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Abstract: The tumour microenvironment (TME) plays a crucial role in the regulation of cell survival
and growth by providing inhibitory or stimulatory signals. Extracellular vesicles (EV) represent one
of the most relevant cell-to-cell communication mechanism among cells within the TME. Moreover,
EV contribute to the crosstalk among cancerous, immune, endothelial, and stromal cells to establish
TME diversity. EV contain proteins, mRNAs and miRNAs, which can be locally delivered in the
TME and/or transferred to remote sites to dictate tumour behaviour. EV in the TME impact on
cancer cell proliferation, invasion, metastasis, immune-escape, pre-metastatic niche formation and
the stimulation of angiogenesis. Moreover, EV can boost or inhibit tumours depending on the TME
conditions and their cell of origin. Therefore, to move towards the identification of new targets and
the development of a novel generation of EV-based targeting approaches to gain insight into EV
mechanism of action in the TME would be of particular relevance. The aim here is to provide an
overview of the current knowledge of EV released from different TME cellular components and their
role in driving TME diversity. Moreover, recent proposed engineering approaches to targeting cells in
the TME via EV are discussed.
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1. Introduction

Extracellular vesicles (EV) include 100-5000 nm vesicles released by almost all cell types.
Exosomes are a subclass of extracellular vesicles ranging from 40 to 150 nm derived from multivesicular
bodies, and are distinct for their biogenesis from ectosomes and pre-apoptotic vesicles, as the latter
originate from the budding of the cell plasma membrane [1]. Since the definition of these membrane
vesicles is evolving, in the present review, they will be referred to as EV. EV are highly heterogeneous
and likely reflect the physiological/pathological conditions of the cell from which they originated.
EV are composed of a lipid bilayer and serve as carriers of information through the release of lipids,
proteins, RNA, and DNA into target cells [2].

EV activate signalling pathways in cells they fuse or interact with by transferring specific
genetic and non-genetic components [3,4]. EV are detected in the tumour microenvironment (TME),
and emerging evidence suggests that they play a role in facilitating tumourigenesis by regulating
different processes, including tumour growth, angiogenesis, immunity, and metastasis formation.
Circulating EV have also been exploited as liquid biopsies and recognized as biomarkers for early
detection, diagnosis, treatment and response to treatment in cancer patients [5-7].

During the last two decades, several studies have explored EV function in tumour from different
origins, however, so far, the precise EV role remains uncertain. In cancer, EV from different cells of
origin have been largely described as tumour promoters, however, available data also suggest that EV
retain anti-tumour properties and can also act to restrain disease progression [8].
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The tumour microenvironment (TME) contains cancer cells, displaying different phenotypes
and genetic features and a number of different cell types, including stromal cells, mesenchymal cells,
endothelial cells (EC), and cancer associated fibroblasts (CAF) [9,10]. Diverse immune cell subtypes
can also be found in the TME, which include dendritic cells (DC), B-lymphocytes, T-lymphocytes,
natural killer (NK) cells, and macrophages [9,10]. All these cells shed EV, and contribute to TME
diversity [11] (Figure 1). Moreover, since EV released within the TME likely contribute to the
heterogeneity of circulating EV, they have also been considered to be a fingerprint of the tumour.
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Figure 1. Extracellular vesicles (EV) in the tumour microenvironment (TME). Cancer cells,
cancer associated fibroblasts (CAF), immune cells, stem cells and endothelial cells interact each
other via EV in the TEM. EV can exert pro-tumour or anti-tumour effects to modulating proliferation,
invasion, metastasis formation and angiogenesis.

Novel EV engineering approaches have offered the opportunity to control primary tumours and
metastatic diseases [12,13]. Therefore, the potential application of EV as naturally delivery system for
therapeutic agents has been actively explored [12,13]. The aim of this review is to give an overview of
the current knowledge on EV functional diversity in the tumour setting, with particular emphasis on
their role as pro- or anti- cancer intermediaries. Moreover, recent engineering approaches to move
towards EV clinical application are discussed.

2. EV Pro-Tumourigenic Properties

The TME drives pro-tumourigenic effects by boosting tumour expansion and metastatic spread.
A number of studies have suggested that EV within the TME act as central mediators of angiogenesis,
immune modulation, and metastatic spread [14]. This implies that EV can be considered to be potential
targets for a new generation of pharmaceuticals directed at reprogramming the TME [15,16]. Herein,
the most relevant pro-tumour actions of EV released from different cell types in the TME are examined.
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2.1. Cancer Stem Cell-EV

Tumour lesions comprise multiple subpopulations of cells, including those endowed with
“stemness” properties and named cancer stem cells (CSC). CSC are responsible for tumour initiation,
metastasis formation, resistance to conventional therapies and disease recurrence [17]. These relatively
rare cells, also defined as cancer initiating cells (CIC), are characterized by self-renew capability,
multipotency, and tumourigenicity. It has been extensively reported that CSC can communicate within
the TME via EV, thus contributing to maintaining tumour heterogeneity [18].

Recent studies have shed light on the role of CSC-derived EV as tumour promoters by regulating
the TME remodelling. It has been found that colon cancer stem cells expressing the extracellular
matrix metalloproteinase inducer (EMMPRIN), also named CD147, are able to release CD147+ EV,
which activate a signalling cascade in recipient cells boosting their migratory phenotype. Moreover,
the expression of CD147 was also found to regulate EV shedding. Consistently, EV release and
their downstream effects on target cells were hampered by knocking-down CD147 or by using the
anti-CD147 blocking antibody [19].

EV conveying CSC signature have been recently proposed as tumour biomarkers and potential CSC
targets [20]. Ithas been reported that EV carrying CSC-surface markers boost CSC independent crosstalk
with the host and neighbouring non-CSC [21]. This translates in the local non-CSC reprogramming
and the formation of distant metastatic niches [21].

It has also been reported that EV enriched in Wnt3a are released from high grade lymphoma stem
cells and can reprogram the TME by activating the Wnt pathway. This translates in the expansion
of the tumour bulk [22]. It has been demonstrated that diffuse large B-cell lymphomas possess a
self-organized infrastructure, encompassing cells belonging to the side (SP) and non-SP population.
The transition between the two populations is under the control of EV and the reciprocal expression
of Wnt3a in SP cells-derived EV, and the secreted frizzled-related protein 4 in EV from non-SP cells
controls this balance by regulating DNA methylation [22].

Wnt signalling plays an important role in many biological processes such as growth, development,
metabolism, and stem cell maintenance [23]. The abnormal activation of the Wnt pathway is
closely related to the development of tumours and controls CSC self-renewal and differentiation [24].
Recent studies have shown that EV can regulate the Wnt pathway in recipient cells. It has been found
that, in colorectal cancer (CRC), EV released from fibroblasts activate the Wnt signalling pathway,
allowing CRC cells to acquire stem cell properties and thus increasing the bulk of CSC [25].

Moreover, it has been found that signals driving CSC differentiation into non-stem tumour cells
(non-CSC) is a bidirectional and dynamic process. EV released in the TME by CSC concur to the
dynamic shift between the differentiated and undifferentiated state of cancer cells, the so-called tumour
plasticity [26].

It has also been reported that CSC can evade the immune surveillance and maintain their quiescent
and dormant state through their immunomodulatory properties [27]. They drive neoplastic growth and
recurrence, even after long latency. Moreover, CSC, due to their ability to modulate and shape immune
responses, represent relevant mediators of resistance to immunotherapeutic approaches in cancer
patients [28]. At this regard, it has been reported that renal 105 + CSC-EV drive immune-escape by
targeting monocyte-derived DC [29]. HLA-G+ positive EV, which were found to be crucial regulators
of immune tolerance in pregnancy, also act in cancer [30]. Indeed, 105+ renal CSC-EV impair DC
maturation and T cell activation by a mechanism involving the HLA-G [31].

This suggests that further efforts to dissect the mechanisms regulating the immunological profile
of CSC and their released, EV as well as their crosstalk with immune cells within the TME, would be
useful to rationally design immunotherapeutic interventions to eradicate malignancy.

2.2. Stem Cell-EV

Particular attention has been devoted to EV derived from stem cells, since they are generally
involved in the network of inputs enabling cells to proliferate and migrate to sites of tissue injury [32,33].
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Stem cell-derived EV can act in an autocrine manner to influence stem cell proliferation, mobilization,
differentiation, angiogenesis and self-renewal [34]. Hence, it has been postulated that stem cells
and EV may work synergistically in tissue repair processes, while EV dysregulation may induce
microenvironment changes, leading to the loss of tissue homeostasis and the occurrence of diseases,
including cancer [35].

The formation of the tumour vascular network is crucial to supply nutrients and oxygen, to remove
waste products, and to provide the soil for the homing of immune cells [36]. Angiogenic factors
carried by EV released from different cells, and particularly from stem cells, are receiving particular
attention [37,38]. It has been reported that mesenchymal stem cells (MSC), through their released
EV, promote tumour progression by boosting vascularization, and by driving changes within the
TME [39,40]. Indeed, MSC-EV interact with multiple cell types in the TME to support tumour growth.
Moreover, MSC-EV have the potential to elicit different cellular responses in a variety of cells through
the delivery of their molecular cargo [41]. Recent evidence demonstrated that treatment with MSC-EV
increases the numbers of migrated cells and the length of tubes formed by human-derived EC [42].
In addition, in vitro experiments revealed that, although MSC-EV unveil significantly lower levels of
angiogenic growth factors than their conditioned media (MSC-CM), they were much more effective in
promoting angiogenesis [42]. This further confirms that the entire EV cargo most likely contributes to
the paracrine effects of MSC [43,44]. Moreover, it has been demonstrated that adipose mesenchymal
stem cell-derived EV (ASC-EV), enriched in angiogenic factors such as Milk fat globule-EGF factor 8
(MFG-E8), Angiopoietin Like 1 (ANGPTL1), thrombopoietin and matrix metalloproteinases (MMPs)
ease endothelial cell migration and activate a number of signalling pathways, resulting in the growth
of the tumour vascular tree [44,45]. Besides their role in promoting angiogenesis, stem-cell-derived EV
contribute to tumour progression by directly acting on tumour cell growth, migration, and invasion.
It has been reported that EV released from human umbilical cord-derived mesenchymal stem cells
(hUC MSC EV) promote the invasive and migratory potential of breast cancer cells by fostering
ERK-mediated epithelial-mesenchymal transition (EMT) [46]. hUCMSC-EV also contribute to the
in vivo growth of lung adenocarcinoma cells (LUAD). The authors demonstrated that hUCMSC-EV
exert their biological effects by increasing proliferation and decreasing apoptosis. miR-410 enriched in
hUCMSC-EV is crucial for their biological action, as it regulates the expression of PTEN [47].

The pro-tumourigenic action of MSC-EV has also been reported to contribute to MCF7 cell
migration. The up-regulation of several cancer-related signalling pathways was found to be associated
to the MCF?7 cell migratory phenotype. The Wnt signalling cascade was found to be among the most
relevant pathways activated in response to MSC-EV challenge [48].

It has also been reported that MSC-EV control the expansion of nasopharyngeal carcinoma (NPC)
cells. It has been noticed that MSC-EV taken up by NPC cells drive proliferative and migratory
cues. After MSC-EV administration, tumour cells showed significant changes in the expression of
EMT markers [49]. In this regard, it has been reported that MSC-EV control the expression of the
fibroblast growth factor (FGF) family member, FGF19, which on turn induces NPC cell proliferation,
migration and invasion, by activating the FGFR4 signalling cascade [49].

MSC-EV also play a role in metastasis formation by contributing to tumour cell homing at distant
sites. It has been reported that a more efficient tumour growth and metastasis formation occurs
when myeloma cells are administered together with MSC-EV [50]. Furthermore, MSC-EV regulate
self-renewal, inhibit differentiation of haematopoietic stem cells (HSC) and exert immunomodulatory
action by activating neutrophils and inhibiting the DC, NK, B, and T-cell proliferation of [51].
This implies that the immune regulatory processes in the TME are strictly controlled by MSC-EV [52].
Moreover, MSC through their released EV can also exert immunosuppressive effects in solid tumours,
by acting on any component of the immune system [53]. In this regard, it has been shown that,
although less effective than tumour-derived EV, MSC-EV are able to modulate the recall immune
responses by upregulating the expression of IL-10, TGF- and Foxp3 [54].
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Of interest, and similar to MSC, the human liver stem cells (HLSC), a mesenchymal stromal
cell-like population resident in the adult liver, display immunomodulatory properties by a mechanism
dependent on prostaglandin E2 (PGE2) and indoleamine 2,3-dioxygenase activity [55].

The crosstalk between MSC-EV and cancer cells in the haematopoietic niche has also been
investigated. It has been reported that in vivo, the growth of multiple myeloma (MM) cells is supported
by the release of MSC-EV [56]. Moreover, EV-mediated angiogenesis and osteolytic activity were
found to be crucial for MM metastatic spread. In fact, MSC-EV contribute to the formation of distant
pre-metastatic niches, MM cell engraftment as micro-metastases, and their further expansion as
macro-metastases [56].

The list of MSC-derived “messengers” is expanding, and different molecules have been reported
to act as drivers of cancer progression in a paracrine fashion [57,58]. A recent study has suggested that
genetic information (mRNA and/or microRNA) can be effectively transferred from MSC to cancer cells,
via EV revised in [59].

2.3. CAF-EV

As one of the most abundant TME components, CAF, and particularly their released EV,
play key roles during tumour expansion and metastasis formation [60]. Multiple classes of molecules,
including growth factors, cytokines, proteases, and extracellular matrix proteins, carried by CAF-EV
mediate stroma-tumour-cell interaction [61]. Several studies sustain the role of EV derived from CAF
primary cell lines on tumour proliferation, survival, migration, and invasion [62,63]. A significant
role of CAF-EV in promoting the migration and invasion of oral squamous cell carcinoma (OSCC)
cells has been reported [64]. It has been demonstrated that CAF-EV significantly induce migration
and invasion of OSCC cells and promote dissemination of the HSC-3 (a human metastatic tongue
squamous carcinoma cell line) cells in the 3D organotypic assay. Furthermore, gene profiling revealed
that CAF-EV induce the expression of genes linked to tumour invasion and genes involved in several
pathways associated with the tumour metabolism [64]. CAF-EV also display pro-tumourigenic effects
via the activation of the PI3K/Akt and MAPK/Erk signalling in endometrial cancers [65].

CAF-EV have also been involved in the regulation of intercellular communication mechanisms
leading to secondary organ localization in salivary adenoid cystic carcinoma (SACC). The authors
have shown that CAF-EV are crucial for lung pre-metastatic niche formation and hence for the
increased number of lung metastases [66]. The role of CAF-EV in regulating lung pre-metastatic
niche formation has been linked to their ability to activate resident fibroblasts. The activation of
TGF-B-mediated pathway was found to be relevant for CAF-EV-mediated matrix remodelling [67].
CAF-EV-mediated tumour aggressiveness has also been reported in pancreatic ductal adenocarcinoma
(PDA). The proteomic signature of the stromal components of PDA identified the annexin A6/LDL
receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) as crucial for tumour cell crosstalk
within the TME. The delivery of ANXA6/LRP1/TSP1 via CAF-EV (ANXAG6 + EV) was associated with
PDA aggressiveness. Moreover, since ANXA6 + EV were detected in the serum of PDA patients,
ANXAG6 + EV have also been proposed as PDA biomarker [68].

CAF-EV can also promote the progression of breast cancers through the transfer of their miRNA
cargo. It has been demonstrated that, upon the transfer of miR-21, miR-378e, and miR-143 via CAF-EV,
breast cancer cells (BT549, MDA-MB-231, and T47D cell lines) acquire an aggressive phenotype.
The authors have shown that breast cancer cells treated with CAF-EV are connoted by the increased
expression of stem cell and EMT markers, and acquire an anchorage-independent phenotype [69].

The tumour-promoting actions of CAF-EV, as well as the molecular mechanisms involved in these
processes, have also been investigated in CRC. Depth biotype characterization of non-coding RNA
(ncRNA) was analysed by next generation sequencing and bioinformatics, and revealed significant
differences in CAF-EV (ncRNA) content when compared to CAF and EV derived from normal
fibroblasts. In addition, since the ncRNA regulatory elements were found to be specifically packaged
in CAF-EV, it has been proposed that CAF and CRC cells and/or stromal cells specific cross-talk may
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take place thanks to EV [70]. Studies on osteosarcomas demonstrated that the transfer of CAF-EV
to cancer cells promotes their migratory and invasive capability. The enrichment of miRNA-1228 in
CAF, in their secreted EV and in recipient tumour cells has been linked to the downregulation of the
endogenous suppressor of cancer cell invasion (SCAI), a novel and highly conserved protein involved
in invasiveness of osteosarcoma cells [71].

As supported by these data, CAF via EV contribute to many aspects of cancer development and
progression by orchestrating a cell-to-cell signalling network involving different TME components [72].
Therefore, understanding how CAF-EV communicate within the TME would be particularly relevant
to develop novel therapeutic approaches and/or original non-invasive diagnostic, prognostic,
and predictive methods for clinical application in cancer patients.

2.4. EV-Mediated Tumour-EC Bidirectional Crosstalk

Likewise, CAF and EC are essential TME components [73,74]. Several proteins in EV have been
implicated in the regulation of EC functions [75]. Additionally, in tumours, EC fate results from
a bi-directional crosstalk with tumour cells, mainly controlled by tumour-derived EV enriched in
functional proteins and miRNAs. As an example, Huang et al. [76] demonstrated that HepG2-derived
vasorin (VASN, a type I transmembrane protein) induces EC migration via their released EV.
Several groups reported the pro-angiogenic effects of tumour-derived EV in a variety of cancers,
including glioblastoma, leukaemia, MM, melanoma, ovarian and breast cancers [77-82]. The crosstalk
between tumour cells and EC has been deeply investigated in glioblastoma tumours, since aberrant
vascularization is a common feature of this brain neoplasm [83]. EV from tumour cells can convey
messages to normal stromal cells, in order to support angiogenesis [84]. At this regard, it has been
reported that EV derived from the U251 glioblastoma cell line promote new blood vessel formation
(human brain microvascular endothelial cells) by stimulating cell proliferation, motility, and tube-like
structures in a dose-dependent manner. Moreover, the EV molecular characterization revealed that
EV are fully equipped with pro-angiogenic mediators, such as proteolytic enzymes (gelatinases and
plasminogen activators), pro-angiogenic growth factors (VEGF and TGF), as well as the C-X-C
chemokine receptor type 4 (CXCR4) [83].

Several miRNAs enriched in EV are thought to be specifically involved in tumour angiogenesis
reviewed in [85]. For example, in colorectal cancer, niRNA-9 in tumour-derived EV induce angiogenesis
by inhibiting the expression of the suppression of cytokine signalling 5 (SOCS5) [86]. Similarly,
tumour-derived endothelial cells (TEC) drive angiogenesis via the release of EV [87]. miRNA-24-3p
and miRNA-214 act as key regulators of in vivo TEC-EV-mediated vessel formation by regulating the
Wnt/B-catenin pathway [87].

Of note, it has also been shown that, in response to chemotherapy, EC promote tumour development
through the secretion of circulating miRNA-503. Using an exogenous miRNA, the authors demonstrated
that EC via EV drive breast cancer cells toward a proliferative and invasive phenotype by transferring
their genetic content [88]. Moreover, since a high level of circulating miRNA-503 was found in
breast cancer patients receiving neoadjuvant chemotherapy, it has been proposed that, in response to
unfavourable conditions (chemotherapy or radiation), EC can release circulating miRNA-503 which,
in turn, reprogram the TME [88].

Additional studies revealed that HeLa cell-derived EV promote metastasis by triggering the
endoplasmic reticulum (ER) stress and by breaking down the integrity of the endothelial layer. Indeed,
the expression of genes involved in the ER stress was found significantly increased in EC after treatment
with HeLa cell-derived EV. Knock down of the protein kinase RNA-like endoplasmic reticulum kinase
prevented the down-regulation of Zonula occludens-1(ZO-1) and Claudin-5 and inhibited the ER stress
in cells treated with HeLa cell-derived EV [89].

As supported by these data, tumour angiogenesis can be modulated not only by soluble angiogenic
factors, but also by EV derived from different cell types in the TME. Therefore, to face cancer
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angiogenesis and interfere with cell-to-cell communication in the TME, EV targeting should be
considered a novel frontline.

3. EV Anti-Tumour Properties

The anti-tumour activity of stem cells-derived EV, as well as the immunomodulatory properties of
tumour-derived EV (TDE) and EV derived from immune cells, have gained attention as novel tools for
EV-based anti-cancer therapies. In fact, the most promising results on EV application as anti-tumour
delivery system rely on their immunomodulatory action [90,91]. Herein, the most relevant data on
EV-mediated anti-tumour and immunomodulatory actions are discussed.

3.1. Stem Cell (SC)-EV

In cancer, stem cell-EV (SC-EV) are the most attractive therapeutic options, due to their natural
tumour homing capability, and to the presence of chemokine and cytokine receptors on their surface,
allowing their interaction with tumour cells [92]. Several in vivo studies have shown that SC-EV
preferentially migrate and incorporate into tumours after intravenous, intraperitoneal, and intracerebral
delivery [93]. Studies on SC-EV oncolytic properties are currently on-going [94]. Our group has
shown that HLSC-EV are able to induce an anti-tumour response by delivering selected miRNAs.
The inhibition of cell survival and tumour growth was reported as the main HLSC-EV mechanism of
action [95]. In fact, HLSC-EV intra-tumour administration induced regression of ectopic tumours in
SCID mice [95]. In addition, it has been shown that HLSC-EV treatment inhibits TEC-derived vessel
formation by down-regulating crucial pro-angiogenic genes [96].

Suppression of tumour growth by SC-EV can be accomplished by prompting apoptosis, cell cycle
arrest, inhibition of angiogenesis, or by interfering with the mechanisms involved in the metastatic
spread [39]. Recently, Karaoz etal. have performed comparative in vitro experiments and demonstrated
that MSC-EV do not promote cancer cell proliferation [97]. Functional in vivo studies are required to
validate these data. In addition, it has been recently demonstrated that miR-143 enriched in MSC-EV can
be transferred to prostate cancer cells. This translates in the post-transcriptional regulation of molecules
involved in cell proliferation, migration, invasion, and tumour growth (e.g., MMP-2, MMP-9 and PC3,
an anti-proliferative gene), as well as in the regulation of the trefoil factor-3 (TFF3), a promising prostate
cancer biomarker [98]. Moreover, it has been reported that human ovarian cancer cell growth can be
inhibited by EV derived from human adipose MSC (hAMSC). This effect relies on cell cycle arrest and
the activation of apoptotic signalling in mitochondria. hAMSC-EV upregulate different pro-apoptotic
signalling molecules, such as BAX, CASP9, and CASP3, and downregulate the anti-apoptotic protein
BCL2. Additionally, EV RNA sequencing revealed an enrichment of miRNAs, targeting different
molecules linked to cancer progression (e.g., cyclin-dependent kinase (CDK) family: CDK2, CDK4,
and CDK6) and cancer-survival signalling (PIK3R, RAS, MAPK, and STAT). These molecules have
been referred to as the main players of hAMSC-EV-mediated anti-cancer action [99].

3.2. EV Immunomodulatory Properties

In recent years, the impact of EV in regulating the adaptive and innate immunity has
been extensively investigated [100]. The modulation of antigen presentation, immune activation,
immune suppression, and immune surveillance can be included among EV-mediated immunological
activities [101]. Besides immune cells, cancer cells secrete immunologically active EV, which are able to
influence both physiological and pathological processes [101]. Tumour- and immune cell-derived EV
have been shown to carry tumour antigens, which may primarily act to eradicate established tumours
by CD8 + T cells and CD4 + T cells [102].

Hence, EV can be considered attractive immune tools to fight cancer. EV derived from B-cells and
DC have the ability to induce antigen-specific T- and B-cell responses [103]. It has been demonstrated
that DC-derived EV are equipped with all essential instruments for T cell-mediated immune responses
against tumours [104]. Pre-clinical studies on DC-derived EV showed that the increased number of
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CD8+ T lymphocytes, IFN-y and interleukin-2 level, and the decreased number of CD25 + Foxp3
+ regulatory T (Treg) cells, interleukin-10 and TGF-f, control TME remodelling to protect the host
against cancer [105].

It has been shown that, besides activating CD4+ T and CD8+ T in patients with melanoma,
DC-EV can be safe and feasible for clinical application [106]. It has also been reported that
granulocyte-macrophage colony-stimulating factor (GM-CSF) and ascites-derived EV, likely released
by immune cells, induce strong anti-cancer T cell response in patients with advanced stage of colorectal
cancers [107]. Currently several clinical trials provide promising results using DC-EV for vaccination.
It has been reported that DC-EV enhance the immune response and trigger the NKG2D ligands by
presenting their cargo to the antigen presenting cells (APC). This, in turn, increased the number of
NK in melanoma patients [106,108]. DC-EV also induce the anti-tumour immunity in patients with
advanced non-small cell lung cancer (NSCLC) by boosting NKp30-dependent NK functions [109].

Among immune cells displaying anti-tumour activity, NK cells have deserved attention. NK cells
can induce the immune response impairing dissemination of solid cancers and haematological
malignancies [110,111]. However, the role of their released EV is still under investigation. Both in vitro
and in vivo studies demonstrated that NK cells-derived EV exert cytotoxic effects on melanoma cells
by presenting both perforin and Fas ligand [112]. Recent studies reported that NK cells, isolated from
the blood of healthy donors, release EV expressing distinctive NK cell markers (i.e.,, CD56) and
containing killer proteins (i.e., Fas ligand and perforin molecules). Such EV display the ability to
counteract the growth of several tumour cell lines (e.g., melanoma) and to activate the immune
system [112,113]. NK cells-derived EV have also been shown to mediate the anti-tumour activity via
their perforin and granzyme B content, by a cytotoxic-mediated mechanism [114]. It has also been
reported that peptides carried by EV derived from mast cells can be presented to DC and stimulate
specific immune responses [115]. Based on these observations, the role of NK cells-derived EV on the
immune surveillance makes them promising tools for future therapeutic approaches.

Lymphocyte-derived EV are not the sole immune modulators in the TME, since TDE are also
considered a valuable tool for anti-cancer immunotherapeutic approaches [116]. TDE can promote
the immune response and inhibit the tumour growth [116]. TDE from lymphocytic leukaemia cells
significantly decrease TGF-f1 expression in DC. In addition, DC pulsed with TDE are more effective
in stimulating CD4 + T cell proliferation in vitro, Th1 cytokine secretion and tumour-specific CTL
responses [104].

4. EV Engineering for Cancer Therapy

Engineered EV are a new frontier for anti-cancer-based therapies, particularly for tailored
treatments in patients at different stages of disease [117]. Among the engineering technologies,
chimeric antigen receptor (CAR)-engineered T-cell (CAR-T) and miRNA-loading approaches are
the most attractive. We herein describe the recent findings and the current proposed approaches
combining EV.

4.1. CAR-T EV Engineering

Recent studies have been focused on the chimeric antigen receptor (CAR)-engineered T-cell (CAR-T)
approach for cancer immunotherapy [118-120]. CARs are monoclonal antibody-based recombinant
receptors that provide both antigen-binding and T-cell-activating functions. Once expressed in T
cells, CAR-T cells acquire potent antigen-targeted cytotoxic activity and act as “living drugs” [121].
CAR-T cell-based therapy involves the genetic modification of patient’s autologous T-cells to express
specific CAR for tumour antigens, followed by their ex vivo expansion and re-infusion in patients.
CARs are fusion proteins of a selected single-chain fragment variable from a specific monoclonal
antibody and one or more T-cell receptor intracellular signalling domains [121]. Such T-cell genetic
modification can be obtained via viral- or non-viral-based gene transfer, such as DNA-based transposons,
CRISPR/Cas9 technology or electroporation-mediated mRNA transfer [122].
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However, concerns related to their infusion in patients are emerging. The so-called cytokine
release syndrome (CRS) is one of the most adverse event associated with CAR-T cell infusion [123].
EV have already been exploited for anti-cancer therapeutic approaches, hence, the combination of
CAR-T and EV technology has been proposed [124,125]. CAR EV may have a low risk of toxicities and
can be generated from healthy donors and applied as ‘off the shelf therapeutics’.

Unlike in lymphoid malignancies, in solid tumours, the CAR-T approach unveiled disappointing
therapeutic effects [126]. Two core mechanisms mainly related to the intrinsic TME features account for
the lack of CAR-T effectiveness in solid tumours. First, active tumour-mediated immunosuppression
may limit the activity of CAR-T cells; second, functional changes in T lymphocytes after their ex vivo
manipulation may reduce CAR-T cell diffusion through the ECM [127]. EV have the ability to cross
biological barriers and the leaky vasculature of tumours prompts their trafficking into tumours when
intravenously injected [128]. Once again, EV intrinsic properties may overcome CAR-T limitations,
potentially allowing their application in solid tumours. Fu at al. demonstrated that CAR-containing
EV express a high level of cytotoxic molecules and inhibit tumour growth. Moreover, compared to
CAR-T cells, CAR EV do not express the programmed cell death protein 1 (PD1), and their anti-tumour
effects cannot be weakened by recombinant PD-L1 treatment. In addition, in a preclinical in vivo
model, CAR EV administration was found to be quite safe in preventing CRS compared to CAR-T
therapy [125].

These data support the possibility that CAR EV may become an effective anti-cancer
targeting approach overwhelming the limitations of current treatment modalities (Figure 2).
Appropriately applying cellular and EV platforms, CAR-based treatment would be more effective and
might be considered the next promising targeted-based option. Although a few CAR-T/EV combinatory
studies are so far available, this challenging approach should be deeply investigated.

EV isolation Patient Leukapheresis (for T-cell isolation)

Destruction of
' cancer cells

Expansion of CAR-T cells Engineering T cells

Figure 2. Set-up phases of chimeric antigen receptor (CAR)-engineered T-cell (CAR-T) EV engineering. 1.
T cells undergo collection through positive or negative selection methods from cancer patients’ peripheral
blood sample. 2. T cells are transfected with CARs through viral or non-viral transfection technology.
3. CAR-engineered T cells are ex vivo expanded in the presence of IL-2. 4. CAR-T cell-derived EV
undergo isolation. 5. EV can be re-infused in the patient after chemotherapy preconditioning.
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4.2. miRNA-EV Engineering

Innovative technologies have been developed in recent years, exploiting EV-miRNA-loading [129].
Since miRNAs can act as oncogenes or tumour suppressors, strategies based on their inhibition and/or
replacement may represent the upcoming anti-cancer options (Figure 3). Indeed, miRNA administration
was found to be effective in restoring their abnormal expression in cancers [130]. Therefore,
miRNA engineered EV have been proposed as a useful approach to treat cancers and to conceivably
reduce sides effects of current therapeutics [130]. Approaches that increase miRNA stability and
prevent nuclease degradation are the most promising choices [131]. Currently, electroporation is
the most used technique to incorporate miRNAs into EV. Although effective in destabilizing the
membrane of vesicles and allowing miRNA entry, EV and miRNA aggregation is still an unsolved
issue, applying electroporation [132].

Engineered EV with anti-tumour miRNA

Anti-tumour
miRNA

Tumour

Reduction of tumour by influencing
apoptosis, proliferation and/or angiogenesis

Figure 3. EV-miRNA-loading. Specific miRNA displaying anti-cancer properties are loaded in EV and
used for treatment. Engineered miRNA-EV despatch their anti-tumour effects by regulating apoptosis,
proliferation, and angiogenesis.

A recent study investigated the use of synthetic particles to vehicle miRNAs as therapeutic drugs
to suppress HepG2 growth [133]. miRNA-31 and miRNA-451a engineered plasma-derived EV showed
effectiveness in promoting HepG2 apoptosis and growth suppression. It has been demonstrated that
EV electroporated with miRNA-31 significantly down-regulate CDK2, commonly overexpressed in
HCC. Moreover, down-regulation of the transcription factor, named specificity protein 1 (SP1), has also
been reported to interfere with HepG2 apoptosis, proliferation, and invasion [133]. It has been shown
that EV can also efficiently deliver miRNAs to epidermal growth factor receptor (EGFR)-expressing
breast cancer cells [134]. Experimental evidence suggested that upon miRNA loading, EV derived
from the human embryonic kidney cell line 293 (HEK293) are therapeutically effective in targeting
cancerous tissues expressing the EGFR. Intravenously injected EV successfully deliver their loaded
let-7a miRNA to EGFR-expressing breast cancer tissues in RAG2—/~mice [134].

In addition, miRNA-146b, which is lost in most glioma tumours, was found to reduce invasion
and motility of glioma cells by silencing the EGFR [135]. Katakowski et al. [135] investigated the role
of miRNA-146b as a potential tumour suppressor in glioma. In this study, MSC electroporated with
miRNA-146b were used as EV source. A single EV intra-tumour administration five days after tumour
implantation was found to be effective in reducing the tumour volume [135].
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Recent evidence showed that synthetic miRNA-143 introduced into MSC cells is released
by EV, and is efficiently transferred to osteosarcoma cells. The delivery of MSC-EV enriched in
miRNA-143 significantly reduced migration of osteosarcoma cells [136].

Of interest, it has been reported that EV protonation can be useful to generate a pH gradient across
the EV membranes to enhance miRNA loading without impairing EV cellular uptake nor inducing
toxicity in vivo. The biological effect was verified by loading HEK293T-derived EV with different
miRNAs and evaluating their cellular targets [137].

In order to enhance the efficacy of EV-mediated miRNA delivery, a novel system has been
developed [138]. The authors successfully enhanced the entrance of designated miRNA mimics or
inhibitors directly in isolated EV, by using a modified calcium chloride-mediated transfection method.
The delivery of miRNAs enriched EV was found to be effective in inducing miRNA overexpression or
depletion, both in vitro and in vivo [138].

Recent in vivo studies have also reported that SC-derived EV loaded with exogenous anti-tumour
molecules and activated with a pro-drug successfully kill cancer cells [139]. Hence, SC-derived EV
have been proposed as an attractive platform for the delivery of anti-tumour agents. This would be
particularly relevant for “drugs” which should go across the blood-brain barrier (BBB) to reach the
target tissue. In fact, bioengineered EV have been already described to prevent brain tumour metastasis
by trafficking anti-tumour proteins across the BBB [140].

Engineered EV have also been used to directly and specifically target the mutated form of the
GTPase KRAS, a key driver of pancreatic cancers [141]. EV derived from normal fibroblast-like
mesenchymal cells have been engineered to carry specific KRASG12D siRNAs or shRNAs (eEV).
Kamerkar et al. [141] have demonstrated that the expression of CD47 on EV enhance their retention in
the circulation. The presence of CD47 on EV allows evasion from circulating monocytes and increases
their half-life [141]. The authors identified the functional contribution of CD47 and Ras-induced
macropinocytosis in suppressing EV clearance from circulation, and in enhancing their homing to
pancreatic cancer cells, respectively. Moreover, they found that EV act as ‘single targeted agent’
delivering the RNAI to the oncogenic Kras in pancreatic tumours. This translates in the enhancement
of the overall survival in all experienced models [141].

5. Conclusions

EV have been increasingly investigated as novel intercellular communication mediators in the
TME [120,142]. Recent studies have been focused on the dual aspect of EV released within the
TME, with particular attention to their ability to promote or interfere with tumour progression [143].
Table 1 summarizes the most relevant results. Among SC-derived EV, MSC-EV deserve special
attention as anti-cancer tools. It has been reported that MSC inhibit tumour growth, mainly by
interfering with the activation of signalling pathways associated with proliferation (AKT, PI3K,
and Wnt), by downregulating the X-linked inhibitor of apoptosis protein (XIAP), and by suppressing
angiogenesis [144]. However, their dualistic mechanism of action in tumours related to their
pro-angiogenic properties still raises concerns on their clinical application as an anti-cancer option [145].
Likewise, since MSC biologically active materials are transferred to their released EV, the precise framing
of EV functions is still challenging. This implies that to move toward MSC-EV based therapies extreme
caution should be devoted to clearly define as to boost their anti-cancer properties, while removing
their tumour-promoting activity [146]. Due to their ability to trigger specific immune responses,
EV released from both SC and tumour cells may also be considered to be a novel tool for EV-mediated
anti-cancer-based therapies [147]. Exploring EV biology, and particularly the molecular mechanisms
involved in immune cell targeting, interaction, and manipulation, would likely provide significant
insights into immune-recognition and therapeutic intervention in cancer [148].
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Table 1. Pro-tumour and anti-tumour functional effects of EV.
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Type of EV Pro-Tumour Functional Effects Ref.
CSC-EV boost the migratory phenotype [19]
CSC-EV promote formation of metastatic niches [21]

B-cell lymphomas EV expand tumour bulk [22]
CRC-EV increase CSC bulk [25]
CSC-EV promote transition to the undifferentiated state [26]

renal 105 + CSC-EV drive immuno-escape [29]
MSC-EV boost vascularization [39,40]
MSC-EV increase the number of migrated cells; increase the length of EC tube formation [42]
ASC-EV ease endothelial cell migration; activate the growth of the tumour vascular tree [44,45]

hUMSC-EV promote the invasive and migratory potential of breast cancer cells; growth of lung adenocarcinoma cells [46]
MSC-EV contribute to MCF-7 cell migration [48]
MSC-EV drive proliferative and migratory cues [49]
MSC-EV Immunomodulation of white blood cells [51,52]
MSC-EV contribute to the formation of distant pre-metastatic niches [56]
CAF-EV promote migration and invasion of OSCC cells; induce genes involved in tumour metabolism [64]
CAF-EV form pre-metastatic niche; mediate tumour aggressiveness [66]
CAF-EV acquire aggressive phenotype [68]
CAF-EV promote migratory and invasive capability of osteosarcoma [71]

HepG2-EV induce EC migration [76]

Tumour-Derived EV (TDE) support angiogenesis; form new blood vessel; stimulate proliferation and motility [83]
TEC-EV mediate vessel formation [86]
TEC-EV promote tumour development [87]
HeLa-EV promote metastasis [89]

Type of EV Anti-Tumour Functional Effects Ref.

HLSC-EV inhibit cell survival and tumour growth [95]
MSC-EV interfere with cancer cell proliferation [97]
hAMSC inhibit cancer growth; upregulate pro-apoptotic signalling molecules [99]
DC-EV Induce TME remodelling to protect the host against cancer [103,104]
GM-CSF EV induce anti-cancer T cell response in patients [107]
DC-EV induce anti-tumour immunity [106,108,109]
NK-EV exert cytotoxic effects on cancer [112,113]
Mast cell EV stimulate specific immune response [115]
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Due to the relevant role of the TME in tumour development, progression, and metastasis
formation, targeting different cell types supporting tumour growth by EV engineering might represent
a conceivable anti-tumour strategy to track [149]. Moreover, the combined application of CAR-T cells
and CAR EV platform would undoubtedly strengthen the use of CAR-based anti-cancer therapies [150].

As EV cargo includes numerous proteins, lipids, and nucleic acids, valuable information on their
origin and function can be garnered by a deeper cargo analysis. Particular efforts have been devoted to
characterizing EV, specifically TDE collected and isolated from liquid biopsy [151]. TDE have been
proposed as biomarkers, diagnostics and therapeutics, or “theranostics” [152] (Table 2). Although the
EV isolation procedure is still a matter of debate, currently, the gold standard for EV purification
includes differential centrifugation [153,154]. Differentially expressed proteins and genetic materials
in EV recovered from tumour patients and healthy subjects are the so far most applied approach for
biomarker discovery. In particular, due to their stability, high specificity, and easy sample collection,
miRNAs delivered by TDE have been proven to be a useful tool for biomarker detection [155].
Several clinical trials aimed to evaluate the potential clinical application of EV in tumours from different
origin are ongoing. At present, 91 are listed (https://clinicaltrials.gov/ct2/results?cond=Canceré&term=
Exosomes&entry=&state=&city=&dist=). Biological fluids such as urine and serum are the most
common proposed EV sources. Data on their impact as diagnostic or prognostic tools could be available
in a few years and, should validated, their possible application in cancer patients will become part of
the real world. Finally, even though only a few data on the effectiveness of radiotherapy and MSC-EV
as combo approach [156] are so far available, a deep investigation of the therapeutic efficacy of EV and
current treatment options should be considered as a future challenge.

Table 2. Major benefits and drawbacks of EV treatment approaches.

Advantages and Features Drawbacks & Issues to be Solved
Easy to use Standardized isolation methods
Useful as biomarkers for prognostic and diagnostic purposes Relative low loading capacity for proteins and nucleic acids
Smoothly overcome the blood brain barrier Fine-tuning potency tests
Detectable in different biological fluids Scalability
Confer nucleic acids (RNA) stability The best cell source(s) to be identified
Potentially exploitable as liquid biopsy (circulating-EV) Establish the timing and dose to use

Exploitable for specific therapeutic purposes upon engineering  Evaluate their efficacy as autologous or heterologous source

However, to move towards EV, anti-cancer-based therapy several hurdles should be solved
(Table 2). They include potency tests, EV scalability and a full characterization in compliance with the
existing regulatory frameworks for EV-based therapeutics [157].
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