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Multi-Scale Remote Sensing to Support Insurance Policies in Agriculture: 1 

from Mid-Term to Instantaneous Deductions 2 

 3 

Abstract 4 

Climate change is today one of the biggest issues for farmers. The increasing number of natural 5 

disasters and change of seasonal trends is making insurance companies more interested in new 6 

technologies that can somehow support them in quantifying and mapping risks.  Remotely sensed data, 7 

with special focus on free ones, can certainly provide the most of information they need, making 8 

possible to better calibrate insurance fees in space and time. In this work, a prototype of service based 9 

on free remotely sensed data is proposed with the aim of supporting insurance companies’ strategies. 10 

The service is thought to calibrate annual insurance rates, longing for their reduction at such level that 11 

new customers could be attracted. The study moves from the entire Piemonte region (NW Italy), to 12 

specifically focus onto the Cuneo province (Southern Piemonte), that is mainly devoted to agriculture. 13 

MODIS MOD13Q1-v6 and Sentinel-2 L2A image time series were jointly used. NDVI maps from 14 

MODIS data were useful to describe the midterm phenological trends of main crops at regional level 15 

in the period 2000-2018; differently, Sentinel-2 data permitted to map local crop differences at field 16 

level in 2016 and 2017 years. With reference to MODIS data, the average phenological behaviour of 17 

main crop classes in the area, obtained from the CORINE Land Cover map Level 3, was considered 18 

using a time series decomposition approach. Trend analyses showed that the most of crop classes 19 

alternated three phases (about 7 years) suggesting that, presently, this is probably the time horizon to 20 

be considered to tune mid-term algorithms for risk estimates in the agricultural context. Crop classes 21 

trends were consequently split into 3 phases and each of them modelled by a 1st order polynomial 22 

function used to update correspondent insurance risk rate. Sentinel-2 data were used to map 23 

phenological anomalies at field level for the 2016 and 2017 growing seasons; shifts from class average 24 

behaviour were considered to locally and temporarily tune insurance premium around its average trend 25 

as described at the previous step. Synthesizing, one can say that this approach, integrating MODIS and 26 

Sentnel-2 data, makes possible to locally and temporarily calibrate premiums of indexed insurance 27 

policies by describing the average trends of crop performance (NDVI) at regional level by MODIS 28 

data and refining it at field and specific crop level by Sentinel-2 data. 29 

Introduction 30 

Climate change is today one of the biggest issues for farmers. Every year natural 31 

disasters hit the agricultural business with cost of billions of dollars. Drought is the most 32 

significant threat, followed by floods, forest fires, storms, pests, pathogens, and others. The 33 



2 
 

United Nations Food and Agriculture Organization (FAO) (Conforti, Ahmed, and Markova 34 

2018) claims that between 2005 and 2015, natural disasters brought $ 96 billion of costs in 35 

damaged or lost crops to the agricultural sectors of developing countries. Drought, which 36 

affected farmers in all over the world, was one of the main culprits. 29 billion dollars are the 37 

economic losses documented by FAO caused by drought (Baas, Trujillo, and Lombardi 2015; 38 

FAO 2007). 39 

Drought is also one of the most complex climatic phenomena among those affecting 40 

the society and the environment (Wilhite 1993; Wilhite 2012). In Europe it is a recurring 41 

event that does not hits the Mediterranean region only, but also occur in areas with high 42 

rainfall and in any season (Estrela, Peñarrocha, and Millán 2000). The drought has been the 43 

most serious climate risk of the twentieth century, responsible for the loss of billions of US 44 

dollars (White 1994). It represents an extreme climate event, which varies in severity and 45 

duration on all continents, causing critical damage to the natural environment and human lives 46 

(Min et al. 2003; Modarres 2007). The future ecosystem changes and impacts on plants have 47 

been extensively analyzed (Easterling et al. 2000; Meir and Grace 2006). However, 48 

documented evidence of the effects of climate change on crop production has only recently 49 

been provided (Lobell and Asner 2003; Chmielewski, Müller, and Bruns 2004, Tao et al. 50 

2006; Zhang et al. 2019; Grillakis 2019). 51 

During the last century large areas of Europe have been affected by this phenomenon. 52 

The severe and prolonged periods of drought have highlighted the vulnerability of our 53 

continent to this natural risk, evidencing to the public, governments and operating agencies 54 

various socio-economic problems that accompany water scarcity and the need for measures to 55 

mitigate their effects. 56 

In relation to vegetation activity and crop productivity, Potop (2011) compared several 57 

indices to evaluate its impact on maize crops in Moldova. Mavromatis (2007) and Quiring 58 
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and Papakryiakou (2003) similarly tried to quantify respectively its effects on wheat 59 

production in Greece and Canadian prairies. Results from different studies differ each other, 60 

depending on the drought index used to detect  impacts. Consequently, a high uncertainty still 61 

persists among scientists, managers and end users while selecting the proper index for 62 

analysis. The amount of proposed indices and indicators for agricultural drought, or other 63 

natural disasters, detection makes the decision-making process complicated. This complexity 64 

may cause delayed, uncompleted or unwanted answers. These situations determine negative 65 

economic consequences and generate loss of confidence in authorities that are responsible for 66 

mitigation actions. 67 

Real time drought monitoring based on few field data is a challenge for ecosystem 68 

management and conservation. The most of methods require extensive data collection and in-69 

situ calibration and accuracy may be difficult to be quantified. The imbalance between 70 

potential evaporation and the amount of precipitation during the growing season usually 71 

causes drought conditions that can pose a threat to both the environment and human activities. 72 

Thus, it is necessary to collect frequent information about drought severity and its spatial and 73 

temporal distribution for mitigating its effects. Many studies have already explained the 74 

important role of remote sensing in agriculture (Colwell et al. 1970; Bastiaanssen, Molden 75 

and Makin 2000; Steven and Clark 2013; Atzberger 2013; Sahoo, Ray and Manjunath 2015; 76 

Shanmugapriya et al. 2019; Weiss, Jacob and Duveiller 2020), others begun the 77 

experimentation of monitoring catastrophic events using satellite data (Silleos, Perakis and 78 

Petsanis 2002; Sandholt et al. 2003; Sanyal and Lu 2004; Rhee, Im and Carbone 2010; Rojas, 79 

Vrieling and Rembold 2011) and, more specifically, spectral indexes such as the EVI 80 

(Enhanced Vegetation Index), SAVI (Soil-Adjusted Vegetation Index), NDVI (Normalized 81 

Difference Vegetation Index) and others more (Zhang et al. 2005; Beeri and Peled 2006; 82 

Chen et al. 2006; Son et al. 2014; Sánchez et al. 2018; Lu, Carbone, and Gao 2019; Nanzad et 83 
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al. 2019). For this work, NDVI was selected as reference spectral index to base crop 84 

performance monitoring on. In spite of some well-known limits (e.g. saturation in highly 85 

vegetated areas), NDVI is certainly the most famous and used vegetation index for biomass 86 

and crop productivity estimation; moreover, many EO (Earth Observation) data suppliers 87 

make available ready-to-use maps of NDVI as free and immediately downloadable products 88 

(e.g. MODIS derived MOD13Q1 product from USGS). These can be easily structured within 89 

long time series stacks that ensure homogeneity of pre-processing, i.e. a higher comparability 90 

of values and reliability of deductions. Standardization, convenience and ease of use of data 91 

are extremely important factors for those users, like insurance companies, that are not familiar 92 

with this type of technology.   93 

Free satellite data from National Aeronautics and Space Administration (NASA) 94 

TERRA and European Space Agency (ESA) Sentinel 2 (S2) missions were used to describe 95 

agriculture crops growing steps and to protect and facilitate all the parts involved. Optical 96 

data proved to be effective in describing vegetation development. In particular, free optical 97 

data like Moderate Resolution Imaging Spectroradiometer (MODIS) and S2 ones is extremely 98 

important and strategic in a low-income economical sector like the agricultural one since 99 

further additive costs deriving from monitoring services could compromise competitiveness 100 

of the entire sector (Borgogno and Gajetti 2017). Information obtained from free monitoring 101 

services may represent a helpful tool for farmers, making them able to improve ordinary 102 

management strategies and move to a higher environmental sustainability of agriculture. As 103 

Islam et al., (2017) affirms that the implementation of knowledge about the development and 104 

phenology of crops into the classification process introduces further possibilities for 105 

improving crop monitoring. 106 

All this said, is worth to remind that Italy was one of the first countries to tackle the 107 

issue of risk management in agriculture, introducing, with the National Solidarity Fund 108 
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(FSN), the principle of solidarity for those companies suffering from damage caused by 109 

natural disasters. FSN involves compensatory interventions when a damage occurs by adverse 110 

events. Ground controls and delimitation of affected areas are mandatory. Envisaged 111 

measures mainly consist of contribution to agricultural companies that suffered from a yield 112 

loss higher than the 35% out of the total (Borriello 2003). Active defense has the purpose of 113 

safeguarding crop production, preventing or neutralizing the negative effects of calamitous 114 

events through technological devices, such as anti-freeze fans and exploding rockets, to 115 

dissolve hailstorms. Differently, facilitated insurance policies focus on risk prevention. The 116 

State intervenes with a contribution partially covering insurance fees paid by the farmer. The 117 

Minister for Agricultural Policies with the 28405/17 decree extend insurance coverage even 118 

further with subsidized policies (indexed insurance policies) against damage from adverse 119 

weather conditions to crops, but also for damage to structures or livestock. The decree 120 

indicates in Annex 1 the crops, the company structures and the types of insurable cattle. Crops 121 

such as corn, wheat and lawn are included in this list. The new policies offer insurance 122 

packages that are not available on the market. They are intended to encourage Italian farmers 123 

to insure themselves to overcome climate risks. 124 

In France, the policy against new climate risks is the one that has grown most in recent 125 

years, reaching a coverage of 30% of the surface area (Chenet 2019). Globally, the 126 

agricultural insurance market is concentrated in high-income agricultural countries, with the 127 

US alone accounting for 38% of premiums. In Italy, against the atmospheric phenomena that 128 

threaten crops, few choose to protect the territory. Climate change is slowly persuading Italian 129 

farmers to increase the use of policies against atmospheric risks, albeit with large differences 130 

in areas and crops. The first case came two years ago, in the horrible 2017, devastated by frost 131 

and drought, which has increased the compensation paid by farms. The presence of extreme 132 

weather events has become the norm and, according to Coldiretti (the largest association 133 
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representing and assisting Italian agriculture), has weighed Italian agriculture more than 14 134 

billion in a decade between production losses and damage to structures and infrastructure in 135 

the countryside (Hay 2019; Severini, Biagini, and Finger 2019). In Italy, only 78,000 136 

companies are insured, 9% of the total, representing 8.3% of the national agricultural area and 137 

18.7% of production.  There is a deep gap between the areas of Central-Northern Italy and 138 

Southern Italy, which still represents, according to the latest Ismea report, only 12% of farms 139 

insured at national level (De Ruvo et al. 2019). The farmer is still interested in the small 140 

damage, when more and more often an extended catastrophe risks destroy entire farms. 141 

This paper focuses on the so called indexed (experimental) insurance policies, trying 142 

to calibrate an insurance risk model relaying on time series of spectral indexes map (e.g. 143 

NDVI) from remotely sensed data.  144 

Material and methods 145 

 Study area 146 

The study area is located in Piemonte, North-West Italy (fig. 1). It sizes about 25388 147 

km2 and well represents a typical agricultural context of northern Italy. Climate is temperate 148 

with a continental character, where North-Western Alps cause a gradual reduction of 149 

temperature while altitude increases. Yearly average rainfall gauge is 930 mm and yearly 150 

average temperature is 11.9 °C. Thermal inversion phenomena caused by cold air can often 151 

affect the area. 152 

[FIGURE 1] 153 

The focus area is located within the Cuneo province including the following 154 

municipalities: Cuneo, Fossano, Castelletto Stura, Margarita, Trinità, Sant’Albano Stura, 155 

Centallo, Montanera, Rocca de Baldi and Morozzo (fig. 1). The soil is locally characterized 156 

by a high permeability and a good availability of oxygen due to the texture, rich in sands 157 

(averagely > 50%) and to the skeleton, poor in clay. Soil depth for root development is low 158 
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due to the high presence of gravel. This work was focused on the following crop classes: 159 

wheat, corn, meadow, ryegrass, that represent about 48% of the total area (table 1). 160 

[TABLE 1] 161 

Available data 162 
The following data were used to test the proposed procedure: a) satellite multispectral 163 

images from NASA TERRA MODIS and Copernicus S2 Multi Spectral Instrument (MSI) 164 

sensors; b) 2012 CORINE Land Cover Map; c) a vector cadaster map; d) a vector 165 

administrative boundaries map; e) farmers’ applications for EU incentives within CAP. 166 

Satellite data 167 

In this work satellite data were intended to respond to two main tasks in the context of 168 

insurance for crops. The first one was to look at mid-term trends of crop performances at 169 

regional level, requiring elongated image time series able to describe the average behavior of 170 

macro-classes of crop types. For this purpose, low resolution satellite data from MODIS 171 

sensor, operating on board of the TERRA satellite mission since 2000, were considered.  172 

To opportunely tune crop performances around their average trend at year level and 173 

mapping intra-classes differences at field level, a higher geometric resolution was retained 174 

more appropriate to fit the local average size of fields. For this task, data from the Copernicus 175 

Sentinel 2 mission were adopted. 176 

With reference to MODIS data, the MOD13Q1-v6 product from Land Processes 177 

Distributed Active Archive Center (LPDAAC) collection of NASA (Solano et al., 2010) was 178 

used to generate a 432 images time series (hereinafter called TS) of NDVI (Rouse et al. 1974) 179 

covering the period 2000 - 2018. Data were obtained from the AppEEARS system (Didan 180 

2015), georeferenced in the WGS84 geographic reference frame and supplied in Tagged 181 

Image File (TIF) format. The MOD13Q1-v6 data are 16 days timely-spaced and have a 182 

spatial resolution of 250 m. The MOD13Q1-v6 product is composed of all the best available 183 
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local observations (at pixel level) out of those available in the considered 16 days period. 184 

Selection criteria take into account cloud cover (lower), viewing angles (lower) and NDVI 185 

local value (maximum in the reference period). A pixel reliability layer (PR) is also available 186 

from the MOD13Q1-v6 mapping the following codes: -1 = No Data, 0 = Good Data, 1 = 187 

Marginal data, 2 = Snow/Ice, 3 = Cloudy. 188 

With reference to the Sentinel 2 mission, 31 Sentinel 2 Level-2A data were obtained from the 189 

Theia system (theia.cnes.fr). They were obtained as 100 x 100 km2 tiles orthoprojected into 190 

the WGS84 UTM 32N reference frame (Sentinel-2 User Handbook; 2015). Level-2A 191 

products were supplied already calibrated in "at-the-Bottom of the Atmosphere" reflectance 192 

(BOA), guaranteeing immediate usability for land applications. Table 2 shows the main 193 

technical specifications of both MODIS and S2 MSI (Multi Spectral Instrument) sensors. 194 

[TABLE 2] 195 

Auxiliary data 196 

The 2012 CORINE Land Cover dataset level 3 (hereinafter CLC2012) was used to 197 

map cultivated areas over Piemonte. CLC2012 was obtained, for free, from the Land 198 

Monitoring Service Copernicus. Technical features of CLC2012 are reported in table 3. 199 

According to the CLC2012 nomenclature, the level 3 is the most detailed level in the 200 

hierarchical classification system adopted by CORINE Land Cover project. This level maps 201 

homogeneous landscape patterns having more than 75% of the characteristics of a given class 202 

according to the nomenclature rules (Büttner 2014). With reference to agricultural classes, 203 

table 4 reports the list of the agricultural classes as coded in CLC2012 Level 3 that were 204 

considered for this work. 205 

[TABLE 3] 206 

[TABLE 4] 207 
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Farmers’ declaration for European incentives of the years 2016 - 2017, was used to 208 

find and locate the cultivated crops in the study area. Farmers apply every year to receive EU 209 

contributions supporting their activity. A database containing farmers’ applications is 210 

currently made available by the Piemonte Region institutional website (Sistema Piemonte) 211 

and can be downloaded at municipal level (MO Excel format). 212 

A vector format cadastral map (2018 updated, nominal scale 1:2000), mapping parcels 213 

in the study area, was used to geolocate farmers’ applications. This made possible to generate 214 

an official administratively-based map of existing crops in the area. Cadastral map was 215 

obtained by the Piemonte Region Geoportal  already georeferenced in the WGS84 / UTM 216 

zone 32N reference frame.  217 

A vector map of administrative boundaries (2019 updated, scale 1:100000) was also 218 

obtained  from the Piemonte Region Geoportal.  219 

NDVI Time Series Generation 220 
NDVI is well known to be a spectral index useful for retrieving vegetation canopy 221 

biophysical properties (Leprieur, Verstraetel and Pinty 1994; Jonsson and Eklundh 2002). 222 

According to some recent studies it could also be used for supporting remotely sensed-based 223 

crop insurance models (Jensen et al. 2019; Sarvia, De Petris, and Borgogno 2019) being a 224 

good predictor of crop yield (Haghverdi, Washington-Allen, and Leib 2018; Zambrano et al. 225 

2018). Although many other indices from remotely sensed data are suggested in literature for 226 

vegetation monitoring, as we have specified in the introduction, we decided to focus on NDVI 227 

according the following criteria: a) the study area (Piemonte Region) highly suffers from haze 228 

(both natural and anthropic) for many months along the growing season. Consequently, 229 

spectral indices able to minimize these effects are mostly desirable. It can be mathematically 230 

proved that indices defined in term of ratios (or ratios of differences), with no additive terms 231 

(often empirical), are the most promising ones being able to minimize this effect, whose 232 
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consequence, in data interpretation, is especially high when working with index time series. 233 

Consequently, attention was addressed to these types of vegetation indices (slope based like 234 

NDVI, NDRE, NDWI, etc.), driving to exclude other ones like EVI, PVI, SAVI, MSAVI, 235 

EVI. With these premises and with reference to the TERRA MODIS MOD13Q1 product used 236 

in this work (only containing NDVI and EVI grids) to describe vegetation trends in the mid-237 

term period, NDVI was the best candidate.  Moreover, NDVI permits an easier integration 238 

with data from UAVs (Unmanned Aerial Vehicles) and UGV (Unmanned Ground Vehicles) 239 

that, ordinarily, are equipped with low cost multispectral sensors that, minimally, can record 240 

red and NIR bands needed to derive the correspondent NDVI map. This issue, presently, 241 

cannot be neglected given the ongoing improvement and spreading of remote sensing based 242 

precision farming techniques (Borgogno and Gajetti 2017).  243 

With reference to the MOD13Q1-v6 product, a regularly timely spaced MODIS NDVI 244 

TS (about 23 images/year, one image every 16 days) can be easily obtained. Consequently, a 245 

NDVI TS of 432 maps (hereinafter called MOD_TS) was generated exploring the period 246 

2000–2018. 247 

As far as S2 data are concerned two annual NDVI TS were generated for the 2016 and 248 

2017 agronomic seasons for a total of 31 “good” images (a filter was applied to exclude 249 

images showing in the study area a percentage of cloud cover > 20%). S2 band 8 (wide band 250 

NIR) and band 4 (Red band) were used for NDVI computation. S2 native NDVI TS was pre-251 

processed removing “bad” observations from the local NDVI temporal profile of each pixel 252 

and densifying the TS 5 days regularly spaced one. Both the operations were achieved 253 

contemporarily by a self-developed IDL (Interactive Data Language) routine. Filtering was 254 

operated by exclusion with reference to the quality layer supplied with the BOA S2 product. 255 

S2 TS densification/regularization was obtained by spline interpolation with tensor (value = 256 

10) applied at pixel level. Finally, the new pre-processed S2 TS was made of 146 NDVI maps 257 
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5 days regularly spaced (hereinafter called S2_TS). S2_TS was split in two stacks, singularly 258 

representing the two considered years (2016 and 2017). Splitting was operated according to 259 

the so called “agronomic year”, i.e. the period ranging from November to November of two 260 

consequent years (starting on 11th November).  261 

Analyzing Crops Performance   262 

Assuming insurance risk associated with the expected performance of crops, a simplified 263 

procedure for updating risk estimates based on NDVI TS from both low (MODIS) and high 264 

(S2) resolution satellite imagery was developed, with reference to the two above mentioned 265 

levels of investigation: trend and tuning.   266 

Trend analysis was based on MOD_TS and it was operated at crop (macro-) class 267 

level, improving the method previously proposed by Borgogno, Sarvia and Gomarasca 268 

(2019). Consequently, according to the considered CLC2012 crop classes (table 4) the 269 

average NDVI temporal profile was computed for each class by ordinary zonal statistics 270 

available in QGIS 3.10. The obtained sixteen days-spaced mean class temporal profiles were 271 

then aggregated at year level by computing the yearly 95th percentile. New profiles 272 

(hereinafter called PR95Y) containing one value per year (2000-2018) were obtained and 273 

analyzed by time decomposition with the aim of extracting the dominant trends (low 274 

frequency variations) underlying the entire profile. The adoption of 95th percentile as 275 

reference proxy of crop performance was aimed at limiting the effects of outliers, that could 276 

wrongly condition deductions if different choices, like mean or maximum values, were 277 

considered. PR95Y were analyzed by time series decomposition. Therefore, the main 278 

components, i.e. trend, seasonal, residuals were extracted (Verbesselt et al. 2010). In 279 

particular, trend component was calculated from PR95Y by LOESS (Locally Estimated 280 

Scatterplot Smoothing) filtering with span=0.5 (Cleveland 1979) and a first order polynomial 281 

approximation. Seasonal component was modelled by Fast Fourier Transform filtering (FFT) 282 
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(Testa et al. 2018) applied to the previously de-trended data. Main (low) frequency 283 

components were finally removed from de-trended data to obtain residuals. Trend analyses 284 

graphically showed that the most of crop classes (excluded vineyards-221 and mixed 285 

natural/cultivated areas-243) alternated three different behaviors (phases) in the considered 286 

period, each lasting about 7 years. This time span suggests that, presently and probably, mid-287 

term algorithms for risk estimates in the agricultural context must be tuned with a time 288 

horizon of 7 years. With special focus on CLC2012 class 211, corresponding to “not-irrigated 289 

arable land”, and including the most important (from an economical point of view) crops in 290 

the area, a numerical analysis was done to verify what graphs showed. Analysis was based on 291 

a 1st derivative approach, aimed at finding the time of PR95Y maxima and minima 292 

occurrences. It confirmed that one minimum took place in 2007 and two maxima in 2000 and 293 

2014, respectively.  294 

PR95Y crop classes were consequently split into 3 phases and each of them modelled 295 

by a 1st order polynomial that proved to well fit observations (see table 6 in Result and 296 

Discussion section). Each model, has to be interpreted as the basis to operate risk estimation 297 

in the considered period, with the hypothesis that higher the NDVI, lower the associated risk 298 

for yield reduction.  299 

Significance of changes occurred along the modelled trends was tested by comparing 300 

theoretical accuracy of NDVI measures (0.02, Borgogno, Lessio, and Gomarasca 2016) with 301 

NDVI differences recorded between the start and the end of the considered phase (table 6 in 302 

Results Section). 303 

It was found that exactly class 211, showed the most significant NDVI total variation 304 

within all the recognized behavioral phases. Consequently, successive analysis aimed at 305 

locally and yearly tuning the model was focused only on class 211. 306 



13 
 

Modelled trends of PR95Y were translated into the correspondent (possible) insurance 307 

meaning by defining the following risk rate correction factor (hereinafter called "discount", 308 

d(t)): 309 

𝑑(𝑡) = ቀ
ఊାఋ

ఊ∙௧ାఋ
ቁ ∙ 100      (1) 310 

where γ (gain) and δ (offset) are the trend line coefficients (estimated by ordinary least square 311 

OLS); t is the counter of the years passed from the first one (basis year) involved in the 312 

considered phase.  313 

If d(l) > 100 (NDVI value at the l year < NDVI value at the 1st year) the insurance premium 314 

should be proportionally increased in respect of the basis year; if instead the value of d(l) < 315 

100 the insurance premium should be proportionally decreased in respect of the basis year.  316 

As far as the S2 data are concerned, they were used to spatially and yearly tune average class 317 

trends modelled with respect to MODIS data. The obtained (macro-) class discount rate was 318 

then refined considering the local conditions where a crop field is located in. Firstly, the 211 319 

CLC2012 class was decomposed, where possible, into the main crops that reasonably could 320 

be aggregated in the same CLC codification: wheat, corn, ryegrass and meadow. Class 211 321 

disaggregation was achieved georeferenced farmers’ declarations (containing crop type 322 

description) for CAP purposes by joining the available cadastral parcels map with the 323 

correspondent tabular data. The proposed procedure is based on local NDVI anomaly 324 

computation (eq.2), defined as the ratio between the local (averaged at field level) 95th 325 

percentile of the NDVI annual profile and the one averaged over the whole considered class 326 

(wheat, corn, ryegrass and meadow).  327 

                                     𝑧௜(𝑥, 𝑦, 𝑡) =
ఓ೔(௫,௬,௧)

ఓ೎ೕ
(௧)

                         (2) 328 

where 𝜇𝑖(x,y,𝑡) is the 95th percentile of the local NDVI values (averaged over a parcel) of the 329 

i-th parcel and 𝜇௖ೕ
(𝑡) the 95th percentile of the entire class NDVI values at the t year.  330 
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It is worth to stress that 𝜇i(x,y,𝑡) has to be computed from the same dataset that 𝜇௖ೕ
(𝑡) is 331 

computed from, i.e. S2_TS. With this premise, a new correction factor k(x,y,t) timely and 332 

spatially varying, see eq. 3, can be computed for each cadastral parcel and year to update 333 

insurance premium/fee.  334 

𝑘(𝑥, 𝑦, 𝑡) = 𝑑(𝑡)  ∙  
ଵ

௓೛೔(௫,௬,௧)
      (3) 335 

where d(t) is the discount rate for the generic t year after the first one of the new modelled 336 

trend and 1/Zpi is the local and annual tuning coefficient of eq. 2. Parcels with a Zpi>1 behave 337 

better than the correspondent class average and, consequently, the related annual insurance 338 

premium is expected to be lower, being the parcel unlikely to be the object of a disaster. Vice 339 

versa if Zpi <1. If the applied insurance fee at the starting year of the new trend is known (P1st) 340 

the updated one at the generic t year after the first one is (eq. 4). 341 

𝑃(𝑥, 𝑦, 𝑡) = 𝑃ଵ௦௧(𝑥, 𝑦, 𝑡) ∙ 𝑘(𝑥, 𝑦, 𝑡)          (4) 342 

With respect to the above mentioned operational steps, a map of k(x,y,t) factor was generated 343 

for both 2016 and 2017 years taking care, separately, of the specific statistics of the 344 

considered classes. Procedure workflow is reported in the graph of fig. 2. 345 

[FIGURE 2] 346 

Results and discussion 347 

The first analysis was aimed at characterizing main land use classes in the study area 348 

with reference to the CLC2012 Level 1 codification. It resulted that the 35% of the Piemonte 349 

region is specifically devoted to agriculture, making the area a good benchmark for testing 350 

new insurance strategies in the agricultural field (table 5). 351 

[TABLE 5] 352 

In the first part of the work, aimed at testing and modelling mid-term trends of crops, all the 353 

CLC2012 Level 3 classes of table 4 were considered. MOD_TS was used to model mid-term 354 

trends of vegetation with reference to the annual 95th percentile averaged at class level. Class 355 
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NDVI profiles (PR95Y) were analyzed by time decomposition separating trends from 356 

seasonality by decomposition approach. It was found that, for the investigated crop classes, 357 

PR95Y could be generally split into 3 phases, that were singularly modelled by a 1st order 358 

polynomial (figure 3). Obtained values of unitary variation of NDVI (gain of the trend line) 359 

and the correspondent coefficients of determination (R2) are reported in table 6, together with 360 

the total NDVI variation within the modelled period. 361 

[FIGURE 3] 362 

 [TABLE 6] 363 

Gain values and total NDVI variations were compared with the theoretical NDVI accuracy 364 

(0.02) to test “operational” significance of changes. Given the economic impact of class 211 365 

(Not-irrigated arable land) in the area, this solely was selected for the successive modelling 366 

steps, disaggregating it into the main included crop types (wheat, corn, meadow, ryegrass). 367 

According to table 6 class 211 showed the most significant variation of NDVI trend for all the 368 

recognized phases (2000-2007, 2007-2014, 2014-2018). 369 

The proposed 1st order polynomial model, has consequently to be used to estimate insurance 370 

risk trend for those crops belonging to the CLC2012 211 class, with the hypothesis that higher 371 

the NDVI, lower the associated risk for yield reduction. Trend defines a general behavior of 372 

class 211 in the whole considered region, with no matter about specific site features, yearly 373 

meteorological conditions, crop types and crop management practices. Consequently, to 374 

refine the risk estimate given by the model, a further analysis is required at field level aimed 375 

at qualifying performances of crops (in terms of NDVI value), with reference to their type (as 376 

declared by farmers and recorded within PAC declarations).  Performance can be evaluated in 377 

a relative way by class-specific anomaly computation operated at field level (eq. 2). To 378 

exemplify this operation, two maps of NDVI anomaly (2016 and 2017) were generated for the 379 

area with respect to the available S2_TS. Anomaly was separately computed and mapped for 380 
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the four considered crop types and then mosaicked to generate a single map (figure 4) useful 381 

for operational purposes.  382 

[FIGURE 4] 383 

Some statistics describing crop type anomalies in 2016 and 2017 were computed and 384 

compared trying to emphasize dynamicity of the phenomenon. Three anomaly classes were 385 

considered: class 1: 𝑧௜(𝑥, 𝑦, 𝑡)< 0.95; class 2: 0.95<𝑧௜(𝑥, 𝑦, 𝑡)<1.05; class 3: 𝑧௜(𝑥, 𝑦, 𝑡) >1.05) 386 

Results are reported in Tab.7. 387 

[TABLE 7] 388 

Results show that, in spite of the reduced size of the study area, differences between 2016 and 389 

2017 were not negligible as their differences, reported in table 8, demonstrate. 390 

 391 

[TABLE 8] 392 

This fact suggests that agriculture landscape is dynamic and constantly changes in 393 

class distribution and performance depending on the considered year. Consequently, robust 394 

and reliable ground data would be required to, correctly, locate crops and making possible 395 

reasonable interpretations of ongoing processes and anomalies. It is, rarely, possible to, 396 

rigorously, compare different years and giving a single interpretation of detected anomalies, 397 

since too many variables interact, related to climate/weather, crop rotation, agronomic 398 

practices, soil nutrient content, etc. Nevertheless, the proposed procedure permits to map 399 

anomalies, i.e the final effect of all the acting agents, supplying a new spatially based support 400 

for calibrating and addressing new insurance strategies with the aim of tuning the risk 401 

associated with a certain crop in a certain area. This can be obtained translating the anomaly 402 

map into the correspondent k(x,y,t) factor map. Again, this was done for both the 2016 and 403 

2017 years with reference to the 4 investigated crops (figure 5). 404 

[FIGURE 5] 405 
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k(x,y,t) is a map specifically describing the spatial distribution of the updating factor to 406 

use for tuning the insurance premium for that type of crop at that position in that year, 407 

assuming, as basis, the premium paid in the first year of the ongoing modelled trend. 408 

The proposed methodology tries to face some of the challenges proposed by the 409 

review of De Leeuw et al. (De Leeuw et al. 2014) about features that insurance companies 410 

require to remote sensing based approaches in the agricultural context. One of them is the 411 

need of timely and spatially comparable, crop type specific metrics available with a 412 

sufficiently high temporal resolution. NDVI time series from MODIS and S2 dataset well fit 413 

these requirements. Additionally, the propsed procedure falls within the general logic of the 414 

“index based” crop insurance policies as proposed by different authors (Rao 2010; Bokusheva 415 

et al. 2012; Bobojonov, Aw-Hassan, and Sommer 2014). It sounds similar to those reported 416 

by many authors (Patankar 2011; Makaudze and Miranda 2010; Turvey and Mclaurin 2012), 417 

but the main difference relies in the joint adoption of the following steps. With reference to 418 

MODIS-based trend analysis, we preventively synthesized yearly spectral information in a 419 

single metric (PR95Y); secondly, a time series decomposition of PR95Y was achieved to 420 

extract the average trends (low frequency variations) in the period 2000-2018; finally, a break 421 

point investigation was performed to look for trend phases along the explored period. 422 

The adoption of PR95Y as synthetic metric was intended to limit noise effects given 423 

by NDVI values related to those annual periods when vegetation is not active. This can 424 

somehow limits time series decomposition (Forkel et al. 2013). Conversely, a properly 425 

designed metric can drive to a more robust estimate of the inter-annual behavior of vegetation 426 

(Zhou et al. 2016; Hird and McDermid 2009). It is worth to remind that common approaches 427 

for time series decomposition like BFAST (Breaks For Additive Season and Trend) (Fang et 428 

al. 2018) and STL (Seasonal decomposition of Time Series by Loess) (Lu et al. 2003), 429 

generally, process the entire multi-annual time series with no a-priori synthesis. 430 
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Ordinary long-term trend modelling only show the overall trend along the entire analyzed 431 

period, with no interest about possible existing sub-periods. These can be significant and, 432 

consequently, important to be recognized to get indications about the average time persistence 433 

of a certain trend and to better calibrate models that are expected to have economic impacts. A 434 

break point analysis was, therefore, achieved looking for changes in PR95Y trend derivative 435 

sign (Schucknecht et al. 2013; de Jong et al. 2012). Three sub-period trends were found, for 436 

the most of the analyzed CLC classes. Future developments could be addressed to improve 437 

break point detection using algorithms like DBEST (Detecting Breakpoints and Estimating 438 

Segments in Trend) proposed by (Jamali et al. 2015; Forkel et al. 2013).  439 

As far as anomaly mapping is concerned a similar approach was found in a recent paper by 440 

Shirsath et al. (Shirsath, Sehgal, and Aggarwal 2020), while specific applications in the 441 

agricultural insurance sector are reported in Lekakis et al. (2020). 442 

Our expectation is that the proposed procedure, based on freely available dataset and 443 

simple data processing, could support insurance companies to monitor crops behavior at the 444 

mid and short term, making possible to, somehow, map the probability of finding a favorable 445 

or unfavorable trend for a specific crop. This is a basic condition for consciously calibrating 446 

insurance fees. In favorable areas, showing an increasing trend in biomass production, a lower 447 

annual crop premium could be defined, encouraging farmers to take out insurance. 448 

Expectation is that higher the number of insured farmers, lower the insurance fees; 449 

consequently, it is our conviction that this approach could drive faster the ongoing process of 450 

making farmers closer to insurance. The proposed method can be certainly applied in other 451 

regions, but some key concepts must be considered. Firstly, persistent cloud cover can affect 452 

results especially in early phenological stages (e.g. emergence, tillering). Secondly, 453 

comparison is reliable only if explored fields fall in the same “agronomic region”, where both 454 

climate and management system are sufficiently homogeneous.  455 
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 456 

Conclusions 457 

This research was stimulated by technicians of the Piemonte Region administration 458 

with the aim of finding new ways to monitor crops in such a way to make more attractive (for 459 

farmers) insurance policies covering yields loss. Attraction depends on the possibility of 460 

convincing farmers of the need of an insurance covering and on the opportunity, for insurance 461 

company, of better calibrate (possibly reduce) fees to apply to farmers. Consequently, this 462 

work was addressed to develop and propose a methodological approach aimed at supporting 463 

agriculture-devoted insurance strategies based on time series of free multispectral satellite 464 

data. The basic idea was to relate crop performances at the mid and short term to calibrate 465 

insurance fees, taking care about both time trend and spatial distribution of biomass 466 

production by crops. A study area was selected within the Piemonte Region (NW Italy) to act 467 

as paradigm for testing and presenting the methodology. According to obtained results these 468 

considerations can be done: a) MOD13Q1 product, supplying 16 days composite NDVI maps 469 

with a  geometric resolution of 250 m and ranging from 2000 up to 2018, proved to be 470 

effective in describing mid-term trends of crop performance at both regional and agriculture 471 

macro-class level; b) NDVI map time series obtained from Copernicus Sentinel 2 data, having 472 

a higher geometric resolution (10 m), permitted to detail investigation at field level, making 473 

possible to refine insurance risk estimate and linking it to the local specific condition of crops.  474 

Refinement was obtained with reference to the local anomaly concept computed around the 475 

crop class average value. With respect to the above mentioned criteria, a simple but extremely 476 

operational mathematical model was suggested to calibrate insurance fee at year and field 477 

level. During the tests an evidence was found concerning duration of growing (or decreasing) 478 

trends of crop performances in the area. In fact, a 7 year lasting period was recognized by 479 

time series decomposition of NDVI maps time series from MOD13Q1 product, suggesting 480 
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that a new mathematical model have to be possibly calibrated after 7 years from the starting 481 

date of the previously adopted one. Eventual further improvements of the proposed method 482 

can be certainly possible especially if a new approach will be applied in ground data 483 

supplying. A constant, reliable and spatially distributed flux of information from farmers to 484 

the system is desirable to continuously monitoring the numerous varying variables that 485 

determine anomaly occurrences. This strategy could drive to propose new insurance indexed 486 

policies for protecting the whole agricultural sector in view of the effects of climate change. 487 

More appropriate insurance contracts can be proposed to farmers and encourage him to make 488 

use of this type of cover for its activity. In other words, insurance company can attract new 489 

customers and farmers can protect themselves with reasonable and demonstrable prices. 490 

Aside the main purpose this methodology was developed for, it is expected that it 491 

could also represent a valuable tool for investigating vast areas with the aim of recognizing 492 

ongoing anomalies in crops behavior: it would offer an efficient, economically competitive 493 

and immediate control or service. It is worth to remind that the proposed approach highly 494 

relies on accurate field controls that should report type and time of crucial events and crop 495 

management activities, that can supply the right interpretation keys of the observed and 496 

mapped phenomena. 497 
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Table 1. Spatial size of the main crop types present in the study area. 715 

Crop type 
Total Area 

(ha) 
Total Cultivated 

Area (ha) 
Crop Area 

(ha) 
Crop Area 

(%) 
Ryegrass 

43720 21063 

1769 8.4% 
Corn 7403 35.2% 

Wheat 3248 15.3% 
Meadow 8643 41.1% 

 716 

Table 2. Technical specifications of TERRA MODIS and S2 MSI sensors as reported in 717 
Barnes, Pagano, and Salomonson (1998) and Drush et al. (2012). 718 

 MODIS S2 

Launch date 18/12/1999 23/06/2015 
Orbit Altitude 705 km 786 km 

Geometric resolution 
 

b2-b4, b8: 10m 
b1-b3, b7:  250m b5-b7, b8a, b11, b12: 20m 

 
b1, b9, b10: 60m 

Radiometric resolution 16 bit 12 bit 
Temporal resolution 16 days 10 days (5 days with S2 A/B satellites) 

 719 

Table 3. Technical features of CLC2012 product as reported in Feranec et al. 2016. 720 

 
Value 

Satellite data source IRS P6 LISS III and RapidEye 
Time consistency (years) 2011-2012 
Geometric Accuracy (satellite data) ≤ 25 m 
Geometric Accuracy (CLC) Better than 100 m 
Thematic Accuracy ≥ 85% 
Minimum Mapping Unit/width 25 ha/ 100 m 
Access to the data free 
Number of countries involved 39 

 721 

Table 4. Codes used in CLC2012 for qualifying agricultural classes (codes from Feranec et al. 722 
2016). 723 

Level 3 code Class 
2.1.1 Not-irrigated arable land 
2.1.3 Rice fields 
2.2.1 Vineyards 
2.2.2 Fruit trees and berry plantations 
2.3.1 Pastures 
2.4.2 Complex cultivation patterns 

2.4.3 
Land principally occupied by agriculture, with significant areas of natural 

vegetation 

 724 

 725 

 726 

 727 
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 728 

Table 5. CLC2012 L1 classes and correspondent size within Piemonte Region. 729 

 CLC2012 L1 class CLC2012 L1 code Area (ha)  Area (%) 
Artificial surfaces 1 109938 4 
Agricultural areas 2 1253649 36 

Forest and semi natural 
areas 

3 20602216 59 

Wetlands 4 - - 
Water bodies 5 30878 1 

Total - 3454681 100 

 730 

Table 6. ΔNDVI = values of total NDVI variation along the considered period (as resulting 731 
from trend line); Gain = average yearly variation of NDVI as resulting from trend line); R2 = 732 
coefficient of determination computed for the 3 trends corresponding to the recognized 733 
behavioral phases. In red, values of ΔNDVI that are significant with respect to NDVI measure 734 
theoretical accuracy (0.02). 735 

 736 

CLC 
Class 

2000-2007 2007-2014 2014-2018 

  
ΔNDVI Gain 

(NDVI/year) 
R2 

ΔNDVI Gain 
(NDVI/year) 

R2 
ΔNDVI Gain 

(NDVI/year) 
R2 

(8 years) (8 years) (5 years) 

211 -0.0512 -0.0064 0.8879 0.0432 0.0054 0.7939 -0.0215 -0.0043 0.8299 

213 -0.0040 -0.0005 0.0804 0.0032 0.0004 0.0339 0.0020 0.0004 0.1416 

221 0.0240 0.0030 0.6604 0.0152 0.0019 0.3708 0.0185 0.0037 0.8651 

222 -0.0096 -0.0012 0.4832 0.0032 0.0004 0.0903 -0.0050 -0.0010 0.2266 

231 -0.0232 -0.0029 0.8520 0.0264 0.0033 0.8835 -0.0020 -0.0004 0.0587 

242 -0.0152 -0.0019 0.5430 0.0488 0.0061 0.8971 -0.0060 -0.0012 0.5296 

243 -0.0128 -0.0016 0.5930 0.0232 0.0029 0.7854 0.0075 0.0015 0.5164 

 737 

 738 

Table 7. Statistics describing anomaly distributions for the considered crops in the study area. 739 

Frequencies are given for the following anomaly classes. Class 1: 𝑧௜(𝑥, 𝑦, 𝑡)< 0.95; class 2: 740 

0.95<𝑧௜(𝑥, 𝑦, 𝑡)<1.05; class 3: 𝑧௜(𝑥, 𝑦, 𝑡) >1.05) 741 

Year 2016 2017 

Crops Ryegrass Corn Wheat Meadow Ryegrass Corn Wheat Meadow 

Class 1 12.60% 31.76% 11.64% 8.73% 14.81% 14.51% 19.58% 8.51% 

Class 2 43.05% 62.40% 31.61% 32.02% 38.34% 63.98% 39.41% 20.40% 

Class 3 44.35% 5.84% 56.75% 59.25% 46.85% 21.51% 41.01% 71.09% 

 742 

 743 
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Table 8. Differences of occurrences of the above mentioned anomaly classes between 2016 744 
and 2017 for the considered crops. 745 

          
Anomaly 2016 - 2017 

Class Ryegrass Corn Wheat Meadow 

1 2.20% -17.24% 7.93% -0.22% 

2 -4.71% 1.58% 7.80% -11.62% 

3 2.50% 15.67% -15.73% 11.84% 

  746 
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Figure 1. Study areas: a. Administrative boundaries of Piemonte Region, NW Italy. This area 747 
was assumed as the reference one for the mid-term analysis. b. Administrative boundaries of 748 
municipalities considered as focus areas for the instantaneous deductions. Their position 749 
within Piemonte Region is shown in yellow in a). Reference system is WGS 84 / UTM zone 750 
32N, EPSG: 32632. 751 

 752 

Figure 2. Workflow showing the main conceptual steps of the proposed methodology. 753 

 754 

  755 
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Figure 3. Temporal profiles of NDVI (PR95Y) given for all the considered agricultural 756 
classes from CLC2012-Level 3. a. Non-irrigated arable land (CLC 211); b. Rice fields (CLC 757 
213); c. Vineyards (CLC 221); d. Fruit trees and berry plantations (CLC 222); e. Pastures 758 
(CLC 231); f. Complex cultivation patterns (CLC 242); g. Land principally occupied by 759 
agriculture, with significant areas of natural vegetation (CLC 243). Graphs clearly show that 760 
three different phases characterized the period 2000-2018. They were separately modelled by 761 
a 1st order polynomial.  762 

 763 

 764 

 765 

 766 
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Figure 4. Map of NDVI anomaly in the area: a. Anomaly map for the year 2016; b. Anomaly 767 
map for the year 2017. Anomaly was computed at crop class level and then mosaicked to 768 
generate the map shown in figure. (Reference system is WGS 84 / UTM zone 32N, EPSG: 769 
32632). 770 

 771 

 772 

Figure 5. Map of k(x,y,t) factor (x 100) given for the 4 investigated crops (wheat, corn, 773 
ryegrass and meadows). a. k(x,y,t)  maps for the year 2016; b. k(x,y,t) maps for the year 2017; 774 
c. frequency distribution of k(x,y,t) in the year 2016 in the area of interest; d. frequency 775 
distribution of k(x,y,t) in the year 2017 in the area of interest. k(x,y,t) was computed at crop 776 
class level and then mosaicked. (Reference system is WGS 84 / UTM zone 32N, EPSG: 777 
32632). 778 

 779 


