensional

3D Three-dimensional

GIS Geographic information systems

UAV Unmanned aerial vehicle

SfM Structure from Motion

VSP Vertical Shoot Position

fLOCg Local metrical reference frame

{WGS84} World geodetic system 1984
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Reza, Na, Baek, & Lee, 2019; Sozzi, Kayad, Giora, Sartori, &

Marinello, 2019; Mazzia, Comba, Khaliq, Chiaberge, & Gay,

2020), whilst minimising the use of resources (Higgins,

Schellberg, & Bailey, 2019; Peng et al., 2019) and improving

environmental protection (Grella, Gallart, Marucco, Balsari, &

Gil, 2017; Oberti et al., 2016). In this context, autonomous

ground and aerial vehicles can lead to favourable improve-

ments to precision agriculture operations, allowing crop

scouting to be extended to large fields or uneven terrains and

to improve management by timely performing in field tasks

(Comba et al., 2019; Grimstad & From, 2017; Primicerio et al.,

2017; Utstumo et al., 2018), including with collaborative ar-

chitectures (Campos et al., 2019). Moreover, in order to be
competitive, robotic technology for agriculture should be

reliable and cost-effective (Comba, Ricauda Aimonino, & Gay,

2016; Reina, Milella, & Galati, 2017; Zaman et al., 2019).

However, partially/fully autonomous navigation and op-

erations within a complex, irregular and unstructured sce-

narios, require developing specific algorithms for effective

path planning and navigation, and to act on crops (Bechar &

Vigneault, 2016; Vidoni, Bietresato, Gasparetto, & Mazzetto,

2015). To do this, in addition to proper knowledge of their

instantaneous spatial position, robotic vehicles andmachines

require an accurate spatial description of the environment in

which they are operating, e.g. inter-row width and crop can-

opy position and shape to avoid damage (Kassler, 2001;

https://doi.org/10.1016/j.biosystemseng.2020.05.013
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Primicerio et al., 2015; Van Henten, Bac, Hemming, & Edan,

2013; Wang et al., 2019) and to profitably complete the tasks

(Bechar & Vigneault, 2017).

Recently, enhanced performances have been achieved by

three dimensional path planning which resulted in, for

example, collision free paths from 3D obstacles (Han, 2018)

and defined new strategies for field coverage, which over-

comes the problems of standard 2D coverage (Hameed, la

Cour-Harbo, & Osen, 2016). This requires the development of

new 3D models, such as point clouds or triangulated meshes

(Miranda-Fuentes, Llorens, Gamarra-Diezma, Gil-Ribes, & Gil,

2015; Weiss & Biber, 2011). A raw 3D point cloud is a set of

points, in an arbitrary 3D coordinate system, representing the

visible surfaces of objects.

A 3D point cloud can be generated using 3D sensors or by

photogrammetry using structure from motion (SfM) software,

processing appropriate sets of 2D images. In agricultural ap-

plications, several studies have derived 3D crop models using

3D sensors, such as the light detection and ranging systems

(LiDAR) (Mack, Lenz, Teutrine, & Steinhage, 2017) and by a

family of devices known as depth cameras (Condotta, Brown-

Brandl, Pitla, Stinn, & Silva-Miranda, 2020). Depth cameras

applied in agriculture can be based on three different technol-

ogies: stereoscopy (Luo et al., 2016), structured light (Saberioon

& Cisar, 2016), and time-of-flight (Bao, Tang, Srinivasan, &

Schnable, 2019; Rosell-Polo et al., 2017). To derive 3D point

clouds using SfM algorithms, several approaches have been

investigated; exploiting images acquired by several cameras

and involving RGB, multispectral, hyperspectral or thermal

sensors (Feng, Zhou, Vories, Sudduth, & Zhang, 2020). The sig-

nificant developments in UAVs and remote sensors has

increased the potential, and reduced the costs, of acquiring

aerial imagery and, thus thegenerationofhighdensity 3Dpoint

clouds of crops (Maes & Steppe, 2019; Wijesingha, Moeckel,

Hensgen, & Wachendorf, 2019). In agriculture, this new

modelling representation can facilitate comprehension of the

environment, but proper algorithms for detecting andmapping

crops and identifying soil and obstacles are needed (Mortensen

et al., 2018; Comba, Biglia, RicaudaAimonino,&Gay, 2018). This

task is not trivial since large 3D models of crops, including

remotely sensed imagery and measurements made using in-

field or on-vehicle sensors, require new processing algorithms

to process big data (Pav�on-Pulido, L�opez-Riquelme, Torres,

Morais, & Pastor, 2017; Van Evert et al., 2017; Wolfert, Ge,

Verdouw, & Bogaardt, 2017; Zeybek & S‚ anlıo�glu, 2019). Also,

these huge data sets contain a lot of information that requires

appropriate data extraction approaches, depending on the

required final goal (Serazetdinova et al., 2019).

This paper presents an innovative modelling framework to

semantically interpret 3D point clouds of vineyards and to

generate low complexity 3D mesh models of vine rows. The

proposed methodology reduces the amount of instances

required to properly describe the spatial layout and shape of

vine canopies; this allows the amount of data to be drastically

reduced without losing relevant crop shape information. This

is a crucial task that allows shorter computational times for

the processing of large datasets (e.g. raw 3D point clouds

representing crops), thereby enabling the exploitation of point

clouds information in real time in the field. When considering

cooperating machines and scenarios including robots, data
reduction is relevant for enabling rapid communication and

data exchange between in field actors. Moreover, the proposed

modelling framework is not hindered by complex scenarios,

such as hilly regions and/or non-linear vine rows, to enable it

to automatically process information from non-uniform

vineyards.

This paper is structured as follows: section 2 presents the

proposed modelling framework to generate vine rows using

low complexity 3D meshes. The results in terms of modelling

performance and quality, were evaluated onmore than 128 m

of vine rows, are presented in section 3, while section 4 reports

the conclusions and future developments. To better visualise

the 3D models, a set of animations are available online as

supplementary material (mp4 video files) in the electronic

version of the article.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.biosystemseng.2020.05.013
2. Materials and methods

The method used to reduce the complexity of the 3D point

clouds can be divided into three main processing steps: (1) the

extraction of a 3D point cloud subset representing a vineyard

section, (2) the classification of the subset points into canopy

and inter-row terrain categories (semantic interpretation)

and, finally, (3) the canopy model simplification by deter-

mining an optimal polygon and generating a low complexity

3D mesh of the canopy (Fig. 1).

As previously discussed, the proposed methodology starts

from a raw 3D point cloud, which is given by a set of NPC
points, representing the external surface of the objects,

defined as

PCfWGS84g ¼�½fi; li ; ei �T 2R3; i ¼ 1; …; NPC
�
; (1)

where fi, li and ei are, respectively, the latitude, longitude and

elevation coordinates of the ith point of the 3D point cloud,

measured in the World Geodetic System 1984 {WGS84}. The

point cloud was obtained by processing UAV-based aerial

images using a SfM algorithm (Agisoft Photoscan®, 2018, St.

Petersburg, Russia). In particular, a Parrot Sequoia® multi-

spectral camera (Parrot©, 2018, Paris, France) was used to ac-

quire more than 1000 aerial images with a resolution of

1280 � 960 pixels. The UAV flight took place in Serralunga

d’Alba (Piedmont, North-west Italy) on a vineyard of about

2.5 ha with latitude and longitude positions ranging between

[44.62334 44.62539] and [7.99855 8.00250]. The vineyard was

located on sloped land with an elevation ranging from 330 m

to 420 m above sea level and a predominantly southwest

orientation. Parcels were cultivated with Cv. Nebbiolo grape-

vine using a Vertical Shoot Position (VSP) trellis systems, with

wine spacing of 0.9 m and inter row space of about 2.5 m. The

height of the UAV flight was maintained close to 35 m with

respect to the terrain by using a set of waypoints, which were

defined on the basis of the vineyard Geographic Information

System (GIS) map. A forward and side overlap greater than

80% was guaranteed between adjacent images. Prior to the

images block alignment, a radiometric calibration was

https://doi.org/10.1016/j.biosystemseng.2020.05.013
https://doi.org/10.1016/j.biosystemseng.2020.05.013
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Fig. 1 e Scheme of the defined modelling framework to generate low complexity 3D mesh models of vine rows from raw 3D

point clouds.
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performed on the images by using the reference images of a

Micasense calibrated reflectance panel (Seattle, Washington,

USA) acquired before and after the UAV flight.

2.1. Vine row section from raw 3D point cloud

In order to allow the proposed modelling framework to pro-

cess the vineyards 3D point cloud with a broad set of char-

acteristics, such as rectilinear and/or curvilinear layouts, or

vineyards grown on flat and/or sloped terrain, the first pro-

cessing step consists in properly selecting a subset Sk repre-

senting a vine row section from the whole PCfWGS84g (Fig. 2).

This process was performed by defining a local metrical

reference frame fLOCkg by using the information on the vine

row position, as provided by local vine row orientation wk and

local inter row spacing dk, which are automatically provided

by algorithms presented in Comba et al. (2018). The vine row

position was defined as the parametrised curve g : t2 ½0;1�/
R3, which represents the canopy centre curve at soil level

(Fig. 3). The origin of fLOCkgwas defined inOfWGS84g
LOCk

2g, so that

the distance along the vine row centre line g between two

local reference systems fLOCk�1g and fLOCkg, and thus be-

tween two vineyard subsets Sk�1 and Sk, is equal to b, satis-

fying the line integral

Ztk
tk�1

g0ðtÞdt¼ b (2)
where gðtk�1Þ ¼ OLOCk�1
and gðtkÞ ¼ OLOCk

. The xk axis of fLOCkg
was defined as tangent to line g (local wine row direction wk),

the zk axis was defined as vertical and, finally, the yk axis

completes the Cartesian reference system (Fig. 3).

Vine row section SfLOCkg
k can thus be defined as the

following subset of point cloud PCfLOCkg(represented in the

local reference frame), as follows

SfLOCkg
k ¼

n
½x; y; z �T 2PCfLOCkg

��� jxj � a
2
; jyj � dk

2

o
(3)

where a and dk are the dimensions (m) of Sk along the xk and yk

axes, respectively. Please note that arepresents a model

parameter to be properly tuned. Indeed, acan generally assume

different values within a limited range, which should at the

same time guarantee a minimum value of cardðSfLOCkg
k Þ (lower

limit), and allow the vine-row section to be considered as recti-

linear (upper limit). A sample of subset S268 centred inOfWGS84g
LOC268

¼
½44:62447� 8:00105� 364:6 m�T is shown in Figs. 2 and 4, selected

with w268 ¼ 63:4�, d268 ¼ 2:6 m and a ¼ 0:8 m. Henceforth, only

the localmetricCartesian reference framewill beused, and thus

its explicit dependence from fLOCkgwill be omitted.

2.2. Semantic interpretation for vine canopy detection

Once subset Sk is selected, the next step consists in auto-

matically detecting the set of points Ck representing the can-

opy, distinguishing it from those representing the inter-row

https://doi.org/10.1016/j.biosystemseng.2020.05.013
https://doi.org/10.1016/j.biosystemseng.2020.05.013


Fig. 2 e (a) Portion of the raw 3D point cloud PCfWGS84g (blue)
and sample vine row section S268 (a ¼ 0:8 m) (red); (b)

canopy points Ck clustered (green) from the ones

representing the inter row terrain (brown); and (c) low
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terrain. Since the terrain elevation of two adjacent inter rows

may differ in vineyards located in hilly regions, the classifi-

cation is performed by individually considering each side of

the vine row Sþ
k and S�

k (Fig. 4). Being the origin of the refer-

ence system fLOCkg located in the centre line of the canopy

width, Sþ
k and S�

k can easily be defined as

Sþ
k ¼ �½x; y; z�T 2Sk

�� y� 0
�

(4)

and

S�
k ¼�½x; y; z�T 2Sk

�� y < 0
�

(5)

Focusing on side Sþ
k of wine row section Sk, the classifica-

tion was obtained by determining a plane§þ
k representing the

boundary of the two regions containing respectively the

points representing the terrain and those representing the

canopy, (Fig. 4f). Plane §þ
k was defined as the plane passing

through the two lines parallel to the xk axis

L0k ¼
�½x; y; z �T 2R3

�� y¼0; z¼0
�

(6)

and

L0
0
k ¼
�½x; y; z �T 2R3

��y¼wþ
k ; z¼hþ

k

�
(7)

where wk is related to the location along the yk axis of the

external surface of the canopy wall and hk is the inter-row

path terrain elevation along the zk axis (Fig. 4c). The value of

wk was determined by the robust peak detection (Mathworks,

2020a, Natick, USA) in the normalised frequencies distribution

histogram of points pi along the yk axis

Hy

�Sþ
k ; s

� ¼ card
n
pi ¼ ½x; y; z�T 2Sþ

k :
��y� sy

�� < ds
2

o
$card

�Sþ
k

��1

(8)

where sy2Yk ¼ f0; ds; 2ds; …; yk;maxg, Ykis the set of all the

histogram bins, ds is the bin width and yk;max is the highest

value of the considered y coordinates (Fig. 4e). Analogously,

the value of hk is the peak of the normalised frequencies dis-

tribution histogram

Hz

�Sþ
k ; t
�¼ card

n
pi ¼ ½x; y; z�T 2Sþ

k : jz� szj < ds
2

o
$card

�Sþ
k

��1

(9)

where sz2Zk ¼ f0; ds;2ds;…;zk;maxg, Zkis the set of all the his-

togram bins and zk;max is the highest value of the considered z

coordinates (Fig. 4d). In Fig. 4f, plane §þ
268, defined by line L

00
268

with w268 ¼ 0:22 and h268 ¼ 0:86, is displayed. Point cloud

subset Cþ
k representing the canopy wall of the considered side

of vine row section Sþ
k can be thus determined as

Cþ
k ¼

�
½x; y; z�T 2Sþ

k

����z� hk

wk
y

�
: (10)

Performing this procedure to both subsets Sþ
k and S�

k , the

set of all points representing canopy Ck for the kth section can

be obtained by the union of sets Cþ
k and C�

k , that is Ck ¼ C�
k∪Cþ

k ,
complexity triangulated 3D mesh model M (light green).

Animation of this Figure can be find in the additional

material in the electronic version of this manuscript.

https://doi.org/10.1016/j.biosystemseng.2020.05.013
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Fig. 3 e Local reference systems fLOCk�1g and fLOCkg for

vineyard subsets Sk�1 and Sk definition, with origin in

gðtk�1Þ ¼ OLOCk�1
and gðtkÞ ¼ OLOCk

, respectively.
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with NCk ¼ cardðCkÞ. The results of this clustering procedure

for canopy detection, obtained by processing sample subset

Sþ
268and the whole point cloud PCfWGS84g, are shown in Fig. 4f

and Fig. 2b, respectively.

2.3. Canopy model simplification

In this section, the processing step aimed at reducing the

complexity (and density) of point set Ck is presented. This is

performed by defining a set of few representative points and,

finally, by building a triangulated mesh representing the

canopy in the kth vineyard section. For the sake of readability,

subscript k referring to the specific section is omitted in this

section.

Hence, the problem considered in this section is the

following: given a point cloud C of cardinality NC, find a simplified

representation of it with low complexity. The formal meaning of

“simplified representation” will be made clear below. The

simplification consists of two main steps: first, set C is

“filtered-out” from the outliers and, second, an appropriately

defined simplified representation of the outlier-filtered set is

derived. The idea behind these two procedures is a dimen-

sionality reduction of the problem, achieved by considering

the two-dimensional projection of set C on plane x ¼ 0

C2D ¼�½x; y�T 2R2
��x¼y; y¼ z; ½x; y; z�T 2 C� (11)

A graphical representation of set C2D
268 relative to section k ¼

268 is shown in Fig. 5a.

2.3.1. Outlier removal
Examining Fig. 5a, it is clear that point set C contains points

which do not properly belong to the canopy. These outliers

may be either due to measurement noise and errors, or they

may represent artefacts introduced by the algorithm respon-

sible for the point cloud generation. To remove the outlier, a

novel technique was proposed, which is based on 2D repre-

sentation in (Eq. (11)) and on the concept of the convex hull of a

set of point, whose definition is formally recalled next (see e.g.

de Berg, van Kreveld, Overmars, & Cheong, 2000, pp. 2e8).
Definition 1. (Convex hull of a set of points) Given a point

set C, its convex hull is defined as the smallest convex

set containing C.
In our case, given NC two-dimensional points, their convex

hull is a convex polygonH with a number of vertices NH � NC.
It should be noted that, while the computation of the convex

hull of a set of points in n dimensions is in general computa-

tionally demanding, in the case of 2D points there exist effi-

cient methods with complexity OðNC log NHÞ e and hence

loglinear worst case complexity.

Given 2D set C2D, its convex hull was denoted as

H¼H	U2D

 ¼ convhull

�C2D
�

(12)

where U2D ¼ fui ¼ ½zi;hi�T; i¼ 1;…;NHg are the vertices of the

polygon. Recall that, by construction, the vertices of H½U2D�
represent a subset of the points in C2D.

Before presenting the algorithm for outlier detection, a

result which provides a useful close-form expression for

computing the area of a polygon starting from the set of its

vertices U2D is now reported. This formula is termed Gauss’s

area formula or shoelace formula, see Boland and Urrutia (2000,

pp. 159e162).
Proposition 1 (Area of a polygon given its vertices). Let

H½U2D� be a polygon of vertices

U2D ¼ fui ¼ ½zi;hi�T; i¼ 1;…;NHg The two-dimensional

Lebesgue measure (Area) of H½U2D� may be computed as
Area
�H	U2D


�¼1
2

" XNH�1

i¼1

��zihiþ1 þ zNHhi

��!

�
 XNH�1

i¼1

��ziþ1hi þ zihNH

��!#:
(13)

The idea behind the proposed method for outlier detection

is as follows: 1) the convex hull of point set C was constructed,

and thus its vertices U2D determined (these are also points in

C2D); 2) the vertices of H½U2D� were removed one-by-one from

C2D, and the area of the remaining set was computed; 3) the

vertex which provides the larger area reduction was selected

as outlier. This method is formally described in the next

algorithm.

Algorithm 1. (Outlier removal)

Input: 2D point set. C2D

Output: an outlier-filtered 2D point set. ~C2D

0. Let j ¼ 0 and set C½0� ¼ C2D
1. Compute H½U½j�� ¼ convhullðC½j�Þ
2. For [ ¼ 1 to card(U½j�)
a. Compute P½U½j�
y[� ¼ convhullðC½j�y[Þ; with C½j�y[ ¼ C½j�yfv[g

3. Let C½jþ1� ¼ C½j�
y[*

with [* ¼ argmin
[

AreaðH½U½j�
y[�Þ

4. If EXITCOND return ~C2D ¼ C½jþ1�, else let j ¼ jþ 1 and go

to 1.
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Fig. 4 e (a) 3D view and (b) 2D view of the sample subset SfLOCkg
268 (red dots) of PCfWGS84g (blue dots), located in OfWGS84g

LOC268
¼

½44:62447� 8:00105� 364:6 m� and defined with w268 ¼ 63:4�, d268 ¼ 2:6 m and a ¼ 0:8; (c) 2D view of vine row side Sþ
268 (red),

plane ℘þ
268 (light blue) by lines L

0
268 (orange) and L

00
268 (green); (d) normalised frequencies distribution histogram HzðSþ

268; sÞ
and peak location hk (green); (e) normalised frequencies distribution histogram HyðSþ

268; sÞ (red) and peak location w268

(green); and (f) 3D view of detected canopy cluster Cþ268 (green dots), plane ℘þ
268 (light blue), lines L

0
268 (orange) and L

00
268

(green). Animation of this Figure can be find in the additional material in the electronic version of this manuscript.
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Fig. 5 e (a) Convex hull polygon H½U½0�� (red) enclosing all C2D268 points (green dots) and convex hull polygon H½U½8��, after
removing 8 outliers (orange); and (b) their 3D view. Animation of this Figure can be find in the additional material in the

electronic version of this manuscript.
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A few comments are in order regarding Algorithm 1. First,

the condition EXITCOND can easily be set by imposing a

desired number of outliers to be removed. However, a better

condition is usually provided by considering the area reduc-

tion at step j (given by DA½j� ¼ AreaðC½j�
y[*

Þ� AreaðC½j�1�
y[*

Þ). When

this reduction is below a given threshold, it was interpreted

by the fact that the removed point is indeed not an outlier.

Second, the computational complexity of the algorithm is

polynomial in the cardinality of C2D, since at each step it re-

quires the computation of card(U½j�) convex hulls. The worst

possible case is when all points of C2D belong to the convex

hull (e.g. point on a circumference): in this case, the

complexity of removing one outlier is of the order

OðN2
C log NCÞ. Some steps of the procedure of outlier removal

are shown in Fig. 5, where a set of convex hullH½U� are shown

for the processing of C2D268.
2.3.2. Polygonal approximation

To approximate the outlier-filtered 2D point set ~C2D, the

concept of c-gon was introduced. In words, a c-gon is a polygon

with exactly c vertices.
Definition 2. (c-gon). A c-gon Pc ¼ P½V2D� is defined as a

two dimensional polytope (polygon) with c vertices
V2D ¼�vi ¼ ½zi;hi�T; i¼1;…; c
�

(14)

The vertices are assumed to be ordered in a counter-clockwise

way. An example of c-gon Pc ¼ P½V2D� is given in Fig. 6a, with

c ¼ 7.

The following optimisation problem was then formulated:
Problem 1 (Minimum area c-gon containing a point set).

Given a point set C2D ¼ fpi ¼ ½xi; yi �T 2R2; i ¼ 1;…;NCg,
find the c-gon Pc ¼ P½V2D� of minimum area such that

C2D4Pc. This is formulated as follows:
P	V2D*

 ¼ argmin

V2D
Area

�P	V2D

�

s:t: pi2P	V2D


; i ¼ 1;…;NC

(15)
Theorem 1 (Minimum enclosing c-gon as bilinear program).

The solution to the minimum area c-gon enclosing a

given set of points C2D can be found as the solution of

the following bilinear program
ðz*;h*Þ ¼ argmin
ðz;hÞ

zTSh

s:t:
	
zjzjþ1



D

�
hj

hjþ1

�
þ dTyi

�
zj
zjþ1

�
� dTxi

�
hj

hjþ1

�
� 0;

j ¼ 1;…; c� 1 i ¼ 1;…;NC

½zcz1�D
�
hc

h1

�
þ dTyi

�
zc
z1

�
� dTxi

�
hc

h1

�
� 0;

i ¼ 1;…;NC
(16)

where z ¼ ðx1/xcÞT, h ¼ ðh1/hcÞT, and S ¼ ~S� ~S
T
, with

~S¼

2
66664

0
BBBB@

0 1 0 0
0 0 1 / 0
0 0 0 0

« 1 «
1 0 0 / 0

1
CCCCA

3
77775; D ¼

�
0 �1
1 0

�
; d ¼

�
1
�1

�
(17)

Before sharing proof of the above result, a few
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Fig. 6 e (a) c� gon with c ¼ 7 vertices numbered in a counter-clockwise direction; (b) the point pi contained in the c-gon

(green area): a point is contained in the c-gon if it lies on the left of the vector ðvjþ1 � vjÞ, for all j (light blue area); (c) c-gon P7

enclosing the given set of points C2D268 (cyan line) with vertices V2D
268 (of which v1 ¼ ½0 0� (green dot), v2 ¼ ½wþ

268h
þ
268� ¼ ½0:220:87�

(orange dot) and v7 ¼ ½w�
268h

�
268� ¼ ½�0:280:26� (grey dot) are fixed vertices); (d) 3D view of minimum area c-gon enclosing the

given set of points C268 with vertices in VfLOC268g
268 . Animation of this Figure can be find in the additional material in the

electronic version of this manuscript.

b i o s y s t em s e n g i n e e r i n g 1 9 7 ( 2 0 2 0 ) 2 1 6e2 3 0224
considerations should be made: first, that Eq. (16) was

indeed noted to be a bilinear problem, as cost zTSh is

bilinear (note that matrix S is skew-symmetric by con-

struction), and also that the constraints are bilinear

equations of varsiables ðz; hÞ.
Proof of Theorem 1.

By applying Eq. (13), the cost function in Eq. (16) is imme-

diately rewritten as

AreaðP½Vc�Þ

¼ 1
2

" Xc�1

i¼1

zihiþ1 þ znhi

!
�
 Xc�1

i¼1

ziþ1hi þ zihn

!#

¼ 1
2

	�
zT~Sh

�� �hT~Sz
�


¼ 1
2

	�
zT~Sh

�� �zT~ST
h
�
 ¼ 1

2
zTSh (18)
The cost in Eq. (16) follows immediately by noticing that

constant ½ is irrelevant for the optimization problem. The

constraints in Eq. (16) are harder to derive.

To impose that the point pi is contained in the c-gon P½V2D�,
it must lie on the left of the vector (vjþ1 � vjÞ, for all j (see

Fig. 6b). This is equivalent to imposing that the sign of the

cross (external) product of vector (vjþ1 �vjÞ with vector (pi �vjÞ
is negative, i.e.

�
vjþ1 �vj

�� �pi �vj

�¼ �xi � zj
��
hjþ1 �hj

�� �zjþ1 � zj
��
yi �hj

� � 0

(19)

The proof is completed by realizing that this equation

immediately rewrites as the first constraint in Eq. (16) by

introducing the quantities D and d. This equation should

hold for all points pi i ¼ 1; …; NC, and for all couples of
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Fig. 7 e Low complexity triangulated mesh generation: (a) c-gons P½VfLOC268g
268 � (cyan) and P½VfLOC267g

267 � vertices (red) and (b) the

generated low complexity mesh M268. Animation of this Figure can be find in the additional material in the electronic

version of this manuscript.
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vertices vj; vjþ1, j ¼ 1;…; c� 1. The last equation takes into

account the line passing through the two vertices vc;v1:

Since Eq. (16) was found to be bilinear and, hence, non-

convex, it generally presents potential local minima. How-

ever, rather efficient algorithms exist for this specific class

of problems. To obtain a more accurate canopy model and

to speed up this bilinear problem solution, the three lower

points of the c-gon were considered fixed (Fig. 6c), always in

position v1 ¼ ½00�, v2 ¼ ½wþhþ� and vc ¼ ½w�h��, allowing to

remove the last constraint in Eq. (15), which would be

automatically satisfied.

Finally, the determined vertices V2D of polygon P½V2D� are
represented in the original 3D reference system fLOCkg as

VfLOCkg
k ¼�vi ¼ ½0; zi;hi�T

�� vi ¼ ½zi;hi�T 2V2D
�

(20)

and then in the absolute fWGS84g in order to make them

suitable for the final processing step to determine a low

complexity triangulatedmesh generation. In Fig. 6c, a c-gon P7

enclosing the given set of points C2D
268 with vertices V2D

268 is

represented, with fixed vertices v1 ¼ ½0 0�,
v2 ¼ ½wþ

268h
þ
268� ¼ ½0:220:87� and v7 ¼ ½w�

268h
�
268� ¼ ½ � 0:280:26�,

whereas its representation in the 3D reference system fLOCkg
can be observed in Fig. 6d.
Table 1 e Indices for quality score Q computation of mesh mo

Name Description

good-modelling index Gk volume of Ck properly modell

under-modelling index Uk volume of Ck not modelled in

over-modelling

index Ok

volume of Mk not present in

complexity reduction index Rk storage space reduction of M
2.3.3. Triangulated mesh building
The low complexity model of the canopy is defined as a

triangulated mesh

Fk�1;kþ1 ¼
��

vk�1;i; vk�1;iþ1; vk;i

�
;
�
vk�1;iþ1;vk;iþ1;vk;i

�
c i¼ 1;…; c

�
(21)

where Vk�1 and Vk are the sets of mesh vertices, described in

the previous section, and Fk�1;k is the set of triangular faces of

the mesh between them (Fig. 7b). A triangular face is defined

as triplets of points v, so that Fk�1;k can be expressed as

Fk�1;kþ1 ¼
��

vk�1;i; vk�1;iþ1; vk;i

�
;
�
vk�1;iþ1;vk;iþ1;vk;i

�
c i¼ 1;…; c

�
(22)

A graphical representation of a low complexity triangu-

lated mesh model M obtained by processing two consecutive

polygons P½V268� and P½V269�, having model parameters a ¼
0:8m, b ¼ 0:5m and c ¼ 7, can be observed in Fig. 7b. A sample

portion of raw 3D point cloud PCfWGS84g (blue dots) and low

complexity triangulated 3D mesh model M, generated by

linking polygon vertices P½Vk� between adjacent sections Sk

can be observed in Figs 2a and c, respectively. The procedure

described in the previous sections, was repeated along the

vine row model for all vine row section Sk with k2K.
del M.

Definition

ed in Mk
Gk ¼ V�1

ref,

Z tkþ1

tk

AgðgðtÞÞg0ðtÞdt

Mk
Uk ¼ V�1

ref,

Z tkþ1

tk

AuðgðtÞÞg0ðtÞdt

Ck
Ok ¼ V�1

ref,

Z tkþ1

tk

AoðgðtÞÞg0ðtÞdt

k compared to Ck Rk ¼
10�1,



1 � cardðVkÞ � 3,cardðFk�1;kÞ

cardðCkÞ � cardðCk∩Ck�1Þ
�
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Fig. 8 e Model quality indices evaluation: (aec) model Mk section; (bed) points Ck envelope on line g perpendicular plane;

and (e) areas Ag, Au and Ao, determined by comparing the two polygon in (ced). Animation of this Figure can be find in the

additional material in the electronic version of this manuscript.
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3. Results and discussion

The low complexity triangulated 3D mesh model M½a; b; c� of
vineyards was strictly related to 3 main parameters: (1) the

width a of sections S, (2) the distance b between two adjacent

sections Sk and Skþ1 and (3) the number of points c used to
properly describe every vine row section. The effect of

different choices of these parameters on the final meshmodel

M½a; b; c� layout were multiple and linked: the a parameter af-

fects the average amount of points that were considered in a

section S which, together with the c parameter, conditions the

c-gon P½V2D� shape; this final aspect, joined with the effect of
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Fig. 9 e Model quality indices results histogram obtained by the model M½0:4; 0:25; 7� (with a ¼ 0.4 m, b ¼ 0.25 m and c ¼ 7):

(a) good modelling Gk; (b) under modelling Uk; (c) over modelling Ok; (d) complexity reduction Rk indices; and (e) quality score Qk.
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parameter c, affected the accuracy of the mesh in modelling

the canopy of the vineyard. Depending on the values of these

three parameters, the quality of the computed 3Dmeshmodel

can thus vary considerably. The optimal configuration of the

modelling framework was determined by an optimal search

process via a genetic algorithm, based on the quality score Q
of mesh model M½a; b; c�. Parameters ½a b c� were varied within

ranges [0.1, 1] m, [0.1, 2] m and [5, 11], respectively. The quality

scoring functionQwas evaluated by comparing the generated

3DmeshmodelM½a; b; c� to the raw, highly detailed, point cloud

section C, and defined as
Qk ¼Gk �ðUk þOkÞ þ Rk (23)

where Gk is the good-modelling index, Uk and Ok are the two

under-modelling and over-modelling error indices, respectively,

and Rk is the complexity reduction index. The description and

definition of these four indices are presented in Table 1, where

Ag,Au andAo are the areas derived from the intersection ofMk

with a plane perpendicular to line g (Fig. 8) and where Vref is

the Ck envelope volume.

In order to detect the optimal configuration of the defined

modelling framework and to validate it, the procedure,
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discussed in section 2, was implemented in the Matlab®

environment (Mathworks, 2020b, Natick, USA) and a point

cloud of more than 128 m of vine rows was processed.

Depending on the model parameter values, the overall num-

ber of processed vine row sections ranged from 1280 for

models M with b ¼ 0:25 m to 64 for those with b ¼ 2 m.

The results of the optimisation process, performed by the

ant colony genetic algorithm (Mathworks, 2020c, Natick, USA),

showed that model M½0:4; 0:25; 7� (with a ¼ 0.4 m, b ¼ 0.25 m

and c ¼ 7) obtained the highest average quality score, which

was Q ¼ 0:71, and a standard deviation of sQ ¼ 0:19 (Fig. 9e).

More in detail, considering the best model M½0:4; 0:25; 7�, the
histograms of the indicesGk, Uk, Ok and Rk values, assessed on

all the 496 considered vine row sections Sk, are reported in

Fig. 9. The goodmodelling indexGk had an overallmean value of

Gm ¼ 0:92 and a standard deviation of sG ¼ 0:07. The indices

describing errors in modelling the canopy produced low

values, with mean indices of under Uk and over Ok modelling

equal to Um ¼ 0:07 and Om ¼ 0:23, having a standard deviation

of sU ¼ 0:07 and sO ¼ 0:14, respectively. Finally, the

complexity reduction index Rk had a mean of Rm ¼ 0:09 and a

very small standard deviation of sR ¼ 0:05,10�2.

As can be noted from the obtained results, the proposed

modelling framework achieved a very high good-modelling

index and very low under-modelling index, which confirmed

the reliability of the modelled canopy volumes. Indeed, the

slightly higher values obtained for the over-detection index

are related to the specifically adopted approach, which is

aimed at providing a robust and precautionary low complexity

canopy envelope. This solution guarantees, for example, the

risk reduction of collisions with vines when simplified 3D

meshes are used for UGV path planning.

The modelled vineyard dataset turned out to be more than

98% “lighter” compared to the original point clouds dataset,

while assuring minimal loss of canopy shape information. A

low complexity triangulated 3DmeshmodelM of a portion of

raw 3D point cloud PCfWGS84g consisting of 4 vine rows, pro-

cessed for the best model M½0:4; 0:25; 7� parameters (with a ¼
0.4 m, b ¼ 0.25 m and c ¼ 7) can be observed in Fig. 2c.
4. Conclusions

An innovative modelling framework has been presented here

to generate low complexity 3Dmeshmodels of vine rows from

raw 3D point clouds of vineyards. The proposed methodology

reduces the amount of georeferenced instances required to

properly describe the spatial layout and shape of vine canopies;

this allows theamountofdata tobedrastically reducedwithout

losing relevant crop shape information. In addition, the devel-

oped algorithm semantically interprets the 3D model by auto-

matically classifying the points of the could in two groups: one

representing the vine canopy and the other terrain.

The optimal configuration of themodelling frameworkwas

determined by an optimal search process via a genetic algo-

rithm by varying a set of three relevantmodelling parameters,

and its effectiveness was investigated by processing more

than 128 m of vine rows. For this purpose, a quality score of

the generated low complexity triangulated 3D mesh model
was evaluated by comparing it with a highly detailed vineyard

point cloud. The obtained dataset volume reduction is 98%

percent, providing a vineyard low complexity model of about

7 Mb ha�1 by processing a vineyard raw point cloud of more

than 500 Mb ha�1.

The proposed modelling framework, designed to process

3D point clouds of vineyards cultivated by VSP-training sys-

tems, is not hindered by complex scenarios, such as hilly re-

gions and/or non-linear vine rows, as it is able to

automatically process non uniform vineyards, in terms of

inter- and intra-row distance. The reduction of the amount of

data is a crucial factor in facilitating shorter computational

times of huge datasets, such as crop raw 3D point clouds, thus

enabling the exploitation of point clouds information in real

time operations in the field. When considering scenarios

involving cooperating machines and robots, data reduction is

also relevant for enabling fast communication and data ex-

change between in field actors.
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